Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (925)

Search Parameters:
Keywords = western pacific

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6835 KiB  
Article
Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing
by Chujing Wang, Yuefeng Wang, Chaogui Lei, Sitong Wei, Xingying Huang, Zhenghui Zhu and Shuqiong Zhou
Hydrology 2025, 12(8), 208; https://doi.org/10.3390/hydrology12080208 - 7 Aug 2025
Abstract
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent [...] Read more.
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent circulation patterns remain poorly understood. Using daily temperature data from 29 meteorological stations in Chongqing (1960–2019), this study employs linear trend analysis, correlation analysis, and random forest (RF) models to analyze spatiotemporal variations in the intensity and frequency of extreme temperature. We selected 21 climate indicators from three categories—atmospheric circulation, sea surface temperature (SST), and sea-level pressure (SLP)—to identify the primary drivers of extreme temperatures and quantify their respective contributions. The key findings are as follows: (1) All extreme intensity indices exhibited an increasing trend, with the TXx (annual maximum daily maximum temperature) showing the higher trend (0.03 °C/year). The northeastern region experienced the most pronounced increases. (2) Frequency indices also displayed an upward trend. This was particularly evident for the TD35 (number of days with maximum temperature ≥35 °C), which increased at an average rate of 0.16 days/year, most notably in the northeast. (3) The Western Pacific Subtropical High Ridge Position Index (GX) and Asia Polar Vortex Area Index (APV) were the dominant climate factors driving intensity indices, with cumulative contributions of 26.0% to 33.4%, while the Western Pacific Warm Pool Strength Index (WPWPS), Asia Polar Vortex Area Index (APV), North Atlantic Subtropical High Intensity Index (NASH), and Indian Ocean Warm Pool Strength Index (IOWP) were the dominant climate factors influencing frequency indices, with cumulative contributions of 46.4 to 49.5%. The explanatory power of these indices varies spatially across stations, and the RF model effectively identifies key circulation factors at each station. In the future, more attention should be paid to urban planning adaptations, particularly green infrastructure and land use optimization, along with targeted heat mitigation strategies, such as early warning systems and public health interventions, to strengthen urban resilience against escalating extreme temperatures. Full article
Show Figures

Figure 1

11 pages, 985 KiB  
Article
Strengthening Western North Pacific High in a Warmer Environment
by Sanghyeon Yun and Namyoung Kang
Climate 2025, 13(8), 162; https://doi.org/10.3390/cli13080162 - 1 Aug 2025
Viewed by 161
Abstract
The geographical response of western North Pacific subtropical high (SH) to environmental conditions such as the El Niño-Southern Oscillation (ENSO) and global warming has been one of the main concerns with respect to extreme events induced by tropical convections. By considering observed outgoing [...] Read more.
The geographical response of western North Pacific subtropical high (SH) to environmental conditions such as the El Niño-Southern Oscillation (ENSO) and global warming has been one of the main concerns with respect to extreme events induced by tropical convections. By considering observed outgoing longwave radiation (OLR) as the strength of subtropical high, this study attempts to further understand the geographical response of SH strength to ENSO and global warming. Here, “SH strength” is defined as the inhibition of regional convections under SH environment. A meridional seesaw pattern among SH strength anomalies is found at 130°–175° E. In addition, the La Niña environment with weaker convections at lower latitudes is characterized by farther westward expansion of SH but with a weaker strength. Conversely, the El Niño environment with stronger convections at lower latitudes leads to shrunken SH but with a greater strength. The influence of the seesaw mechanism appears to be modulated by global warming. The western North Pacific subtropical high strengthens overall under warming in both the La Niña and El Niño environments. This suggests that the weakening effect by drier tropics is largely offset by anomalous highs induced by a warming atmosphere. It is most remarkable that the highest SH strengths appear in a warmer El Niño environment. The finding implies that every new El Niño environment may experience the driest atmosphere ever in the subtropics under global warming. The value of this study lies in the fact that OLR effectively illustrates how the ENSO variation and global warming bring the zonally undulating strength of boreal-summer SH. Full article
Show Figures

Figure 1

22 pages, 6820 KiB  
Article
Bathymetric Profile and Sediment Composition of a Dynamic Subtidal Bedform Habitat for Pacific Sand Lance
by Matthew R. Baker, H. G. Greene, John Aschoff, Michelle Hoge, Elisa Aitoro, Shaila Childers, Junzhe Liu and Jan A. Newton
J. Mar. Sci. Eng. 2025, 13(8), 1469; https://doi.org/10.3390/jmse13081469 - 31 Jul 2025
Viewed by 350
Abstract
The eastern North Pacific Ocean coastline (from the Salish Sea to the western Aleutian Islands) is highly glaciated with relic sediment deposits scattered throughout a highly contoured and variable bathymetry. Oceanographic conditions feature strong currents and tidal exchange. Sand wave fields are prominent [...] Read more.
The eastern North Pacific Ocean coastline (from the Salish Sea to the western Aleutian Islands) is highly glaciated with relic sediment deposits scattered throughout a highly contoured and variable bathymetry. Oceanographic conditions feature strong currents and tidal exchange. Sand wave fields are prominent features within these glaciated shorelines and provide critical habitat to sand lance (Ammodytes spp.). Despite an awareness of the importance of these benthic habitats, attributes related to their structure and characteristics remain undocumented. We explored the micro-bathymetric morphology of a subtidal sand wave field known to be a consistent habitat for sand lance. We calculated geomorphic attributes of the bedform habitat, analyzed sediment composition, and measured oceanographic properties of the associated water column. This feature has a streamlined teardrop form, tapered in the direction of the predominant tidal current. Consistent flow paths along the long axis contribute to well-defined and maintained bedform morphology and margin. Distinct patterns in amplitude and period of sand waves were documented. Strong tidal exchange has resulted in well-sorted medium-to-coarse-grained sediments with coarser sediments, including gravel and cobble, within wave troughs. Extensive mixing related to tidal currents results in a highly oxygenated water column, even to depths of 80 m. Our analysis provides unique insights into the physical characteristics that define high-quality habitat for these fish. Further work is needed to identify, enumerate, and map the presence and relative quality of these benthic habitats and to characterize the oceanographic properties that maintain these benthic habitats over time. Full article
(This article belongs to the Special Issue Dynamics of Marine Sedimentary Basin)
Show Figures

Figure 1

21 pages, 4324 KiB  
Article
Obsidian Technology and Transport Along the Archipelago of Southernmost South America (42–56° S)
by César Méndez, Flavia Morello, Omar Reyes, Manuel San Román, Amalia Nuevo-Delaunay and Charles R. Stern
Quaternary 2025, 8(3), 39; https://doi.org/10.3390/quat8030039 - 29 Jul 2025
Viewed by 306
Abstract
Obsidian was a key toolstone for the development of maritime lifeways in the western archipelago of southernmost South America. This area is a fragmented landscape where the major north–south movement of people along the Pacific was only possible by navigation because it is [...] Read more.
Obsidian was a key toolstone for the development of maritime lifeways in the western archipelago of southernmost South America. This area is a fragmented landscape where the major north–south movement of people along the Pacific was only possible by navigation because it is constrained by major biogeographic barriers. Two obsidian sources have been recorded, each one located on the extremes of the archipelago, and each has played a key role in the canoe-adapted societies that used them. As indicated by repeated inductively coupled plasma mass spectrometry analyses, obsidian from Chaitén Volcano to the north was distributed between 38°26′ S and 45°20′ S, and obsidian from Seno Otway to the south was distributed between 50° and 55° S, although it mainly occurred in sites close to the Strait of Magellan and within constrained time periods. This study explores the distribution of these two types of obsidians, their chronology, their frequencies in the archaeological record, the main artifact classes that are represented, and the technological processes in which they were involved. This examination indicates common aspects in the selection of high-quality toolstones for highly mobile maritime groups and discusses the different historical trajectories of two obsidians that appear decoupled across the Holocene. Full article
Show Figures

Figure 1

30 pages, 798 KiB  
Review
Understanding Frailty in Cardiac Rehabilitation: A Scoping Review of Prevalence, Measurement, Sex and Gender Considerations, and Barriers to Completion
by Rachael P. Carson, Voldiana Lúcia Pozzebon Schneider, Emilia Main, Carolina Gonzaga Carvalho and Gabriela L. Melo Ghisi
J. Clin. Med. 2025, 14(15), 5354; https://doi.org/10.3390/jcm14155354 - 29 Jul 2025
Viewed by 298
Abstract
Background/Objectives: Frailty is a multifactorial clinical syndrome characterized by diminished physiological reserves and increased vulnerability to stressors. It is increasingly recognized as a predictor of poor outcomes in cardiac rehabilitation (CR). However, how frailty is defined, assessed, and addressed across outpatient CR [...] Read more.
Background/Objectives: Frailty is a multifactorial clinical syndrome characterized by diminished physiological reserves and increased vulnerability to stressors. It is increasingly recognized as a predictor of poor outcomes in cardiac rehabilitation (CR). However, how frailty is defined, assessed, and addressed across outpatient CR programmes remains unclear. This scoping review aimed to map the extent, range, and nature of research examining frailty in the context of outpatient CR, including how frailty is measured, its impact on CR participation and outcomes, and whether sex and gender considerations or participation barriers are reported. Methods: Following the PRISMA-ScR guidelines, we conducted a comprehensive search across six electronic databases (from inception to 15 May 2025). Eligible peer-reviewed studies included adult participants assessed for frailty using validated tools and enrolled in outpatient CR programmes. Two reviewers independently screened citations and extracted data. Results were synthesized descriptively and narratively across three domains: frailty assessment, sex and gender considerations, and barriers to CR participation. The protocol was registered with the Open Science Framework. Results: Thirty-nine studies met inclusion criteria, all conducted in the Americas, Western Pacific, or Europe. Frailty was assessed using 26 distinct tools, most commonly the Kihon Checklist, Fried’s Frailty Criteria, and Frailty Index. The median pre-CR frailty prevalence was 33.5%. Few studies (n = 15; 38.5%) re-assessed frailty post-CR. Sixteen studies reported sex or gender data, but none applied sex- or gender-based analysis (SGBA) frameworks. Only eight studies examined barriers to CR participation, identifying physical limitations, emotional distress, cognitive concerns, healthcare system-related factors, personal and social factors, and transportation as key barriers. Conclusions: The literature on frailty in CR remains fragmented, with heterogeneous assessment methods, limited global representation, and inconsistent attention to sex, gender, and participation barriers. Standardized frailty assessments and individualized CR programme adaptations are urgently needed to improve accessibility, adherence, and outcomes for frail individuals. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

23 pages, 3216 KiB  
Article
Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific
by Shuyang Feng, Xiaoming Yang, Menghao Li, Zhoujia Hua, Siquan Tian and Jiangfeng Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1444; https://doi.org/10.3390/jmse13081444 - 29 Jul 2025
Viewed by 278
Abstract
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, [...] Read more.
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, as its resource abundance is significantly influenced by marine environmental factors. Skipjack tuna can be categorized into unassociated schools and associated schools, with the latter being predominant. Overfishing of the associated schools can adversely affect population health and the ecological environment. In-depth exploration of the spatial distribution responses of these two fish schools to environmental variables is significant for the rational development and utilization of tuna resources and for enhancing the sustainability of fishery resources. In sparsely sampled and complex marine environments, geographic similarity methods effectively predict tuna resources by quantifying local fishing ground environmental similarities. This study introduces geographical similarity theory. This study focused on 1° × 1° fishery data (2004–2021) released by the Western and Central Pacific Fisheries Commission (WCPFC) combined with relevant marine environmental data. We employed Geographical Convergent Cross Mapping (GCCM) to explore significant environmental factors influencing catch and variations in causal intensity and employed a Geographically Optimal Similarity (GOS) model to predict the spatial distribution of catch for the two types of tuna schools. The research findings indicate that the following: (1) Sea surface temperature (SST), sea surface salinity (SSS), and net primary productivity (NPP) are key factors in GCCM model analysis, significantly influencing the catch of two fish schools. (2) The GOS model exhibits higher prediction accuracy and stability compared to the Generalized Additive Model (GAM) and the Basic Configuration Similarity (BCS) model. R2 values reaching 0.656 and 0.649 for the two types of schools, respectively, suggest that the geographical similarity method has certain applicability and application potential in the spatial prediction of fishery resources. (3) Uncertainty analysis revealed more stable predictions for unassociated schools, with 72.65% of the results falling within the low-uncertainty range (0.00–0.25), compared to 52.65% for associated schools. This study, based on geographical similarity theory, elucidates differential spatial responses of distinct schools to environmental factors and provides a novel approach for fishing ground prediction. It also provides a scientific basis for the dynamic assessment and rational exploitation and utilization of skipjack tuna resources in the Pacific Ocean. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

14 pages, 1855 KiB  
Article
Response of Tree-Ring Oxygen Isotopes to Climate Variations in the Banarud Area in the West Part of the Alborz Mountains
by Yajun Wang, Shengqian Chen, Haichao Xie, Yanan Su, Shuai Ma and Tingting Xie
Forests 2025, 16(8), 1238; https://doi.org/10.3390/f16081238 - 28 Jul 2025
Viewed by 224
Abstract
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples [...] Read more.
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples collected from the Alborz Mountains in Iran. We analyzed relationships between δ18O and key climate variables: precipitation, temperature, Palmer Drought Severity Index (PDSI), vapor pressure (VP), and potential evapotranspiration (PET). Correlation analysis reveals that tree-ring δ18O is highly sensitive to hydroclimatic variations. Tree-ring cellulose δ18O shows significant negative correlations with annual total precipitation and spring PDSI, and significant positive correlations with spring temperature (particularly maximum temperature), April VP, and spring PET. The strongest correlation occurs with spring PET. These results indicate that δ18O responds strongly to the balance between springtime moisture supply (precipitation and soil moisture) and atmospheric evaporative demand (temperature, VP, and PET), reflecting an integrated signal of both regional moisture availability and energy input. The pronounced response of δ18O to spring evaporative conditions highlights its potential for capturing high-resolution changes in spring climatic conditions. Our δ18O series remained stable from the 1960s to the 1990s, but showed greater interannual variability after 2000, likely linked to regional warming and climate instability. A comparison with the δ18O variations from the eastern Alborz Mountains indicates that, despite some differences in magnitude, δ18O records from the western and eastern Alborz Mountains show broadly similar variability patterns. On a larger climatic scale, δ18O correlates significantly and positively with the Niño 3.4 index but shows no significant correlation with the Arctic Oscillation (AO) or the North Atlantic Oscillation (NAO). This suggests that ENSO-driven interannual variability in the tropical Pacific plays a key role in regulating regional hydroclimatic processes. This study confirms the strong potential of tree-ring oxygen isotopes from the Alborz Mountains for reconstructing hydroclimatic conditions and high-frequency climate variability. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

26 pages, 3278 KiB  
Article
Marine Highways and Barriers: A Case Study of Limacina helicina Phylogeography Across the Siberian Arctic Shelf Seas
by Galina A. Abyzova, Tatiana V. Neretina, Mikhail A. Nikitin, Anna O. Shapkina and Alexander L. Vereshchaka
Diversity 2025, 17(8), 522; https://doi.org/10.3390/d17080522 - 27 Jul 2025
Viewed by 386
Abstract
The planktonic pteropod Limacina helicina is increasingly studied as a bioindicator of climate-driven changes in polar marine ecosystems. Although broadly distributed across the Arctic Basin and the North Pacific, its population structure and dispersal pathways remain poorly understood, especially in the Siberian Arctic. [...] Read more.
The planktonic pteropod Limacina helicina is increasingly studied as a bioindicator of climate-driven changes in polar marine ecosystems. Although broadly distributed across the Arctic Basin and the North Pacific, its population structure and dispersal pathways remain poorly understood, especially in the Siberian Arctic. We analyzed mitochondrial COI sequences from populations sampled in the Barents, Kara, Laptev, East Siberian, and White Seas, as well as adjacent Pacific regions. Three major haplogroups (H1, H2, H3) were identified with distinct spatial patterns. H1 is widespread, occurring across the Pacific and most Arctic seas except the White Sea. H2 is confined to the western Arctic shelves (Barents–Kara–Laptev), and H3 is unique to the White Sea. We found a pronounced genetic discontinuity corresponding to hydrographic barriers, particularly the strong freshwater inflow from the Lena River, which restricts eastward dispersal of H2 from the Laptev to the East Siberian Sea. These patterns suggest postglacial expansions from geographically separated populations that survived the Last Glacial Maximum in isolated marine regions. The White Sea population is highly isolated and genetically distinct. Our results highlight how both glacial history and modern oceanography shape Arctic plankton diversity and define biogeographic boundaries in a rapidly changing climate. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

13 pages, 2073 KiB  
Article
Isolation and Identification of Inter-Correlated Genes from the Invasive Sun Corals Tubastraea Coccinea and Tubastraea Tagusensis (Scleractinia, Cnidaria)
by Maria Costantini, Fulvia Guida, Carolina G. Amorim, Lucas B. da Nóbrega, Roberta Esposito, Valerio Zupo and Beatriz G. Fleury
Int. J. Mol. Sci. 2025, 26(15), 7235; https://doi.org/10.3390/ijms26157235 - 26 Jul 2025
Viewed by 354
Abstract
Tubastraea coccinea and T. tagusensis, commonly known as sun corals, are two species of stony corals (Scleractinia, Dendrophylliidae) native to the Indo-Pacific region (T. coccinea) and the Galapagos Islands (T. tagusensis), respectively. They are considered highly invasive species, [...] Read more.
Tubastraea coccinea and T. tagusensis, commonly known as sun corals, are two species of stony corals (Scleractinia, Dendrophylliidae) native to the Indo-Pacific region (T. coccinea) and the Galapagos Islands (T. tagusensis), respectively. They are considered highly invasive species, particularly in the Western Atlantic Ocean, due to high adaptability to various ecological conditions and notable resilience. Given their demonstrated invasiveness, it is important to delve into their physiology and the molecular bases supporting their resilience. However, to date, only a few molecular tools are available for the study of these organisms. The primary objective of the present study was the development of an efficient RNA extraction protocol for Tubastraea coccinea and T.a tagusensis samples collected off Ilha Grande Bay, Rio de Janeiro (Brazil). The quantity of isolated RNA was evaluated using NanoDrop, while its purity and quality were determined by evaluating the A260/A280 and A260/230 ratios. Subsequently, based on genes known for T. coccinea, two housekeeping genes and seven stress response-related genes were isolated and characterized, for the first time for both species, using a molecular approach. An interactomic analysis was also conducted, which revealed functional interactions among these genes. This study represents the first report on gene networks in Tubastraea spp., opening new perspectives for understanding the chemical ecology and the cellular mechanisms underlying the invasiveness of these species. The results obtained will be useful for ecological conservation purposes, contributing to the formulation of strategies to limit their further expansion. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 4550 KiB  
Article
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Viewed by 180
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme [...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

25 pages, 9183 KiB  
Article
Development and Evaluation of the Forest Drought Response Index (ForDRI): An Integrated Tool for Monitoring Drought Stress Across Forest Ecosystems in the Contiguous United States
by Tsegaye Tadesse, Stephanie Connolly, Brian Wardlow, Mark Svoboda, Beichen Zhang, Brian A. Fuchs, Hasnat Aslam, Christopher Asaro, Frank H. Koch, Tonya Bernadt, Calvin Poulsen, Jeff Wisner, Jeffrey Nothwehr, Ian Ratcliffe, Kelsey Varisco, Lindsay Johnson and Curtis Riganti
Forests 2025, 16(7), 1187; https://doi.org/10.3390/f16071187 - 18 Jul 2025
Viewed by 369
Abstract
Forest drought monitoring tools are crucial for managing tree water stress and enhancing ecosystem resilience. The Forest Drought Response Index (ForDRI) was developed to monitor drought conditions in forested areas across the contiguous United States (CONUS), integrating vegetation health, climate data, groundwater, and [...] Read more.
Forest drought monitoring tools are crucial for managing tree water stress and enhancing ecosystem resilience. The Forest Drought Response Index (ForDRI) was developed to monitor drought conditions in forested areas across the contiguous United States (CONUS), integrating vegetation health, climate data, groundwater, and soil moisture content. This study evaluated ForDRI using Pearson correlations with the Bowen Ratio (BR) at 24 AmeriFlux sites and Spearman correlations with the Tree-Ring Growth Index (TRSGI) at 135 sites, along with feedback from 58 stakeholders. CONUS was divided into four forest subgroups: (1) the West/Pacific Northwest, (2) Rocky Mountains/Southwest, (3) East/Northeast, and (4) South/Central/Southeast Forest regions. Strong positive ForDRI-TRSGI correlations (ρ > 0.7, p < 0.05) were observed in the western regions, where drought significantly impacts growth, while moderate alignment with BR (R = 0.35–0.65, p < 0.05) was noted. In contrast, correlations in Eastern and Southern forests were weak to moderate (ρ = 0.4–0.6 for TRSGI and R = 0.1–0.3 for BR). Stakeholders’ feedback indicated that ForDRI realistically maps historical drought years and recent trends, though suggestions for improvements, including trend maps and enhanced visualizations, were made. ForDRI is a valuable complementary tool for monitoring forest droughts and informing management decisions. Full article
(This article belongs to the Special Issue Impacts of Climate Extremes on Forests)
Show Figures

Figure 1

37 pages, 7235 KiB  
Article
New Challenges for Tropical Cyclone Track and Intensity Forecasting in an Unfavorable External Environment in the Western North Pacific—Part II: Intensifications near and North of 20° N
by Russell L. Elsberry, Hsiao-Chung Tsai, Wen-Hsin Huang and Timothy P. Marchok
Atmosphere 2025, 16(7), 879; https://doi.org/10.3390/atmos16070879 - 17 Jul 2025
Viewed by 281
Abstract
Part I of this two-part documentation of the ECMWF ensemble (ECEPS) new tropical cyclone track and intensity forecasting challenges during the 2024 western North Pacific season described four typhoons that started well to the south of an unfavorable external environment north of 20° [...] Read more.
Part I of this two-part documentation of the ECMWF ensemble (ECEPS) new tropical cyclone track and intensity forecasting challenges during the 2024 western North Pacific season described four typhoons that started well to the south of an unfavorable external environment north of 20° N. In this Part II, five other 2024 season typhoons that formed and intensified near and north of 20° N are documented. One change is that the Cooperative Institute for Meteorological Satellite Studies ADT + AIDT intensities derived from the Himawari-9 satellite were utilized for initialization and validation of the ECEPS intensity forecasts. Our first objective of providing earlier track and intensity forecast guidance than the Joint Typhoon Warning Center (JTWC) five-day forecasts was achieved for all five typhoons, although the track forecast spread was large for the early forecasts. For Marie (06 W) and Ampil (08 W) that formed near 25° N, 140° E in the middle of the unfavorable external environment, the ECEPS intensity forecasts accurately predicted the ADT + AIDT intensities with the exception that the rapid intensification of Ampil over the Kuroshio ocean current was underpredicted. Shanshan (11 W) was a challenging forecast as it intensified to a typhoon while being quasi-stationary near 17° N, 142° E before turning to the north to cross 20° N into the unfavorable external environment. While the ECEPS provided accurate guidance as to the timing and the longitude of the 20° N crossing, the later recurvature near Japan timing was a day early and 4 degrees longitude to the east. The ECEPS provided early, accurate track forecasts of Jebi’s (19 W) threat to mainland Japan. However, the ECEPS was predicting extratropical transition with Vmax ~35 kt when the JTWC was interpreting Jebi’s remnants as a tropical cyclone. The ECEPS predicted well the unusual southward track of Krathon (20 W) out of the unfavorable environment to intensify while quasi-stationary near 18.5° N, 125.6° E. However, the rapid intensification as Krathon moved westward along 20° N was underpredicted. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

21 pages, 2832 KiB  
Article
A Crossover Adjustment Method Considering the Beam Incident Angle for a Multibeam Bathymetric Survey Based on USV Swarms
by Qiang Yuan, Weiming Xu, Shaohua Jin and Tong Sun
J. Mar. Sci. Eng. 2025, 13(7), 1364; https://doi.org/10.3390/jmse13071364 - 17 Jul 2025
Viewed by 280
Abstract
Multibeam echosounder systems (MBESs) are widely used in unmanned surface vehicle swarms (USVs) to perform various marine bathymetry surveys because of their excellent performance. To address the challenges of systematic error superposition and edge beam error propagation in multibeam bathymetry surveying, this study [...] Read more.
Multibeam echosounder systems (MBESs) are widely used in unmanned surface vehicle swarms (USVs) to perform various marine bathymetry surveys because of their excellent performance. To address the challenges of systematic error superposition and edge beam error propagation in multibeam bathymetry surveying, this study proposes a novel error adjustment method integrating crossover error density clustering and beam incident angle (BIA) compensation. Firstly, a bathymetry error detection model was developed based on adaptive Density-Based Spatial Clustering of Applications with Noise (DBSCAN). By optimizing the neighborhood radius and minimum sample threshold through analyzing sliding-window curvature, the method achieved the automatic identification of outliers, reducing crossover discrepancies from ±150 m to ±50 m in the deep sea at a depth of approximately 5000 m. Secondly, an asymmetric quadratic surface correction model was established by incorporating the BIA as a key parameter. A dynamic weight matrix ω = 1/(1 + 0.5θ2) was introduced to suppress edge beam errors, combined with Tikhonov regularization to resolve ill-posed matrix issues. Experimental validation in the Western Pacific demonstrated that the RMSE of crossover points decreased by about 30.4% and the MAE was reduced by 57.3%. The proposed method effectively corrects residual systematic errors while maintaining topographic authenticity, providing a reference for improving the quality of multibeam bathymetric data obtained via USVs and enhancing measurement efficiency. Full article
(This article belongs to the Special Issue Technical Applications and Latest Discoveries in Seafloor Mapping)
Show Figures

Figure 1

16 pages, 782 KiB  
Article
Impact of Nutritional Counselling and Support on Body Mass Index Recovery and Treatment Outcomes Among Tuberculosis Patients in the Lao People’s Democratic Republic
by Donekham Inthavong, Hend Elsayed, Phonesavanh Keonakhone, Vilath Seevisay, Somdeth Souksanh, Sakhone Suthepmany, Misouk Chanthavong, Xaysomvang Keodavong, Phonesavanh Kommanivanh, Phitsada Siphanthong, Phengsy Sengmany, Buahome Sisounon, Jacques Sebert, Manami Yanagawa, Fukushi Morishita, Nobuyuki Nishikiori and Takuya Yamanaka
Trop. Med. Infect. Dis. 2025, 10(7), 198; https://doi.org/10.3390/tropicalmed10070198 - 15 Jul 2025
Viewed by 362
Abstract
Tuberculosis (TB) and undernutrition are intricately linked, significantly impacting health outcomes. However, nutritional support for TB patients is not systematically implemented in Lao People’s Democratic Republic (Lao PDR). This study evaluated the effects of nutritional counselling and support on nutritional recovery and TB [...] Read more.
Tuberculosis (TB) and undernutrition are intricately linked, significantly impacting health outcomes. However, nutritional support for TB patients is not systematically implemented in Lao People’s Democratic Republic (Lao PDR). This study evaluated the effects of nutritional counselling and support on nutritional recovery and TB treatment outcomes. A longitudinal study involved 297 individuals with drug-susceptible TB, 39.4% of whom had a body mass index (BMI) below 18.5 kg/m2. Participants were divided into an observation group and an intervention group, the latter receiving nutritional support. Nutritional support included ready-to-use therapeutic food and therapeutic milk products, tailored to patients’ nutritional status. Data collection was conducted at four intervals during treatment. By the end of treatment, 84.3% of participants improved their nutritional status to a BMI of 18.5 kg/m2 or higher. The intervention group showed early nutritional recovery, particularly during the intensive phase of TB treatment, although the p-value (p = 0.067) should be interpreted with caution. The overall treatment success rate was high at 90.6%, with no significant difference between groups. Factors associated with treatment success included age under 45, HIV-negative status, a BMI of 18.5 kg/m2 or higher, and clinically diagnosed pulmonary TB. Further assessment is required for the operational feasibility to provide systematic nutritional assessment and counselling for people with TB in Lao PDR. Full article
(This article belongs to the Special Issue Tuberculosis Control in Africa and Asia)
Show Figures

Figure 1

14 pages, 5338 KiB  
Article
Modulation of Spring Barents and Kara Seas Ice Concentration on the Meiyu Onset over the Yangtze–Huaihe River Basin in China
by Ziyi Song, Xuejie Zhao, Yuepeng Hu, Fang Zhou and Jiahao Lu
Atmosphere 2025, 16(7), 838; https://doi.org/10.3390/atmos16070838 - 10 Jul 2025
Viewed by 225
Abstract
Meiyu is a critical component of the summer rainy season over the Yangtze–Huaihe River Basin (YHRB) in China, and the Meiyu onset date (MOD), serving as a key indicator of Meiyu, has garnered substantial attention. This article demonstrates an in-phase relationship between MOD [...] Read more.
Meiyu is a critical component of the summer rainy season over the Yangtze–Huaihe River Basin (YHRB) in China, and the Meiyu onset date (MOD), serving as a key indicator of Meiyu, has garnered substantial attention. This article demonstrates an in-phase relationship between MOD and the preceding spring Barents–Kara Seas ice concentration (BKSIC) during 1979–2023. Specifically, the loss of spring BKSIC promotes an earlier MOD. Further analysis indicates that decreased spring BKSIC reduces the reflection of shortwave radiation, thereby enhancing oceanic solar radiation absorption and warming sea surface temperature (SST) in spring. The warming SST persists into summer and induces significant deep warming in the BKS through enhanced upward longwave radiation. The BKS deep warming triggers a wave train propagating southeastward to the East Asia–Northwest Pacific region, leading to a strengthened East Asian Subtropical Jet and an intensified Western North Pacific Subtropical High in summer. Under these conditions, the transport of warm and humid airflows into the YHRB is enhanced, promoting convective instability through increased low-level warming and humidity, combined with enhanced wind shear, which jointly contribute to an earlier MOD. These results may advance the understanding of MOD variability and provide valuable information for disaster prevention and mitigation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop