Strengthening Western North Pacific High in a Warmer Environment
Abstract
1. Introduction
2. Data and Methods
2.1. Data Descriptions
2.2. Definition of SH Strength
2.3. Availability of OLR
3. Results
3.1. Response of SH Strength to ENSO Variation
3.2. Response of SH Strength to Global Warming
4. Summary and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, T.; Yu, R.; Zhang, J.; Drange, H.; Cassou, C.; Deser, C.; Hodson, D.L.; Sanchez-Gomez, E.; Li, J.; Keenlyside, N.; et al. Why the western Pacific subtropical high has extended westward since the late 1970s. J. Clim. 2009, 22, 2199–2215. [Google Scholar] [CrossRef]
- Wang, B.; Xiang, B.; Lee, J.Y. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA 2013, 110, 2718–2722. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Lau, K. Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Clim. 2001, 14, 4073–4090. [Google Scholar] [CrossRef]
- Li, T.; Wang, B.; Wu, B.; Zhou, T.; Chang, C.P.; Zhang, R. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteorol. Res. 2017, 31, 987–1006. [Google Scholar] [CrossRef]
- Jin, R.; Yu, H.; Wu, Z.; Zhang, P. Impact of the North Atlantic sea surface temperature tripole on the Northwestern Pacific weak tropical cyclone frequency. J. Clim. 2022, 35, 3057–3074. [Google Scholar] [CrossRef]
- Kim, S.H.; Ahn, J.B. Tropical cyclone landfalls in the Northwest Pacific under global warming. Int. J. Climatol. 2024, 44, 4942–4962. [Google Scholar] [CrossRef]
- Li, Z.; Ren, H.L.; Lu, M.; Zhou, F. Interannual variations of westward extension area of western Pacific subtropical high and its relationship with precipitation in East Asia. Atmos. Res. 2024, 298, 107148. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; 616p. [Google Scholar]
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Suarez, M.J.; Schopf, P.S. A delayed action oscillator for ENSO. J. Atmos. Sci. 1988, 45, 3283–3287. [Google Scholar] [CrossRef]
- Battisti, D.S.; Hirst, A.C. Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci. 1989, 46, 1687–1712. [Google Scholar] [CrossRef]
- Jin, F.F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci. 1997, 54, 811–829. [Google Scholar] [CrossRef]
- Weisberg, R.H.; Wang, C. A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys. Res. Lett. 1997, 24, 779–782. [Google Scholar] [CrossRef]
- Picaut, J.; Masia, F.; Du Penhoat, Y. An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 1997, 277, 663–666. [Google Scholar] [CrossRef]
- Meinen, C.S.; McPhaden, M.J. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Clim. 2000, 13, 3551–3559. [Google Scholar] [CrossRef]
- Levine, A.F.; Jin, F.F.; Stuecker, M.F. A simple approach to quantifying the noise–ENSO interaction. Part II: The role of coupling between the warm pool and equatorial zonal wind anomalies. Clim. Dyn. 2017, 48, 19–37. [Google Scholar] [CrossRef]
- Seiki, A.; Takayabu, Y.N. Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Weather Rev. 2007, 135, 3325–3345. [Google Scholar] [CrossRef]
- Gill, A.E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 1980, 106, 447–462. [Google Scholar] [CrossRef]
- He, C.; Zhou, T. Decadal change of the connection between summer western North Pacific subtropical high and tropical SST in the early 1990s. Atmos. Sci. Lett. 2015, 16, 253–259. [Google Scholar] [CrossRef]
- Chia, H.H.; Ropelewski, C.F. The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Clim. 2002, 15, 2934–2944. [Google Scholar] [CrossRef]
- Wang, B.; Chan, J.C.L. How strong ENSO events affect tropical storm activity over the western North Pacific. J. Clim. 2002, 13, 1517–1536. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, T. Relative contributions of external SST forcing and internal atmospheric variability to July–August heat waves over the Yangtze River valley. Clim. Dyn. 2018, 51, 4403–4419. [Google Scholar] [CrossRef]
- Paek, H.; Yu, J.Y.; Zheng, F.; Lu, M.M. Impacts of ENSO diversity on the western Pacific and North Pacific subtropical highs during boreal summer. Clim. Dyn. 2019, 52, 7153–7172. [Google Scholar] [CrossRef]
- Kang, N.; Kim, D.; Elsner, J. The contribution of super typhoons to tropical cyclone activity in response to ENSO. Sci. Rep. 2019, 9, 5046. [Google Scholar] [CrossRef]
- Lin, A.l.; Li, C.h.; Gu, D.j.; Zheng, B. Variation and causes of persistent drought events in Guangdong Province. J. Trop. Meteorol. 2012, 18, 54. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Zuo, J.; Hu, Z.Z. Simulation and projection of the western pacific subtropical high in CMIP5 models. J. Meteorol. Res. 2014, 28, 327–340. [Google Scholar] [CrossRef]
- He, C.; Zhou, T. Responses of the western North Pacific subtropical high to global warming under RCP4. 5 and RCP8. 5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean–tropical western Pacific SST gradient. J. Clim. 2015, 28, 365–380. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, T.; Wu, P.; Guo, Z.; Wang, M. Emergent constraints on future projections of the western North Pacific Subtropical High. Nat. Commun. 2020, 11, 2802. [Google Scholar] [CrossRef]
- Kang, N.; Elsner, J.B. Trade-off between intensity and frequency of global tropical cyclones. Nat. Clim. Chang. 2015, 5, 661–664. [Google Scholar] [CrossRef]
- Yun, S.; Kang, N.; Jang, C.J. Narrowing region for tropical convections in the western North Pacific. Sci. Rep. 2023, 13, 1664. [Google Scholar] [CrossRef] [PubMed]
- Ronghui, H.; Li, L. Numerical simulation of the relationship between the anomaly of subtropical high over East Asia and the convective activities in the western tropical Pacific. Adv. Atmos. Sci. 1989, 6, 202–214. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Hurrell, J.W. Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn. 1994, 9, 303–319. [Google Scholar] [CrossRef]
- Prasad, K.; Bansod, S. Interannual variations of outgoing longwave radiation and Indian summer monsoon rainfall. Int. J. Climatol. A J. R. Meteorol. Soc. 2000, 20, 1955–1964. [Google Scholar] [CrossRef]
- Fontaine, B.; Louvet, S.; Roucou, P. Definition and predictability of an OLR-based West African monsoon onset. Int. J. Climatol. A J. R. Meteorol. Soc. 2008, 28, 1787–1798. [Google Scholar] [CrossRef]
- Qian, W.; Shi, J. Tripole precipitation pattern and SST variations linked with extreme zonal activities of the western Pacific subtropical high. Int. J. Climatol. 2017, 37, 3018–3035. [Google Scholar] [CrossRef]
- Li, N.; Xiao, Z.; Zhao, L. A recent increase in long-lived heatwaves in China under the joint influence of South Asia and Western North Pacific subtropical highs. J. Clim. 2021, 34, 7167–7179. [Google Scholar] [CrossRef]
- Lu, R. Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J. Meteorol. Soc. Jpn. Ser. II 2001, 79, 771–783. [Google Scholar] [CrossRef]
- Lu, R.; Dong, B. Westward extension of North Pacific subtropical high in summer. J. Meteorol. Soc. Jpn. Ser. II 2001, 79, 1229–1241. [Google Scholar] [CrossRef]
- Gahtan, J.; Roundy, P.E. Meridional movement of geopotential height anomalies in the subtropics and the relationship to the base-state flow. Q. J. R. Meteorol. Soc. 2021, 147, 627–646. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Bjerknes, J. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 1966, 18, 820–829. [Google Scholar] [CrossRef]
- Yan, Z.; Wu, B.; Li, T.; Collins, M.; Clark, R.; Zhou, T.; Murphy, J.; Tan, G. Eastward shift and extension of ENSO-induced tropical precipitation anomalies under global warming. Sci. Adv. 2020, 6, eaax4177. [Google Scholar] [CrossRef] [PubMed]
- Yun, K.S.; Lee, J.Y.; Timmermann, A.; Stein, K.; Stuecker, M.F.; Fyfe, J.C.; Chung, E.S. Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship. Commun. Earth Environ. 2021, 2, 43. [Google Scholar] [CrossRef]
- Liu, C.; An, S.I.; Yan, Z.; Kim, S.K.; Paik, S. Strong El Niño and La Niña precipitation—Sea surface temperature sensitivity under a carbon removal scenario. Commun. Earth Environ. 2024, 5, 774. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, S.; Kang, N. Strengthening Western North Pacific High in a Warmer Environment. Climate 2025, 13, 162. https://doi.org/10.3390/cli13080162
Yun S, Kang N. Strengthening Western North Pacific High in a Warmer Environment. Climate. 2025; 13(8):162. https://doi.org/10.3390/cli13080162
Chicago/Turabian StyleYun, Sanghyeon, and Namyoung Kang. 2025. "Strengthening Western North Pacific High in a Warmer Environment" Climate 13, no. 8: 162. https://doi.org/10.3390/cli13080162
APA StyleYun, S., & Kang, N. (2025). Strengthening Western North Pacific High in a Warmer Environment. Climate, 13(8), 162. https://doi.org/10.3390/cli13080162