Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = welfare biomarkers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 276 KiB  
Article
Inclusion of Hydrolyzed Feather Meal in Diets for Giant River Prawn (Macrobrachium rosenbergii) During the Nursery Phase: Effects on Growth, Digestive Enzymes, and Antioxidant Status
by Eduardo Luis Cupertino Ballester, Angela Trocino, Cecília de Souza Valente, Marlise Mauerwerk, Milena Cia Retcheski, Luisa Helena Cazarolli, Caio Henrique do Nascimento Ferreira and Francesco Bordignon
Appl. Sci. 2025, 15(15), 8627; https://doi.org/10.3390/app15158627 - 4 Aug 2025
Viewed by 137
Abstract
We evaluated the inclusion of hydrolyzed feather meal (HFM) as a partial replacement for fishmeal in diets for Macrobrachium rosenbergii post-larvae (PL) over a 32-day nursery feeding trial. Five experimental diets with increasing HFM levels (control, 1.5%, 3.0%, 4.5%, and 6.0%) were tested. [...] Read more.
We evaluated the inclusion of hydrolyzed feather meal (HFM) as a partial replacement for fishmeal in diets for Macrobrachium rosenbergii post-larvae (PL) over a 32-day nursery feeding trial. Five experimental diets with increasing HFM levels (control, 1.5%, 3.0%, 4.5%, and 6.0%) were tested. Survival rates ranged from 73.3 ± 5.44% to 83.3 ± 3.84% without significant differences among groups. Dietary HFM inclusion levels above 3.0% significantly improved prawn performance, including final weight (up to 2.18-fold higher than control), length (1.13-fold), antenna length (1.18-fold), biomass gain (2.14-fold), and feed conversion ratio (1.59-fold lower). Prawn-fed diets at 6.0% HFM showed the highest performance among all experimental groups. No significant effects were observed on antioxidant biomarkers or digestive enzymes in prawns hepatopancreas, which suggests no imbalance in the antioxidant system or impairment of digestive function. Likewise, carcass proximate composition remained stable across experimental groups. These findings suggest that HFM at 3.0–6.0% dietary inclusion levels is a potential alternative to fishmeal in nursery-phase diets for M. rosernbergii PL, promoting prawn growth and welfare and maintaining health and carcass quality. Notably, to the best of our knowledge, this is the first study demonstrating the potential effective use of HFM in feeding the nursery phase of M. rosernbergii. Full article
(This article belongs to the Section Agricultural Science and Technology)
19 pages, 7853 KiB  
Article
Pre-Transport Salt Baths Mitigate Physiological Stress and Tissue Damage in Channel Catfish (Ictalurus punctatus) Fingerlings: Evidence from Multi-Biomarker Assessment and Histopathology
by Guowei Huang, Haohua Li, Juguang Wang, Tao Liao, Liang Qiu, Guangquan Xiong, Lan Wang, Chan Bai and Yu Zhang
Animals 2025, 15(15), 2249; https://doi.org/10.3390/ani15152249 - 31 Jul 2025
Viewed by 151
Abstract
Effective transport strategies are critical for the survival and welfare of juvenile Ictalurus punctatus, but the effects of pre-transport salt bath treatments remain uncertain. In this study, we systematically evaluated the effects of pre-transport salt bath acclimation at 0‰ (S1), 1‰ (S2), [...] Read more.
Effective transport strategies are critical for the survival and welfare of juvenile Ictalurus punctatus, but the effects of pre-transport salt bath treatments remain uncertain. In this study, we systematically evaluated the effects of pre-transport salt bath acclimation at 0‰ (S1), 1‰ (S2), 5‰ (S3), and 9‰ (S4) salinity for 30 min on stress resilience and recovery in fingerlings during 12 h of simulated transport and 24 h of recovery. All fish survived, but total ammonia nitrogen (TAN) increased, and pH decreased in all groups, except S3, which showed significantly lower TAN and higher pH (p < 0.05). The S3 and S4 groups showed attenuated increases in serum cortisol and glucose, with S3 exhibiting the fastest return to baseline levels and stable serum sodium and potassium levels. Liver antioxidant enzyme activities in group S3 remained stable, with the lowest malondialdehyde (MDA) accumulation. Integrated biomarker response (IBR) and histological analyses demonstrated that S3 had the lowest systemic stress and tissue damage, whereas S1 and S4 displayed marked cellular disruption. These results indicate that a 5‰ salt bath applied prior to transport may improve water quality, mitigate stress responses, and preserve tissue integrity in juvenile channel catfish. Further studies are needed to confirm these findings in other species and under commercial transport conditions. Full article
Show Figures

Figure 1

17 pages, 1893 KiB  
Article
Tracking Heat Stress in Broilers: A Thermographic Analysis of Anatomical Sensitivity Across Growth Stages
by Rimena do Amaral Vercellino, Irenilza de Alencar Nääs and Daniella Jorge de Moura
Animals 2025, 15(15), 2233; https://doi.org/10.3390/ani15152233 - 29 Jul 2025
Viewed by 233
Abstract
This study aimed to identify anatomical regions and developmental stages in broiler chickens that serve as reliable thermographic indicators of acute heat stress. Broilers aged 14, 21, 35, and 39 days were exposed to controlled heat stress, and surface temperatures across 12 anatomical [...] Read more.
This study aimed to identify anatomical regions and developmental stages in broiler chickens that serve as reliable thermographic indicators of acute heat stress. Broilers aged 14, 21, 35, and 39 days were exposed to controlled heat stress, and surface temperatures across 12 anatomical regions were recorded using infrared thermography. Thermal response metrics (maximum, minimum, and mean peak variation) were analyzed with repeated-measures ANOVA and eta squared (η2) to quantify the strength of physiological responses. Principal component and cluster analyses grouped body regions based on their thermal sensitivity. The comb and wattle consistently showed the highest temperature increases (ΔT = 2.3–4.1 °C) and strongest effect sizes (η2 ≥ 0.70), establishing them as primary thermoregulatory markers. As age increased, more body regions—especially peripheral zones like the drumstick and tail—exhibited strong responses (η2 > 0.40), indicating an expansion of thermoregulatory activity. Cluster analysis identified three distinct sensitivity groups, confirming anatomical differences in thermal regulation. Thermographic responses to heat stress in broilers depend on age and region. The comb and wattle are the most reliable biomarkers, while peripheral responses grow more prominent with maturity. These findings support the use of targeted, age-specific infrared thermography for monitoring poultry welfare. Full article
Show Figures

Graphical abstract

8 pages, 337 KiB  
Brief Report
Appraisal of Allostatic Load in Wild Boars Under a Controlled Environment
by Nadia Piscopo, Anna Balestrieri, Nicola D’Alessio, Pasqualino Silvestre, Giovanna Bifulco, Alessio Cotticelli, Tanja Peric, Alberto Prandi, Danila d’Angelo, Francesco Napolitano and Luigi Esposito
Vet. Sci. 2025, 12(7), 667; https://doi.org/10.3390/vetsci12070667 - 16 Jul 2025
Viewed by 611
Abstract
Besides metabolic and cardiovascular parameters, fluctuations in endocrine and inflammatory biomarkers might be regarded as reliable indicators of allostatic load. Among them, glucocorticoids have been shown to correlate with social stress in animals, regardless of whether they are dominant or subordinate, thus highlighting [...] Read more.
Besides metabolic and cardiovascular parameters, fluctuations in endocrine and inflammatory biomarkers might be regarded as reliable indicators of allostatic load. Among them, glucocorticoids have been shown to correlate with social stress in animals, regardless of whether they are dominant or subordinate, thus highlighting the crucial role of physiological energetic costs, together with social challenges, in the onset and severity of allostasis. Therefore, in the present work, we evaluated and monitored monthly the concentration of cortisol in bristles (pg/mg) over six months in young (n = 8), sub-adult (n = 5) and adult female wild boars (n = 5), which were kept in a controlled State Forest in Southern Italy. Our data revealed higher concentrations of cortisol in young animals when compared to sub-adult (p < 0.01) and adult (p < 0.05) groups. Moreover, such an increase faded away over time, and cortisol concentrations were found to be overlapping those of sub-adult and adult groups, which did not display any significant variation throughout monitoring. Collectively, our findings suggest that the wild boars adapted to the controlled environment, thus preserving both a physiological state and animal welfare. Full article
(This article belongs to the Section Veterinary Physiology, Pharmacology, and Toxicology)
Show Figures

Figure 1

21 pages, 2460 KiB  
Article
Enhancing Competencies and Professional Upskilling of Mobile Healthcare Unit Personnel at the Hellenic National Public Health Organization
by Marios Spanakis, Maria Stamou, Sofia Boultadaki, Elias Liantis, Christos Lionis, Georgios Marinos, Anargiros Mariolis, Andreas M. Matthaiou, Constantinos Mihas, Varvara Mouchtouri, Evangelia Nena, Efstathios A. Skliros, Emmanouil Smyrnakis, Athina Tatsioni, Georgios Dellis, Christos Hadjichristodoulou and Emmanouil K. Symvoulakis
Healthcare 2025, 13(14), 1706; https://doi.org/10.3390/healthcare13141706 - 15 Jul 2025
Viewed by 544
Abstract
Background/Objectives: Mobile healthcare units (MHUs) comprise flexible, ambulatory healthcare teams that deliver community care services, particularly in underserved or remote areas. In Greece, MHUs were pivotal in epidemiological surveillance during the COVID-19 pandemic and are now evolving into a sustainable and integrated service [...] Read more.
Background/Objectives: Mobile healthcare units (MHUs) comprise flexible, ambulatory healthcare teams that deliver community care services, particularly in underserved or remote areas. In Greece, MHUs were pivotal in epidemiological surveillance during the COVID-19 pandemic and are now evolving into a sustainable and integrated service for much-needed community-based healthcare. To support this expanded role, targeted, competency-based training is essential; however, this can pose challenges, especially in coordinating synchronous learning across geographically dispersed teams and in ensuring engagement using an online format. Methods: A nationwide, online training program was developed to improve the knowledge of the personnel members of the Hellenic National Public Health Organization’s MHUs. This program was structured focusing on four core themes: (i) prevention–health promotion; (ii) provision of care; (iii) social welfare and solidarity initiatives; and (iv) digital health skill enhancement. The program was implemented by the University of Crete’s Center for Training and Lifelong Learning from 16 January to 24 February 2025. A multidisciplinary team of 64 experts delivered 250 h of live and on-demand educational content, including health screenings, vaccination protocols, biomarker monitoring, chronic disease management, treatment adherence, organ donation awareness, counseling on social violence, and eHealth applications. Knowledge acquisition was assessed through a pre- and post-training multiple-choice test related to the core themes. Trainees’ and trainers’ qualitative feedback was evaluated using a 0–10 numerical rating scale (Likert-type). Results: A total of 873 MHU members participated in the study, including both healthcare professionals and administrative staff. The attendance rate was consistently above 90% on a daily basis. The average assessment score increased from 52.8% (pre-training) to 69.8% (post-training), indicating 17% knowledge acquisition. The paired t-test analysis demonstrated that this improvement was statistically significant (t = −8.52, p < 0.001), confirming the program’s effectiveness in enhancing knowledge. As part of the evaluation of qualitative feedback, the program was positively evaluated, with 75–80% of trainees rating key components such as content, structure, and trainer effectiveness as “Very Good” or “Excellent.” In addition, using a 0–10 scale, trainers rated the program relative to organization (9.4/10), content (8.8), and trainee engagement (8.9), confirming the program’s strength and scalability in primary care education. Conclusions: This initiative highlights the effectiveness of a structured, online training program in enhancing MHU knowledge, ensuring standardized, high-quality education that supports current primary healthcare needs. Future studies evaluating whether the increase in knowledge acquisition may also result in an improvement in the personnel’s competencies, and clinical practice will further contribute to assessing whether additional training programs may be helpful. Full article
Show Figures

Figure 1

14 pages, 738 KiB  
Article
Assessment of Pupillometry Across Different Commercial Systems of Laying Hens to Validate Its Potential as an Objective Indicator of Welfare
by Elyse Mosco, David Kilroy and Arun H. S. Kumar
Poultry 2025, 4(3), 31; https://doi.org/10.3390/poultry4030031 - 15 Jul 2025
Viewed by 268
Abstract
Background: Reliable and non-invasive methods for assessing welfare in poultry are essential for improving evidence-based welfare monitoring and advancing management practices in commercial production systems. The iris-to-pupil (IP) ratio, previously validated by our group in primates and cattle, reflects autonomic nervous system [...] Read more.
Background: Reliable and non-invasive methods for assessing welfare in poultry are essential for improving evidence-based welfare monitoring and advancing management practices in commercial production systems. The iris-to-pupil (IP) ratio, previously validated by our group in primates and cattle, reflects autonomic nervous system balance and may serve as a physiological indicator of stress in laying hens. This study evaluated the utility of the IP ratio under field conditions across diverse commercial layer housing systems. Materials and Methods: In total, 296 laying hens (Lohmann Brown, n = 269; White Leghorn, n = 27) were studied across four locations in Canada housed under different systems: Guelph (indoor; pen), Spring Island (outdoor and scratch; organic), Ottawa (outdoor, indoor and scratch; free-range), and Toronto (outdoor and hobby; free-range). High-resolution photographs of the eye were taken under ambient lighting. Light intensity was measured using the light meter app. The IP ratio was calculated using NIH ImageJ software (Version 1.54p). Statistical analysis included one-way ANOVA and linear regression using GraphPad Prism (Version 5). Results: Birds housed outdoors had the highest IP ratios, followed by those in scratch systems, while indoor and pen-housed birds had the lowest IP ratios (p < 0.001). Subgroup analyses of birds in Ottawa and Spring Island farms confirmed significantly higher IP ratios in outdoor environments compared to indoor and scratch systems (p < 0.001). The IP ratio correlated weakly with ambient light intensity (r2 = 0.25) and age (r2 = 0.05), indicating minimal influence of these variables. Although White Leghorn hens showed lower IP ratios than Lohmann Browns, this difference was confounded by housing type; all White Leghorns were housed in pens. Thus, housing system but not breed was the primary driver of IP variation. Conclusions: The IP ratio is a robust, non-invasive physiological marker of welfare assessment in laying hens, sensitive to housing environment but minimally influenced by light or age. Its potential for integration with digital imaging technologies supports its use in scalable welfare assessment protocols. Full article
Show Figures

Figure 1

22 pages, 853 KiB  
Article
Intelligent Multi-Modeling Reveals Biological Mechanisms and Adaptive Phenotypes in Hair Sheep Lambs from a Semi-Arid Region
by Robson Mateus Freitas Silveira, Fábio Augusto Ribeiro, João Pedro dos Santos, Luiz Paulo Fávero, Luis Orlindo Tedeschi, Anderson Antonio Carvalho Alves, Danilo Augusto Sarti, Anaclaudia Alves Primo, Hélio Henrique Araújo Costa, Neila Lidiany Ribeiro, Amanda Felipe Reitenbach, Fabianno Cavalcante de Carvalho and Aline Vieira Landim
Genes 2025, 16(7), 812; https://doi.org/10.3390/genes16070812 - 11 Jul 2025
Viewed by 441
Abstract
Background: Heat stress challenges small ruminants in semi-arid regions, requiring integrative multi-modeling approaches to identify adaptive thermotolerance traits. This study aimed to identify phenotypic biomarkers and explore the relationships between thermoregulatory responses and hematological, behavioral, morphometric, carcass, and meat traits in lambs. Methods: [...] Read more.
Background: Heat stress challenges small ruminants in semi-arid regions, requiring integrative multi-modeling approaches to identify adaptive thermotolerance traits. This study aimed to identify phenotypic biomarkers and explore the relationships between thermoregulatory responses and hematological, behavioral, morphometric, carcass, and meat traits in lambs. Methods: Twenty 4-month-old non-castrated male lambs, with an average body weight of 19.0 ± 5.11 kg, were evaluated under natural heat stress. Results: Thermoregulatory variables were significantly associated with non-carcass components (p = 0.002), carcass performance (p = 0.027), commercial meat cuts (p = 0.032), and morphometric measures (p = 0.029), with a trend for behavioral responses (p = 0.078). The main phenotypic traits related to thermoregulation included idleness duration, cold carcass weight, blood, liver, spleen, shank, chest circumference, and body length. Exploratory factor analysis reduced the significant indicators to seven latent domains: carcass traits, commercial meat cuts, non-carcass components, idleness and feeding behavior, and morphometric and thermoregulatory responses. Bayesian network modeling revealed interdependencies, showing carcass traits influenced by morphometric and thermoregulatory responses and non-carcass traits linked to ingestive behavior. Thermoregulatory variables were not associated with meat quality or hematological traits. Conclusions: These findings highlight the complex biological relationships underlying heat adaptation and emphasize the potential of combining phenomic data with computational tools to support genomic selection for climate-resilient and welfare-oriented breeding programs. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Graphical abstract

21 pages, 1079 KiB  
Article
Toxicological Responses of Juvenile Gilthead Seabream to Enniatin B and Fumonisin B1
by Flávia V. Mello, Cheila Pereira, Busenur Özkan, Ana Luísa Maulvault, Florbela Soares, Pedro Pousão-Ferreira, José O. Fernandes, Sara C. Cunha, António Marques and Patrícia Anacleto
Int. J. Mol. Sci. 2025, 26(12), 5676; https://doi.org/10.3390/ijms26125676 - 13 Jun 2025
Viewed by 596
Abstract
The replacement of ingredients from animal sources with plant-based ingredients is increasing the risk of contamination by mycotoxins in aquafeeds, potentially causing detrimental effects on fish welfare. However, limited research has been carried out so far on the impact of mycotoxins on fish [...] Read more.
The replacement of ingredients from animal sources with plant-based ingredients is increasing the risk of contamination by mycotoxins in aquafeeds, potentially causing detrimental effects on fish welfare. However, limited research has been carried out so far on the impact of mycotoxins on fish health. Hence, the aim of this study was to assess the toxicological effects of the dietary emerging (enniatin B, ENNB) and regulated (fumonisin B1, FB1) mycotoxins (150 µg/kg) in different tissues of juvenile gilthead seabream (Sparus aurata) after 28 days of dietary exposure. Fitness indexes, plasma metabolites, and biomarkers of oxidative stress, metabolism, cellular, and neurotoxic damage were assessed. The exposure to each mycotoxin was sufficient to cause distinct effects in fish tissues. ENNB appears to be the most harmful mycotoxin to S. aurata, inducing changes on alkaline phosphatase and lipase activities in plasma, as well as protein and lipid degradation in liver. Increased lipid degradation was also induced in the brain by FB1 alone or combined with ENNB, whereas the exposure to the mixture inhibited acetylcholinesterase activity. Overall, this study contributes by highlighting the toxicological attributes of ENNB, thus reinforcing the need to include this mycotoxin in future legislation. Full article
(This article belongs to the Special Issue Toxicity Mechanism of Emerging Pollutants: 2nd Edition)
Show Figures

Figure 1

16 pages, 2010 KiB  
Article
Assessment of Oxidative Stress and Biometric Data in a Captive Colony of Hamadryas Baboons (Papio hamadryas Linnaeus, 1758) at the Ravenna Zoo Safari (Italy)
by Barbara Biancani, Monica Carosi, Michele Capasso, Giacomo Rossi, Simona Tafuri, Francesca Ciani, Chiara Cotignoli, Francesco Zinno, Elena Venturelli, Matteo Galliani and Federica Spani
Vet. Sci. 2025, 12(5), 466; https://doi.org/10.3390/vetsci12050466 - 13 May 2025
Viewed by 570
Abstract
This study evaluates the health of a captive colony of Hamadryas baboons at Ravenna Zoo Safari (Italy), focusing on oxidative stress markers and biometric data. Forty-eight individuals were assessed during routine veterinary procedures: males underwent vasectomy, and females were checked for pregnancy. Biometric [...] Read more.
This study evaluates the health of a captive colony of Hamadryas baboons at Ravenna Zoo Safari (Italy), focusing on oxidative stress markers and biometric data. Forty-eight individuals were assessed during routine veterinary procedures: males underwent vasectomy, and females were checked for pregnancy. Biometric data collected included body weight, body length, and genital measurements in males, while females were evaluated for reproductive status. Oxidative stress was measured using two tests that assess both harmful pro-oxidant levels and the body’s antioxidant defenses. Results showed no significant differences in oxidative stress levels between sexes, although males and females differed in body weight. Pregnant and postpartum females exhibited higher oxidative stress, likely due to the metabolic and hormonal demands of reproduction. This supports the idea that reproductive activity increases the production of reactive oxygen species, requiring stronger antioxidant responses. In males, correlations between body weight and genital measurements suggest these could help estimate age in the absence of birth records. No link was found between oxidative stress and body weight, indicating limited age-related effects on these markers. Overall, the study highlights the importance of monitoring oxidative stress in captive primates to better understand the effects of reproduction and aging, and to improve welfare and management practices. Full article
(This article belongs to the Section Veterinary Internal Medicine)
Show Figures

Figure 1

27 pages, 724 KiB  
Review
Recent Trends in Food Quality and Authentication: The Role of Omics Technologies in Dairy and Meat Production
by Ailín Martínez, Michel Abanto, Nathalia Baptista Días, Paula Olate, Isabela Pérez Nuñez, Rommy Díaz, Néstor Sepúlveda, Erwin A. Paz and John Quiñones
Int. J. Mol. Sci. 2025, 26(9), 4405; https://doi.org/10.3390/ijms26094405 - 6 May 2025
Viewed by 975
Abstract
The global demand for animal protein presents significant challenges in the production of nutritionally rich foods, such as milk and meat. Traditionally, the quality of these products is assessed using physicochemical, microbiological, and sensory methods. Although effective, these techniques are constrained by time [...] Read more.
The global demand for animal protein presents significant challenges in the production of nutritionally rich foods, such as milk and meat. Traditionally, the quality of these products is assessed using physicochemical, microbiological, and sensory methods. Although effective, these techniques are constrained by time limiting their widespread application. Furthermore, growing concerns regarding sustainability, animal welfare, and transparency have driven the development of technologies to enhance the rapid and precise assessment of food quality. In this context, omics technologies have transformed the characterization of animal-origin food by providing in-depth molecular understanding of their composition and quality. These tools enable the identification of biomarkers, adulteration detection, optimization of nutritional profiles, and enhancement of authentication and traceability, facilitating the development of functional foods. Despite their potential, several barriers persist, including high implementation cost, the need for specialized infrastructure, and the complexity of integrating multi-omics data. The main aim of this review was to provide information on advances in the application of omics technologies in dairy and meat production systems and studies that use them in food quality, authentication, and sustainability. It also outlines opportunities in areas such as fraud prevention and functional product development to support the transition to safer, healthier, and more transparent food systems. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

23 pages, 311 KiB  
Review
Impact of Heat Stress on Carcass Traits, Meat Quality, and Nutritional Value in Monogastric Animals: Underlying Mechanisms and Nutritional Mitigation Strategies
by José A. M. Prates
Foods 2025, 14(9), 1612; https://doi.org/10.3390/foods14091612 - 2 May 2025
Cited by 1 | Viewed by 1245
Abstract
This review examines the impact of heat stress (HS) on carcass traits, meat quality, and nutritional composition in monogastric animals, specifically poultry and swine, and evaluates targeted nutritional strategies for mitigation. With rising global temperatures and intensified heat waves, HS has emerged as [...] Read more.
This review examines the impact of heat stress (HS) on carcass traits, meat quality, and nutritional composition in monogastric animals, specifically poultry and swine, and evaluates targeted nutritional strategies for mitigation. With rising global temperatures and intensified heat waves, HS has emerged as a key threat to animal welfare, production efficiency, and meat quality. Physiological disturbances induced by HS, including oxidative stress, protein denaturation, mitochondrial dysfunction, and hormonal imbalances, contribute to reduced carcass yield, muscle degradation, and inferior sensory attributes such as tenderness, juiciness, and flavour. HS also diminishes the nutritional value of meat by depleting essential amino acids, polyunsaturated fatty acids, and antioxidant micronutrients. This review highlights nutritional interventions, including antioxidant supplementation (e.g., vitamin E, selenium, polyphenols), osmolytes (e.g., betaine, taurine), probiotics, prebiotics, and optimised energy-to-protein ratios, as promising tools to enhance thermotolerance and meat quality. Emerging feed additives such as phytochemicals also show potential for protecting muscle integrity and improving oxidative stability. Given species-specific responses and production system variability, integrating these dietary approaches with stage-specific management is essential for resilience under climate stress. Future research should focus on the precision nutrition, biomarker identification, and validation of synergistic nutritional strategies that safeguard performance and meat quality in monogastric production systems. Full article
(This article belongs to the Section Food Nutrition)
28 pages, 6057 KiB  
Article
Red Blood Cell Transcriptome Reflects Physiological Responses to Alternative Nutrient Sources in Gilthead Seabream (Sparus aurata)
by Rafael Angelakopoulos, Andreas Tsipourlianos, Alexia E. Fytsili, Leonidas Papaharisis, Arkadios Dimitroglou, Dimitrios Barkas, Zissis Mamuris, Themistoklis Giannoulis and Katerina A. Moutou
Animals 2025, 15(9), 1279; https://doi.org/10.3390/ani15091279 - 30 Apr 2025
Viewed by 455
Abstract
The sustainable growth of finfish farming relies heavily on reducing the high ecological footprint of sourcing and producing fish feeds that accounts for almost 50% of the total ecological footprint of finfish farming. Sustainable alternatives to fishmeal often pose challenges due to the [...] Read more.
The sustainable growth of finfish farming relies heavily on reducing the high ecological footprint of sourcing and producing fish feeds that accounts for almost 50% of the total ecological footprint of finfish farming. Sustainable alternatives to fishmeal often pose challenges due to the presence of antinutritional factors and nutrient imbalances that impair fish health and growth. Screening for alternative nutrient sources and adapting to global commodity fluctuations requires modern tools that can predict the physiological responses of fish early and reliably. The present study explores for the first time the potential of fish red blood cell (RBC) transcriptome as a minimally invasive biomarker of physiological responses in gilthead seabream (Sparus aurata) fed either a fishmeal-based (FM) or a plant-protein-based (PP) diet. Blood samples were collected at multiple time points (15, 20, and 30 days post-diet initiation) from genetically diverse full-sib families reared under commercial conditions, integrating transcriptomic analysis with long-term growth assessments. Differential gene expression analysis revealed significant dietary effects on oxidative phosphorylation, ribosomal capacity, and lipid metabolism pathways, highlighting metabolic plasticity and cellular adaptations to plant-based feeds. The downregulation of oxidative phosphorylation genes suggests a metabolic shift in response to altered nutrient composition, while ribosomal pathway modulation indicates potential constraints on protein synthesis. These transcriptomic shifts, conserved across two independent experiments, reinforce the utility of RBCs as a real-time indicator of fish physiological status, offering a tool for monitoring dietary impacts and optimizing feed formulations. Such insights are essential for advancing sustainable, nutritionally balanced aquaculture feeds that support fish welfare and productivity. The minimally invasive sample collection respects the 3Rs (Reduce, Refine, Replace) principle in animal experimentation and allows for frequent screening and generation of refined data. Full article
Show Figures

Figure 1

22 pages, 1493 KiB  
Article
Understanding the Impact of Social Stress on Serum Metabolome and Saliva Biomarkers in Growing–Finishing Pigs
by Marc Bagaria, Núria Tous, David Torrallardona, Jose Joaquín Cerón, Estefanía Pérez-Calvo, Wen Ren, Rosa Argamasilla and Emma Fàbrega
Animals 2025, 15(9), 1228; https://doi.org/10.3390/ani15091228 - 27 Apr 2025
Viewed by 772
Abstract
High levels of social stress are known to negatively impact pig welfare. The aim of this study was to evaluate the impact of social stress in growing–finishing pigs by measuring serum metabolome changes and saliva biomarkers. Seventy-two undocked pigs (thirty-six males and thirty-six [...] Read more.
High levels of social stress are known to negatively impact pig welfare. The aim of this study was to evaluate the impact of social stress in growing–finishing pigs by measuring serum metabolome changes and saliva biomarkers. Seventy-two undocked pigs (thirty-six males and thirty-six females) were housed in single-sex pens of four, with the second dominant pig in each pen selected as the focal pig. A social challenge was conducted by mixing the focal pig with three new pigs in its home pen on two consecutive days on trial days 62–64. Saliva and blood samples were collected, and the pigs’ behaviour and body lesions were evaluated pre- and post-challenge. A total of 630 serum metabolites were analysed, 292 of which could be statistically compared using Biocrates WebIDQ v5 software. Salivary haptoglobin concentrations and the number of body lesions significantly increased after the challenge (p < 0.001), whereas the average daily weight gain decreased (p < 0.05). The serum showed decreases in essential amino acids (Thr, Met, and Phe), non-essential amino acids (Glu, Asn, Asp, Pro, and Tyr), betaine, ornithine, indoxyl sulphate, taurine, and some blood di- and triacylglycerols (q < 0.05), and increases in oleic, eicosanoic, eicosadienoic, and dihomo-gamma-linolenic acids; EPA; and DHA post-challenge (q < 0.05). Overall, the results suggest the potential of metabolomics as a tool providing a more holistic view of the impact of social stress. Full article
(This article belongs to the Special Issue Saliva and Blood Markers in Animal Welfare and Health Monitoring)
Show Figures

Figure 1

16 pages, 7286 KiB  
Article
Circadian Oscillation of Leukocyte Subpopulations and Inflammatory Cytokines over a 24-H Period in Horses
by Francesca Aragona, Maria Rizzo, Elisabetta Giudice, Francesco Fazio, Antonino Costa, Beatrice Di Bella, Salvatore De Caro, Francesca Arfuso, Marilena Briglia, Giuseppe Piccione and Claudia Giannetto
Vet. Sci. 2025, 12(4), 386; https://doi.org/10.3390/vetsci12040386 - 20 Apr 2025
Cited by 1 | Viewed by 579
Abstract
The objective of the present study was to investigate the influence of daily rhythms on the immune and inflammatory systems in horses, considering white blood cell count (WBCs), leukocyte subpopulations (neutrophils, basophils, eosinophils, lymphocytes, and monocytes), CD4+, and CD8+ lymphocyte populations, interleukin-1β (IL-1β), [...] Read more.
The objective of the present study was to investigate the influence of daily rhythms on the immune and inflammatory systems in horses, considering white blood cell count (WBCs), leukocyte subpopulations (neutrophils, basophils, eosinophils, lymphocytes, and monocytes), CD4+, and CD8+ lymphocyte populations, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Ten Italian Saddle horses (7–12 years old, body weight 480 ± 30 kg) underwent blood sampling every 4 h over a 24-h period. The COSINOR method was used to identify rhythms and their parameters. A one-way analysis of variance (ANOVA) was applied to identify the differences in acrophase and robustness, and a multiple correlation analysis model (Pearson) was used to evaluate the relationships among the investigated parameters. WBCs, leukocyte subpopulations, CD4+, CD8+, IL-1β, IL-6, and TNFα exhibited daily rhythmicity. In particular, white WBCs, lymphocytes, IL-1β, and IL-6 reached their acrophases during the dark phase, while neuthrophils, CD4+, CD8+, and TNFα showed a diurnal acrophase. One-way ANOVA showed a statistical difference in the acrophase among the investigated parameters (p < 0.0001). The Pearson correlation matrix showed positive and negative relationships among the parameters. Circadian rhythms should be taken into consideration with the daily fluctuations in immune and inflammatory biomarkers to develop good management practices and improve welfare in horses. Full article
Show Figures

Figure 1

18 pages, 4356 KiB  
Article
Rainbow Trout (Oncorhynchus mykiss) Pre-Smolts Treated with 11-Deoxycorticosterone Regulate Liver Carbohydrate Metabolism and Gill Osmoregulation
by Rodrigo Zuloaga, Luciano Ahumada-Langer, Jorge Eduardo Aedo, Katalina Llanos-Azócar, Alfredo Molina and Juan Antonio Valdés
Int. J. Mol. Sci. 2025, 26(8), 3725; https://doi.org/10.3390/ijms26083725 - 15 Apr 2025
Cited by 1 | Viewed by 654
Abstract
Smoltification is stressful for salmonids, and cortisol is one of the central endocrine regulators for seawater adaptation. It has been established that cortisol plays both mineralocorticoid and glucocorticoid functions by MR and GR, respectively, since the aldosterone hormone is absent. Recently, investigations have [...] Read more.
Smoltification is stressful for salmonids, and cortisol is one of the central endocrine regulators for seawater adaptation. It has been established that cortisol plays both mineralocorticoid and glucocorticoid functions by MR and GR, respectively, since the aldosterone hormone is absent. Recently, investigations have proposed that the 11-deoxycorticosterone (DOC) mineralocorticoid precursor might support cortisol effects, but this mechanism remains unclear. Hence, we assessed the early effects of DOC on rainbow trout pre-smolts, the key smoltification stage, via metabolic and transcriptomic approaches. Thirty-six juveniles (~120 g) were treated for 3 h with DOC (1 mg/kg) and/or mineralocorticoid (eplerenone) or glucocorticoid (mifepristone) receptor antagonists (n = 6 for each group). DOC decreased plasma glucose and pyruvate and increased phosphate and liver glycogen. DOC also downregulated carbohydrate metabolism-related genes in the liver. Finally, gill RNA-seq analysis presented 1660 differentially expressed transcripts in DOC versus vehicle, 1022 for eplerenone + DOC versus DOC and 3324 for mifepristone + DOC versus DOC. The enrichment analysis mainly revealed the upregulation of ion transmembrane transport and carbohydrate metabolism and the downregulation of stress and innate immune responses. This suggests a significant role of DOC in liver carbohydrate metabolism and gill osmoregulation of pre-smolts through both receptors. Hence, this could contribute to improving animal welfare monitoring during smoltification by featuring novel and potential biomarkers. Full article
(This article belongs to the Special Issue Fish Nutrition, Metabolism and Physiology)
Show Figures

Figure 1

Back to TopTop