Intelligent Multi-Modeling Reveals Biological Mechanisms and Adaptive Phenotypes in Hair Sheep Lambs from a Semi-Arid Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Regulations, Location and Animals
2.2. Herd Management
2.3. Data Collection
2.3.1. Thermoregulation
2.3.2. Hematological Profile
2.3.3. Behavioral Responses
2.3.4. Non-Carcass Components and Carcass Performance
2.3.5. Morphometric Measurements
2.3.6. Commercial Meat Cuts
2.3.7. Meat Traits
2.3.8. Meat Physical Characteristics
2.4. Statistical Methods
2.4.1. Canonical Correlation Analysis (CCA)
2.4.2. MANOVA
2.4.3. Exploratory Factor Analysis
2.4.4. Bayesian Network Analysis
3. Results
3.1. Identifying the Relationship of Variables with Climatic Adaptation
3.1.1. Behavioral Responses
3.1.2. Carcass Traits
3.1.3. Morphological Responses
3.1.4. Non-Carcass Components
3.1.5. Commercial Meat Cuts
3.2. Identifying Phenotypic Biomarkers of Adaptation
3.3. Understanding the Correlation of the Biological System
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Declaration of Generative AI and AI-Assisted Technologies
Abbreviations
References
- Camarasa, C.; Mata, É.; Navarro, J.P.J.; Reyna, J.; Bezerra, P.; Angelkorte, G.B.; Feng, W.; Filippidou, F.; Forthuber, S.; Harris, C.; et al. A global comparison of building decarbonization scenarios by 2050 towards 1.5–2 °C targets. Nat. Commun. 2022, 13, 3077. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.; Price, J.; Graham, E.; Forstenhaeusler, N.; VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 2018, 360, 791–795. [Google Scholar] [CrossRef] [PubMed]
- de Castro Júnior, S.L.; Silveira, R.M.F.; da Silva, I.J.O. Psychrometry in the thermal comfort diagnosis of production animals: A combination of the systematic review and methodological proposal. Int. J. Biometeorol. 2024, 68, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Sejian, V.; Bhatta, R.; Gaughan, J.B.; Dunshea, F.R.; Lacetera, N. Adaptation of animals to heat stress. Animal 2018, 12, s431–s444. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D. Physiological and behavioural mechanisms of thermoregulation in mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef]
- Kumar, P.; Ahmed, M.A.; Abubakar, A.A.; Hayat, M.N.; Kaka, U.; Ajat, M.; Goh, Y.M.; Sazili, A.Q. Improving animal welfare status and meat quality through assessment of stress biomarkers: A critical review. Meat Sci. 2023, 197, 109048. [Google Scholar] [CrossRef]
- Silveira, R.M.F.; McManus, C.M.; Carrara, E.R.; De Vecchi, L.B.; de Sousa Carvalho, J.R.; Costa, H.H.A.; Pilonetto, F.; Fávero, L.P.L.; Landim, A.V. Adaptive, morphometric and productive responses of Brazilian hair lambs: Crossing between indigenous breeds—A machine learning approach. Small Rumin. Res. 2023, 232, 107208. [Google Scholar] [CrossRef]
- Gherman, I.M.; Abdallah, Z.S.; Pang, W.; Gorochowski, T.E.; Grierson, C.S.; Marucci, L. Bridging the gap between mechanistic biological models and machine learning surrogates. PLoS Comput. Biol. 2023, 19, e1010988. [Google Scholar] [CrossRef]
- Silveira, R.M.F.S.; Façanha, D.A.E.; McManus, C.; Bermejo Asensio, L.A.; Oliveira da Silva, I. Intelligent methodologies: An integrated multi-modeling approach to predict adaptive mechanisms in farm animals. Comput. Electron. Agric. 2024, 216, 108502. [Google Scholar] [CrossRef]
- Fávero, L.P.L.; Belfiore, P.P. Manual de Análise de Dados: Estatística e Modelagem Multivariada Com Excel, SPSS e Stata; Elsevier: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Silveira, R.M.F.; Ferreira, J.; Busanello, M.; de Vasconcelos, A.M.; Façanha, D.A.E. Relationship between thermal environment and morphophysiological, performance and carcass traits of Brahman bulls raised on tropical pasture: A canonical approach to a set of indicators. J. Therm. Biol. 2021, 95, 102814. [Google Scholar] [CrossRef]
- Stevens, J.P. Applied Multivariate Statistics for the Social Sciences; Routledge: New York, NY, USA, 2009. [Google Scholar]
- de Novais, F.J.; Yu, H.; Cesar, A.S.M.; Momen, M.; Poleti, M.D.; Petry, B.; Mourão, G.B.; Regitano, L.C.d.A.; Morota, G.; Coutinho, L.L. Multi-omic data integration for the study of production, carcass, and meat quality traits in Nellore cattle. Front. Genet. 2022, 13, 948240. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids, 6th ed.; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Altmann, J. Observational study of behaviour: Sampling methods. Behaviour 1974, 48, 227–267. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Decreto n.º 30 691, Alterado Pelos Decretos n.º 1 255 de 25-06-62, n.º 1 236 de 02-09-94, n.º 1 812 de 08-02-96 e n.º 2 244 de 04-06-97: Aprova o Regulamento da Inspeção Industrial e Sanitária de Produtos de Origem Animal (RIISPOA). Diário Oficial da União 1997, Seção I, 11555. Available online: https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-animal/arquivos-publicacoes-dipoa/perguntas-e-respostas-decreto-9-013-de-2017-regulamento-de-inspecao-industrial-e-sanitaria-de-produtos-de-origem-animal (accessed on 5 July 2025).
- Cezar, M.F.; Sousa, W.H. Proposta de avaliação e classificação de carcaças de ovinos deslanados e caprinos. Tecnol. Ciênc. Agropecu. 2010, 4, 41–51. [Google Scholar]
- Osório, J.C.S.; Osório, M.T.M.; Jardim, P.O.; Pimentel, M.A.; Pouey, J.L.; Lüder, W.; Cardellino, R.; Oliveira, N.; Gularte, M.A.; Borba, M.F.; et al. Métodos Para Avaliação da Produção de Carne Ovina: In Vivo, na Carcaça e na Carne. Ph.D. Thesis, Universidade Federal de Pelotas, Pelotas, Brazil, 1998. [Google Scholar]
- Cezar, M.F.; Sousa, W.H. Manual de Classificação e Tipificação de Carcaças Caprinas e Ovinas; UFCG & EMEPA: João Pessoa, Brazil, 2018. [Google Scholar]
- Cezar, M.F.; Sousa, W.H. Carcaças Ovinas e Caprinas: Obtenção, Avaliação e Classificação; Agropecuária Tropical: Uberaba, Brazil, 2007; p. 147. [Google Scholar]
- Osório, J.C.d.S.; de Oliveira, N.M.; Osório, M.T.M.; Jardim, R.D.; Pimentel, M.A. Produção de carne em cordeiros cruza Border Leicester com ovelhas Corriedale e Ideal. Rev. Bras. Zootec. 2002, 31, 1469–1480. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1986. [Google Scholar]
- Mardia, K.V. Measures of multivariate skewness and kurtosis with applications. Biometrika 1970, 57, 519–530. [Google Scholar] [CrossRef]
- Mardia, K.V. Assessment of multinormality and the robustness of Hotelling’s T2. Appl. Stat. 1975, 24, 163–171. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 4th ed.; Macmillan: New York, NY, USA, 1992. [Google Scholar]
- Dattalo, P. A Demonstration of Canonical Correlation Analysis with Orthogonal Rotation to Facilitate Interpretation; School of Social Work, Virginia Commonwealth University: Richmond, VA, USA, 2014; Unpublished manuscript. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Análise multivariada de dados, 5th ed.; Bookman: Porto Alegre, Brazil, 2005. [Google Scholar]
- Yu, H.; Campbell, M.T.; Zhang, Q.; Walia, H.; Morota, G. Genomic Bayesian confirmatory factor analysis and Bayesian network to characterize a wide spectrum of rice phenotypes. G3 Genes Genomes Genet. 2019, 9, 1975–1986. [Google Scholar] [CrossRef]
- Meneses, A.J.G.; Pompeu, R.P.F.F.; Salles, H.O.; Farias, A.S.S.; Nenem, L.H.S.; Costa, C.S.; Guedes, L.F.; Maranguape, J.S.; Pereira, P.L.; Cândido, M.J.D. Canopy structure, behavioural and physiological aspects of pasture-finished sheep using castor bean cake as alternative input. Arq. Bras. Med. Vet. Zootec. 2024, 76, 297–312. [Google Scholar] [CrossRef]
- McManus, C.M.; Lucci, C.M.; Maranhão, A.Q.; Pimentel, D.; Pimentel, F.; Rezende Paiva, S. Response to heat stress for small ruminants: Physiological and genetic aspects. Livest. Sci. 2022, 263, 105028. [Google Scholar] [CrossRef]
- Seixas, L.; de Melo, C.B.; Tanure, C.B.; Peripolli, V.; McManus, C. Heat tolerance in Brazilian hair sheep. Asian-Australas. J. Anim. Sci. 2017, 30, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, M.; Visconti, P.; Butchart, S.H.M.; Watson, J.E.M.; Cassola, F.M.; Rondinini, C. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 2017, 7, 205–208. [Google Scholar] [CrossRef]
- Mitchell, D.; Snelling, E.P.; Hetem, R.S.; Maloney, S.K.; Strauss, W.M.; Fuller, A. Revisiting concepts of thermal physiology: Predicting responses of mammals to climate change. J. Anim. Ecol. 2018, 87, 956–973. [Google Scholar] [CrossRef]
- Silanikove, N. The physiological basis of adaptation in goats to harsh environments. Small Rumin. Res. 2000, 35, 181–193. [Google Scholar] [CrossRef]
- Mwacharo, J.M.; Okeyo, A.M.; Kamande, G.K.; Rege, J.E. The small East African shorthorn zebu cows in Kenya. I: Linear body measurements. Trop. Anim. Health Prod. 2006, 38, 65–74. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Bowman, P.J.; Haile-Mariam, M.; Pryce, J.E.; Hayes, B.J. Genomic selection for tolerance to heat stress in Australian dairy cattle. J. Dairy Sci. 2016, 99, 2849–2862. [Google Scholar] [CrossRef]
- Nzeyimana, J.B.; Fan, C.; Zhuo, Z.; Butore, J.; Cheng, J. Heat stress effects on the lactation performance, reproduction, and alleviating nutritional strategies in dairy cattle: A review. J. Anim. Behav. Biometeorol. 2024, 11, e2023018. [Google Scholar] [CrossRef]
- Pinto, S.; Hoffmann, G.; Ammon, C.; Amon, B.; Heuwieser, W.; Halachmi, I.; Banhazi, T.; Amon, T. Influence of barn climate, body postures and milk yield on the respiration rate of dairy cows. Ann. Anim. Sci. 2019, 19, 469–481. [Google Scholar] [CrossRef]
- Ferreira, J.; Serafim, M.V.; Diógenes, G.V.; Silveira, R.M.F.; Antas, S.U.; Costa, M.G. Simultaneity between nutrition and thermoregulatory responses in ruminants. Biol. Rhythm Res. 2019, 50, 1372–1382. [Google Scholar] [CrossRef]
- Habibu, B.; Dzenda, T.; Ayo, J.; Yaqub, L.; Kawu, M. Haematological changes and plasma fluid dynamics in livestock during thermal stress, and response to mitigative measures. Livest. Sci. 2018, 214, 189–201. [Google Scholar] [CrossRef]
- Abumrad, N.A. The liver as a hub in thermogenesis. Cell Metab. 2017, 26, 454–455. [Google Scholar] [CrossRef]
- McManus, C.M.; Faria, D.A.; Lucci, C.M.; Louvandini, H.; Pereira, S.A.; Paiva, S.R. Heat stress effects on sheep: Are hair sheep more heat resistant? Theriogenology 2020, 155, 157–167. [Google Scholar] [CrossRef]
- Silveira, R.M.F.; Vasconcelos, Â.M.; McManus, C.; Fávero, L.P.; da Silva, I.J.O. Intelligent multi-modeling reveals biological relationships and adaptive phenotypes for dairy cow adaptation to climate change. Smart Agric. Technol. 2025, 12, 101128. [Google Scholar] [CrossRef]
- Silveira, R.M.F.; McManus, C.; Leite, J.H.G.M.; Façanha, D.A.E.; Saraiva, E.P.; Vasconcelos, Â.M.; Leite, S.C.S.; Oliveira da Silva, I.J. Physiological Adaptability of Livestock to Climate Change: A Global Model-Based Assessment for the 21st Century. Environ. Impact Assess. Rev. 2025, 103, 107245. [Google Scholar] [CrossRef]
- Silveira, R.M.F.; Façanha, D.A.E.; McManus, C.M.; Ferreira, J.; da Silva, I.J.O. Machine intelligence applied to sustainability: A systematic methodological proposal to identify sustainable animals. J. Clean. Prod. 2023, 420, 138292. [Google Scholar] [CrossRef]
- Silveira, R.M.F.; McManus, C.; da Silva, I.J.O. Global trends and research frontiers on machine learning in sustainable animal production in times of climate change: Bibliometric analysis aimed at insights and orientations for the coming decades. Environ. Sustain. Indic. 2025, 26, 100563. [Google Scholar] [CrossRef]
Nutrients (%) | Dietary Components | ||
---|---|---|---|
Grass | Concentrated | Diet | |
Dry Matter (DM) | 91.8 | 92.9 | 92.2 |
Organic Matter (OM) | 87.2 | 94.5 | 90.1 |
Crude Protein | 5.16 | 36.8 | 17.8 |
Ether Extract | 1.28 | 4.00 | 2.37 |
Neutral Detergent Fiber | 75.8 | 16.9 | 52.2 |
Acid Detergent Fiber | 43.0 | 9.60 | 29.6 |
Hemicellulose | 32.5 | 7.30 | 22.4 |
Cellulose | 34.7 | 9.43 | 24.6 |
Lignin | 4.61 | 0.37 | 2.91 |
In vitro DM digestibility | 31.0 | 73.0 | 47.8 |
In vitro OM digestibility | 38.7 | 81.3 | 55.7 |
Group | Variable | Unit | Min | Mean | Median | SD | IQR | Max |
---|---|---|---|---|---|---|---|---|
Thermoregulatory responses | RR | breaths min−1 | 84.5 | 105.58 | 107.50 | 9.53 | 9 | 125 |
HR | bpm | 36 | 68.13 | 66.50 | 19.62 | 14.75 | 111 | |
RT | °C | 38.95 | 39.5 | 39.55 | 0.22 | 0.17 | 39.8 | |
Behavioral responses | MSF | minutes | 3.58 | 5.31 | 5.28 | 1.34 | 1.63 | 8.75 |
MSI | minutes | 7.08 | 9.82 | 9.82 | 1.29 | 1.71 | 11.67 | |
MSR | minutes | 6.5 | 8.52 | 8.51 | 1.02 | 0.96 | 10.5 | |
Red blood cells | HT | % | 27 | 31.75 | 31.50 | 2.79 | 3.5 | 38 |
HB | (g/dL−1) | 8 | 9.59 | 9.85 | 0.89 | 1.18 | 11.1 | |
RBC | (×106/mL) | 9.43 | 11.68 | 11.77 | 1.15 | 1.75 | 13.56 | |
MCV | pg/hm | 23.6 | 27.16 | 26.95 | 2.19 | 1.75 | 34.6 | |
MCH | fl | 7.1 | 8.15 | 8.17 | 0.38 | 0.43 | 8.6 | |
White blood cells | LYM | cells/mL−1 | 1890.00 | 3491.60 | 3235.50 | 1004.70 | 1703.75 | 5427.00 |
MONO | cells/mL−1 | 49 | 140.22 | 120.00 | 90.91 | 73 | 414 | |
EOS | cells/mL−1 | 58 | 333.42 | 267.50 | 287.51 | 125.57 | 1330.00 | |
LEC | cells/mL−1 | 11 | 6715.55 | 6900.00 | 2057.05 | 1425.00 | 10,300.00 | |
SEG | cells/mL−1 | 980 | 3282.35 | 3200.000 | 1083.10 | 1248.75 | 5280.00 | |
Performance | CCW | kg | 6 | 9.98 | 9.55 | 2.55 | 3.63 | 14.6 |
HCW | kg | 6.8 | 10.66 | 10.30 | 2.56 | 3.9 | 15.2 | |
FCW | kg | 19 | 26.32 | 26.00 | 4.44 | 5.25 | 34 | |
Non-carcass components | BLOOD | L | 0.65 | 0.95 | 0.89 | 0.21 | 0.3 | 1.48 |
LUNG | kg | 0.37 | 0.5 | 0.48 | 0.08 | 0.14 | 0.63 | |
HEART | kg | 0.05 | 0.09 | 0.09 | 0.02 | 0.02 | 0.13 | |
KIDNEYS | kg | 0.06 | 0.08 | 0.08 | 0.01 | 0.02 | 0.11 | |
LIVER | kg | 0.27 | 0.4 | 0.4 | 0.07 | 0.1 | 0.56 | |
SPLEEN | kg | 0.01 | 0.06 | 0.04 | 0.07 | 0.02 | 0.34 | |
Commercial meat cuts | SHANK | kg | 1.05 | 1.62 | 1.55 | 0.35 | 0.5 | 2.27 |
RIB | kg | 0.26 | 0.74 | 0.72 | 0.26 | 0.36 | 1.21 | |
LOIN | kg | 0.27 | 0.47 | 0.46 | 0.16 | 0.26 | 0.8 | |
Morphological responses | TP | cm | 52 | 60.05 | 60.250. | 4.53 | 5.88 | 67 |
BL | cm | 44 | 50.93 | 50.75 | 4.1 | 5.5 | 59 | |
SHANKCIRC | cm | 22 | 24.25 | 24.00 | 1.63 | 2.5 | 28 | |
LEA | cm | 12.42 | 21.8 | 20.17 | 5.67 | 5.37 | 36.1 | |
Meat traits | FMARB | 1–5 | 1 | 1.6 | 2.0 | 0.5 | 1 | 2 |
FTEXT | 2 | 2.9 | 3.0 | 0.31 | 0 | 3 | ||
FTHICK | 0.12 | 1.83 | 1.77 | 1.05 | 1.25 | 3.9 | ||
MTEXT | 3 | 4.05 | 4.0 | 0.6 | 0 | 5 | ||
Meat physical characteristics | IpH | pH | 4.25 | 5.2 | 5.28 | 0.54 | 0.67 | 6.21 |
FpH | pH | 4.45 | 5.98 | 6.00 | 1.28 | 1.45 | 9.95 | |
IT | °C | 26.8 | 29.85 | 29.75 | 1.88 | 2.73 | 32.9 | |
FT | °C | 10.6 | 13.15 | 13.00 | 1.26 | 2 | 15 |
Dependent Variables | Independent Variables | Canonical R | Canonical R2 | p-Value |
---|---|---|---|---|
U1. V1 | U1. V1 | |||
RR, HR, RT | MSF, MSR, MSI | 0.67 | 0.45 | =0.07 |
RR, HR, RT | HT, HB, RBC, MCV, MCH | 0.73 | 0.53 | =0.52 |
RR, HR, RT | LYM, MONO, EOS, LEC, SEG | 0.66 | 0.44 | =0.67 |
RR, HR, RT | CCW, HCW, FCW | 0.81 | 0.66 | =0.03 |
RR, HR, RT | TP, BL, SHANKCIRC, LEA | 0.82 | 0.68 | =0.03 |
RR, HR, RT | BLOOD, LUNG, HEART, KIDNEYS, LIVER, SPLEEN | 0.91 | 0.82 | <0.001 |
RR, HR, RT | SHANK, RIB, LOIN | 0.82 | 0.67 | =0.03 |
RR, HR, RT | FMARB, FTEXT, MTEXT, FTHICK | 0.58 | 0.34 | =0.44 |
RR, HR, RT | IpH, FpH, IT, FT | 0.49 | 0.24 | =0.92 |
Indicator | Variable | Df | Pillai | Approx F | Num Df | Den Df | Pr (>F) |
---|---|---|---|---|---|---|---|
Behavioral responses | MSF | 1.00 | 0.23 | 1.41 | 3.00 | 14.00 | 0.28 |
MSR | 1.00 | 0.18 | 1.00 | 3.00 | 14.00 | 0.42 | |
MSI | 1.00 | 0.43 | 3.54 | 3.00 | 14.00 | 0.04 | |
Residuals | 16.00 | ||||||
Performance | CCW | 1.00 | 0.59 | 6.80 | 3.00 | 14.00 | <0.001 |
HCW | 1.00 | 0.29 | 1.93 | 3.00 | 14.00 | 0.17 | |
FCW | 1.00 | 0.19 | 1.07 | 3.00 | 14.00 | 0.39 | |
Residuals | 16.00 | ||||||
Morphological responses | TP | 1.00 | 0.56 | 5.53 | 3.00 | 13.00 | 0.01 |
BL | 1.00 | 0.53 | 4.83 | 3.00 | 13.00 | 0.02 | |
SHANKCIRC | 1.00 | 0.17 | 0.92 | 3.00 | 13.00 | 0.46 | |
LEA | 1.00 | 0.01 | 0.05 | 3.00 | 13.00 | 0.98 | |
Residuals | 15.00 | ||||||
Non-carcass components | Blood | 1.00 | 0.68 | 7.88 | 3.00 | 11.00 | <0.001 |
Lung | 1.00 | 0.46 | 3.13 | 3.00 | 11.00 | 0.07 | |
Heart | 1.00 | 0.27 | 1.33 | 3.00 | 11.00 | 0.31 | |
Kidneys | 1.00 | 0.11 | 0.43 | 3.00 | 11.00 | 0.73 | |
Liver | 1.00 | 0.59 | 5.26 | 3.00 | 11.00 | 0.02 | |
Spleen | 1.00 | 0.59 | 5.32 | 3.00 | 11.00 | 0.02 | |
Residuals | 13.00 | ||||||
Carcass commercial cuts | Shank | 1.00 | 0.60 | 7.02 | 3.00 | 14.00 | <0.001 |
Rib | 1.00 | 0.34 | 2.43 | 3.00 | 14.00 | 0.11 | |
Loin | 1.00 | 0.07 | 0.36 | 3.00 | 14.00 | 0.78 | |
Residuals | 16.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira, R.M.F.; Ribeiro, F.A.; dos Santos, J.P.; Fávero, L.P.; Tedeschi, L.O.; Alves, A.A.C.; Sarti, D.A.; Primo, A.A.; Costa, H.H.A.; Ribeiro, N.L.; et al. Intelligent Multi-Modeling Reveals Biological Mechanisms and Adaptive Phenotypes in Hair Sheep Lambs from a Semi-Arid Region. Genes 2025, 16, 812. https://doi.org/10.3390/genes16070812
Silveira RMF, Ribeiro FA, dos Santos JP, Fávero LP, Tedeschi LO, Alves AAC, Sarti DA, Primo AA, Costa HHA, Ribeiro NL, et al. Intelligent Multi-Modeling Reveals Biological Mechanisms and Adaptive Phenotypes in Hair Sheep Lambs from a Semi-Arid Region. Genes. 2025; 16(7):812. https://doi.org/10.3390/genes16070812
Chicago/Turabian StyleSilveira, Robson Mateus Freitas, Fábio Augusto Ribeiro, João Pedro dos Santos, Luiz Paulo Fávero, Luis Orlindo Tedeschi, Anderson Antonio Carvalho Alves, Danilo Augusto Sarti, Anaclaudia Alves Primo, Hélio Henrique Araújo Costa, Neila Lidiany Ribeiro, and et al. 2025. "Intelligent Multi-Modeling Reveals Biological Mechanisms and Adaptive Phenotypes in Hair Sheep Lambs from a Semi-Arid Region" Genes 16, no. 7: 812. https://doi.org/10.3390/genes16070812
APA StyleSilveira, R. M. F., Ribeiro, F. A., dos Santos, J. P., Fávero, L. P., Tedeschi, L. O., Alves, A. A. C., Sarti, D. A., Primo, A. A., Costa, H. H. A., Ribeiro, N. L., Reitenbach, A. F., de Carvalho, F. C., & Landim, A. V. (2025). Intelligent Multi-Modeling Reveals Biological Mechanisms and Adaptive Phenotypes in Hair Sheep Lambs from a Semi-Arid Region. Genes, 16(7), 812. https://doi.org/10.3390/genes16070812