Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,099)

Search Parameters:
Keywords = wearables

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5536 KiB  
Article
The Development of a Wearable-Based System for Detecting Shaken Baby Syndrome Using Machine Learning Models
by Ram Kinker Mishra, Khalid Al Ansari, Rylee Cole, Arin Nazarian, Ilkay Yildiz Potter and Ashkan Vaziri
Sensors 2025, 25(15), 4767; https://doi.org/10.3390/s25154767 (registering DOI) - 2 Aug 2025
Abstract
Shaken Baby Syndrome (SBS) is one of the primary causes of fatal head trauma in infants and young children, occurring in about 33 per 100,000 infants annually in the U.S., with mortality rates being between 15% and 38%. Survivors frequently endure long-term disabilities, [...] Read more.
Shaken Baby Syndrome (SBS) is one of the primary causes of fatal head trauma in infants and young children, occurring in about 33 per 100,000 infants annually in the U.S., with mortality rates being between 15% and 38%. Survivors frequently endure long-term disabilities, such as cognitive deficits, visual impairments, and motor dysfunction. Diagnosing SBS remains difficult due to the lack of visible injuries and delayed symptom onset. Existing detection methods—such as neuroimaging, biomechanical modeling, and infant monitoring systems—cannot perform real-time detection and face ethical, technical, and accuracy limitations. This study proposes an inertial measurement unit (IMU)-based detection system enhanced with machine learning to identify aggressive shaking patterns. Findings indicate that wearable-based motion analysis is a promising method for recognizing high-risk shaking, offering a non-invasive, real-time solution that could minimize infant harm and support timely intervention. Full article
Show Figures

Figure 1

15 pages, 4435 KiB  
Article
An Ultra-Robust, Highly Compressible Silk/Silver Nanowire Sponge-Based Wearable Pressure Sensor for Health Monitoring
by Zijie Li, Ning Yu, Martin C. Hartel, Reihaneh Haghniaz, Sam Emaminejad and Yangzhi Zhu
Biosensors 2025, 15(8), 498; https://doi.org/10.3390/bios15080498 (registering DOI) - 1 Aug 2025
Abstract
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted [...] Read more.
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa−1 over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
45 pages, 10039 KiB  
Article
Design of an Interactive System by Combining Affective Computing Technology with Music for Stress Relief
by Chao-Ming Wang and Ching-Hsuan Lin
Electronics 2025, 14(15), 3087; https://doi.org/10.3390/electronics14153087 (registering DOI) - 1 Aug 2025
Abstract
In response to the stress commonly experienced by young people in high-pressure daily environments, a music-based stress-relief interactive system was developed by integrating music-assisted care with emotion-sensing technology. The design principles of the system were established through a literature review on stress, music [...] Read more.
In response to the stress commonly experienced by young people in high-pressure daily environments, a music-based stress-relief interactive system was developed by integrating music-assisted care with emotion-sensing technology. The design principles of the system were established through a literature review on stress, music listening, emotion detection, and interactive devices. A prototype was created accordingly and refined through interviews with four experts and eleven users participating in a preliminary experiment. The system is grounded in a four-stage guided imagery and music framework, along with a static activity model focused on relaxation-based stress management. Emotion detection was achieved using a wearable EEG device (NeuroSky’s MindWave Mobile device) and a two-dimensional emotion model, and the emotional states were translated into visual representations using seasonal and weather metaphors. A formal experiment involving 52 users was conducted. The system was evaluated, and its effectiveness confirmed, through user interviews and questionnaire surveys, with statistical analysis conducted using SPSS 26 and AMOS 23. The findings reveal that: (1) integrating emotion sensing with music listening creates a novel and engaging interactive experience; (2) emotional states can be effectively visualized using nature-inspired metaphors, enhancing user immersion and understanding; and (3) the combination of music listening, guided imagery, and real-time emotional feedback successfully promotes emotional relaxation and increases self-awareness. Full article
(This article belongs to the Special Issue New Trends in Human-Computer Interactions for Smart Devices)
Show Figures

Figure 1

46 pages, 4006 KiB  
Review
Solvent-Driven Electroless Nickel Coatings on Polymers: Interface Engineering, Microstructure, and Applications
by Chenyao Wang, Heng Zhai, David Lewis, Hugh Gong, Xuqing Liu and Anura Fernando
Coatings 2025, 15(8), 898; https://doi.org/10.3390/coatings15080898 (registering DOI) - 1 Aug 2025
Abstract
Electroless nickel deposition (ELD) is an autocatalytic technique extensively used to impart conductive, protective, and mechanical functionalities to inherently non-conductive synthetic substrates. This review systematically explores the fundamental mechanisms of electroless nickel deposition, emphasising recent advancements in surface activation methods, solvent systems, and [...] Read more.
Electroless nickel deposition (ELD) is an autocatalytic technique extensively used to impart conductive, protective, and mechanical functionalities to inherently non-conductive synthetic substrates. This review systematically explores the fundamental mechanisms of electroless nickel deposition, emphasising recent advancements in surface activation methods, solvent systems, and microstructural control. Critical analysis reveals that bio-inspired activation methods, such as polydopamine (PDA) and tannic acid (TA), significantly enhance coating adhesion and durability compared to traditional chemical etching and plasma treatments. Additionally, solvent engineering, particularly using polar aprotic solvents like dimethyl sulfoxide (DMSO) and ethanol-based systems, emerges as a key strategy for achieving uniform, dense, and flexible coatings, overcoming limitations associated with traditional aqueous baths. The review also highlights that microstructural tailoring, specifically the development of amorphous-nanocrystalline hybrid nickel coatings, effectively balances mechanical robustness (hardness exceeding 800 HV), flexibility, and corrosion resistance, making these coatings particularly suitable for wearable electronic textiles and smart materials. Furthermore, commercial examples demonstrate the real-world applicability and market readiness of nickel-coated synthetic fibres. Despite significant progress, persistent challenges remain, including reliable long-term adhesion, internal stress management, and environmental sustainability. Future research should prioritise environmentally benign plating baths, standardised surface activation protocols, and scalable deposition processes to fully realise the industrial potential of electroless nickel coatings. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

15 pages, 2400 KiB  
Article
Robust Prediction of Cardiorespiratory Signals from a Multimodal Physiological System on the Upper Arm
by Kimberly L. Branan, Rachel Kurian, Justin P. McMurray, Madhav Erraguntla, Ricardo Gutierrez-Osuna and Gerard L. Coté
Biosensors 2025, 15(8), 493; https://doi.org/10.3390/bios15080493 (registering DOI) - 1 Aug 2025
Abstract
Many commercial wearable sensor systems typically rely on a single continuous cardiorespiratory sensing modality, photoplethysmography (PPG), which suffers from inherent biases (i.e., differences in skin tone) and noise (e.g., motion and pressure artifacts). In this research, we present a wearable device that provides [...] Read more.
Many commercial wearable sensor systems typically rely on a single continuous cardiorespiratory sensing modality, photoplethysmography (PPG), which suffers from inherent biases (i.e., differences in skin tone) and noise (e.g., motion and pressure artifacts). In this research, we present a wearable device that provides robust estimates of cardiorespiratory variables by combining three physiological signals from the upper arm: multiwavelength PPG, single-sided electrocardiography (SS-ECG), and bioimpedance plethysmography (BioZ), along with an inertial measurement unit (IMU) providing 3-axis accelerometry and gyroscope information. We evaluated the multimodal device on 16 subjects by its ability to estimate heart rate (HR) and breathing rate (BR) in the presence of various static and dynamic noise sources (e.g., skin tone and motion). We proposed a hierarchical approach that considers the subject’s skin tone and signal quality to select the optimal sensing modality for estimating HR and BR. Our results indicate that, when estimating HR, there is a trade-off between accuracy and robustness, with SS-ECG providing the highest accuracy (low mean absolute error; MAE) but low reliability (higher rates of sensor failure), and PPG/BioZ having lower accuracy but higher reliability. When estimating BR, we find that fusing estimates from multiple modalities via ensemble bagged tree regression outperforms single-modality estimates. These results indicate that multimodal approaches to cardiorespiratory monitoring can overcome the accuracy–robustness trade-off that occurs when using single-modality approaches. Full article
(This article belongs to the Special Issue Wearable Biosensors for Health Monitoring)
Show Figures

Figure 1

15 pages, 514 KiB  
Article
Remote Patient Monitoring Applications in Healthcare: Lessons from COVID-19 and Beyond
by Azrin Khan and Dominique Duncan
Electronics 2025, 14(15), 3084; https://doi.org/10.3390/electronics14153084 (registering DOI) - 1 Aug 2025
Abstract
The COVID-19 pandemic catalyzed the rapid adoption of remote patient monitoring (RPM) technologies such as telemedicine and wearable devices (WDs), significantly transforming healthcare delivery. Telemedicine made virtual consultations possible, reducing in-person visits and infection risks, particularly for the management of chronic diseases. Wearable [...] Read more.
The COVID-19 pandemic catalyzed the rapid adoption of remote patient monitoring (RPM) technologies such as telemedicine and wearable devices (WDs), significantly transforming healthcare delivery. Telemedicine made virtual consultations possible, reducing in-person visits and infection risks, particularly for the management of chronic diseases. Wearable devices enabled the real-time continuous monitoring of health that assisted in condition prediction and management, such as for COVID-19. This narrative review addresses these transformations by uniquely synthesizing findings from 13 diverse studies (sourced from PubMed and Google Scholar, 2020–2024) to analyze the parallel evolution of telemedicine and WDs as interconnected RPM components. It highlights the pandemic’s dual impact, as follows: accelerating RPM innovation and adoption while simultaneously unmasking systemic challenges such as inequities in access and a need for robust integration approaches; while telemedicine usage soared during the pandemic, consumption post-pandemic, as indicated by the reviewed studies, suggests continued barriers to adoption among older adults. Likewise, wearable devices demonstrated significant potential in early disease detection and long-term health management, with promising applications extending beyond COVID-19, including long COVID conditions. Addressing the identified challenges is crucial for healthcare providers and systems to fully embrace these technologies and this would improve efficiency and patient outcomes. Full article
Show Figures

Figure 1

18 pages, 3318 KiB  
Article
Indirect AI-Based Estimation of Cardiorespiratory Fitness from Daily Activities Using Wearables
by Laura Saldaña-Aristizábal, Jhonathan L. Rivas-Caicedo, Kevin Niño-Tejada and Juan F. Patarroyo-Montenegro
Electronics 2025, 14(15), 3081; https://doi.org/10.3390/electronics14153081 (registering DOI) - 1 Aug 2025
Abstract
Cardiorespiratory fitness is a predictor of long-term health, traditionally assessed through structured exercise protocols that require maximal effort and controlled laboratory conditions. These protocols, while clinically validated, are often inaccessible, physically demanding, and unsuitable for unsupervised monitoring. This study proposes a non-invasive, unsupervised [...] Read more.
Cardiorespiratory fitness is a predictor of long-term health, traditionally assessed through structured exercise protocols that require maximal effort and controlled laboratory conditions. These protocols, while clinically validated, are often inaccessible, physically demanding, and unsuitable for unsupervised monitoring. This study proposes a non-invasive, unsupervised alternative—predicting the heart rate a person would reach after completing the step test, using wearable data collected during natural daily activities. Ground truth post-exercise heart rate was obtained through the Queens College Step Test, which is a submaximal protocol widely used in fitness settings. Separately, wearable sensors recorded heart rate (HR), blood oxygen saturation, and motion data during a protocol of lifestyle tasks spanning a range of intensities. Two machine learning models were developed—a Human Activity Recognition (HAR) model that classified daily activities from inertial data with 96.93% accuracy, and a regression model that estimated post step test HR using motion features, physiological trends, and demographic context. The regression model achieved an average root mean squared error (RMSE) of 5.13 beats per minute (bpm) and a mean absolute error (MAE) of 4.37 bpm. These findings demonstrate the potential of test-free methods to estimate standardized test outcomes from daily activity data, offering an accessible pathway to infer cardiorespiratory fitness. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 (registering DOI) - 1 Aug 2025
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

12 pages, 1677 KiB  
Article
Validating Capacitive Pressure Sensors for Mobile Gait Assessment
by John Carver Middleton, David Saucier, Samaneh Davarzani, Erin Parker, Tristen Sellers, James Chalmers, Reuben F. Burch, John E. Ball, Charles Edward Freeman, Brian Smith and Harish Chander
Biomechanics 2025, 5(3), 54; https://doi.org/10.3390/biomechanics5030054 (registering DOI) - 1 Aug 2025
Abstract
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler [...] Read more.
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler force plates in collecting ground force reaction data. Methods: Nineteen participants performed walking trials while wearing the smart sock with and without shoes. Data was collected simultaneously with the sock and the force plates for each gait phase including foot-flat, heel-off, and midstance. The correlation between the smart sock and force plates was analyzed using Pearson’s correlation coefficient and R-squared values. Results: Overall, the strength of the relationship between the smart sock’s SRS data and the vertical ground reaction force (GRF) data from the force plates showed a strong correlation, with a Pearson’s correlation coefficient of 0.85 ± 0.1; 86% of the trials had a value higher than 0.75. The linear regression models also showed a strong correlation, with an R-squared value of 0.88 ± 0.12, which improved to 0.90 ± 0.07 when including a stretch-SRS for measuring ankle flexion. Conclusions: With these strong correlation results, there is potential for capacitive pressure sensors to be integrated into the proposed device and utilized in telehealth and sports performance applications. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

24 pages, 1612 KiB  
Review
Multidomain Molecular Sensor Devices, Systems, and Algorithms for Improved Physiological Monitoring
by Lianna D. Soriano, Shao-Xiang Go, Lunna Li, Natasa Bajalovic and Desmond K. Loke
Micromachines 2025, 16(8), 900; https://doi.org/10.3390/mi16080900 (registering DOI) - 31 Jul 2025
Abstract
Molecular sensor systems, e.g., implantables and wearables, provide extensive health-related monitoring. Glucose sensor systems have historically prevailed in wearable bioanalysis applications due to their continuous and reliable glucose monitoring, a feat not yet accomplished for other biomarkers. However, the advancement of reagentless detection [...] Read more.
Molecular sensor systems, e.g., implantables and wearables, provide extensive health-related monitoring. Glucose sensor systems have historically prevailed in wearable bioanalysis applications due to their continuous and reliable glucose monitoring, a feat not yet accomplished for other biomarkers. However, the advancement of reagentless detection methodologies may facilitate the creation of molecular sensor systems for multiple analytes. Improving the sensitivity and selectivity of molecular sensor systems is also crucial for biomarker detection under intricate physiological circumstances. The term multidomain molecular sensor systems is utilized to refer, in general, to both biological and chemical sensor systems. This review examines methodologies for enhancing signal amplification, improving selectivity, and facilitating reagentless detection in multidomain molecular sensor devices. The review also analyzes the fundamental components of multidomain molecular sensor systems, including substrate materials, bodily fluids, power, and decision-making units. The review article further investigates how extensive data gathered from multidomain molecular sensor systems, in conjunction with current data processing algorithms, facilitate biomarker detection for precision medicine. Full article
17 pages, 302 KiB  
Article
Validity of PROMIS® Pediatric Physical Activity Parent Proxy Short Form Scale as a Physical Activity Measure for Children with Cerebral Palsy Who Are Non-Ambulatory
by Nia Toomer-Mensah, Margaret O’Neil and Lori Quinn
Behav. Sci. 2025, 15(8), 1042; https://doi.org/10.3390/bs15081042 - 31 Jul 2025
Abstract
Background: Self-report physical activity (PA) scales, accelerometry, and heart rate (HR) monitoring are reliable tools for PA measurement for children with cerebral palsy (CP); however, there are limitations for those who are primary wheelchair users. The purpose of our study was to [...] Read more.
Background: Self-report physical activity (PA) scales, accelerometry, and heart rate (HR) monitoring are reliable tools for PA measurement for children with cerebral palsy (CP); however, there are limitations for those who are primary wheelchair users. The purpose of our study was to evaluate face and construct validity of the PROMIS® Pediatric PA parent proxy short form 8a in measuring PA amount and intensity in children with CP who are non-ambulatory. Methods: Face validity: Semi-structured interviews with parents and pediatric physical therapists (PTs) were conducted about the appropriateness of each item on the PROMIS® Pediatric PA short form. Construct validity: Children with CP who were non-ambulatory participated in a one-week observational study. PA amount and intensity were examined using PA monitors (Actigraph GT9X) and HR monitors (Fitbit Charge 4). Activity counts and time in sedentary and non-sedentary intensity zones were derived and compared to the PROMIS® T-scaled score. Results: Twenty-two physical therapists (PTs) and fifteen parents participated in the interviews, and ten children completed 1-week PA observation. Eight and seven participants completed sufficient time of uninterrupted PA and HR monitor wear, respectively. Parents and PTs agreed that several questions were not appropriate for children with CP who were non-ambulatory. PA intensity via activity counts derived from wrist worn monitors showed a strong positive correlation with the PROMIS® PA measure. Conclusions: Construct validity in our small sample was established between PROMIS® scores and accelerometry activity counts when documenting PA amount and intensity; however, there were some differences on PROMIS® face validity per parent and PT respondents. Despite some concerns regarding face validity, the PROMIS® Pediatric PA parent proxy short form 8a shows promise as a valid measure of physical activity amount and intensity in non-ambulatory children with CP, warranting further investigation and refinement. Full article
37 pages, 6916 KiB  
Review
The Role of IoT in Enhancing Sports Analytics: A Bibliometric Perspective
by Yuvanshankar Azhagumurugan, Jawahar Sundaram, Zenith Dewamuni, Pritika, Yakub Sebastian and Bharanidharan Shanmugam
IoT 2025, 6(3), 43; https://doi.org/10.3390/iot6030043 (registering DOI) - 31 Jul 2025
Abstract
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. [...] Read more.
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. Our analysis included 780 Scopus articles and 150 WoS articles published during 2012–2025, and duplicates were removed. We analyzed and visualized the bibliometric data using R version 3.6.1, VOSviewer version 1.6.20, and the bibliometrix library. The study provides insights from a bibliometric analysis, showcasing the allocation of topics, scientific contributions, patterns of co-authorship, prominent authors and their productivity over time, notable terms, key sources, publications with citations, analysis of citations, source-specific citation analysis, yearly publication patterns, and the distribution of research papers. The results indicate that China and India have the leading scientific production in the development of IoT and Sports research, with prominent authors like Anton Umek, Anton Kos, and Emiliano Schena making significant contributions. Wearable technology and wearable sensors are the most trending topics in IoT and Sports, followed by medical sciences and artificial intelligence paradigms. The analysis also emphasizes the importance of open-access journals like ‘Journal of Physics: Conference Series’ and ‘IEEE Access’ for their contributions to IoT and Sports research. Future research directions focus on enhancing effective, lightweight, and efficient wearable devices while implementing technologies like edge computing and lightweight AI in wearable technologies. Full article
Show Figures

Figure 1

24 pages, 624 KiB  
Systematic Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 (registering DOI) - 31 Jul 2025
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

36 pages, 2671 KiB  
Article
DIKWP-Driven Artificial Consciousness for IoT-Enabled Smart Healthcare Systems
by Yucong Duan and Zhendong Guo
Appl. Sci. 2025, 15(15), 8508; https://doi.org/10.3390/app15158508 (registering DOI) - 31 Jul 2025
Viewed by 43
Abstract
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and [...] Read more.
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and purpose-driven actions. This is achieved through a structured DIKWP pipeline—from data acquisition and information processing to knowledge extraction, wisdom inference, and purpose-driven decision-making—that enables semantic reasoning, adaptive goal-driven responses, and privacy-preserving decision-making in healthcare environments. The architecture integrates wearable sensors, edge computing nodes, and cloud services to enable dynamic task orchestration and secure data fusion. For evaluation, a smart healthcare scenario for early anomaly detection (e.g., arrhythmia and fever) was implemented using wearable devices with coordinated edge–cloud analytics. Simulated experiments on synthetic vital sign datasets achieved approximately 98% anomaly detection accuracy and up to 90% reduction in communication overhead compared to cloud-centric solutions. Results also demonstrate enhanced explainability via traceable decisions across DIKWP layers and robust performance under intermittent connectivity. These findings indicate that the DIKWP-driven approach can significantly advance IoT-based healthcare by providing secure, explainable, and adaptive services aligned with clinical objectives and patient-centric care. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes, 2nd Edition)
Show Figures

Figure 1

3 pages, 131 KiB  
Editorial
Advances in Human–Machine Systems, Human–Machine Interfaces and Human Wearable Device Performance
by Kai Way Li and Lu Peng
Appl. Sci. 2025, 15(15), 8490; https://doi.org/10.3390/app15158490 (registering DOI) - 31 Jul 2025
Viewed by 60
Abstract
The human–machine system (HMS) and human–machine interface (HMI) are among the top factors that affect the development of advanced systems, equipment, and products [...] Full article
Back to TopTop