Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,072)

Search Parameters:
Keywords = wearable health sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 487 KiB  
Review
Smart Clothing and Medical Imaging Innovations for Real-Time Monitoring and Early Detection of Stroke: Bridging Technology and Patient Care
by David Sipos, Kata Vészi, Bence Bogár, Dániel Pető, Gábor Füredi, József Betlehem and Attila András Pandur
Diagnostics 2025, 15(15), 1970; https://doi.org/10.3390/diagnostics15151970 - 6 Aug 2025
Abstract
Stroke is a significant global health concern characterized by the abrupt disruption of cerebral blood flow, leading to neurological impairment. Accurate and timely diagnosis—enabled by imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI)—is essential for differentiating stroke types and [...] Read more.
Stroke is a significant global health concern characterized by the abrupt disruption of cerebral blood flow, leading to neurological impairment. Accurate and timely diagnosis—enabled by imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI)—is essential for differentiating stroke types and initiating interventions like thrombolysis, thrombectomy, or surgical management. In parallel, recent advancements in wearable technology, particularly smart clothing, offer new opportunities for stroke prevention, real-time monitoring, and rehabilitation. These garments integrate various sensors, including electrocardiogram (ECG) electrodes, electroencephalography (EEG) caps, electromyography (EMG) sensors, and motion or pressure sensors, to continuously track physiological and functional parameters. For example, ECG shirts monitor cardiac rhythm to detect atrial fibrillation, smart socks assess gait asymmetry for early mobility decline, and EEG caps provide data on neurocognitive recovery during rehabilitation. These technologies support personalized care across the stroke continuum, from early risk detection and acute event monitoring to long-term recovery. Integration with AI-driven analytics further enhances diagnostic accuracy and therapy optimization. This narrative review explores the application of smart clothing in conjunction with traditional imaging to improve stroke management and patient outcomes through a more proactive, connected, and patient-centered approach. Full article
Show Figures

Figure 1

15 pages, 2440 KiB  
Article
An Ultra-Robust, Highly Compressible Silk/Silver Nanowire Sponge-Based Wearable Pressure Sensor for Health Monitoring
by Zijie Li, Ning Yu, Martin C. Hartel, Reihaneh Haghniaz, Sam Emaminejad and Yangzhi Zhu
Biosensors 2025, 15(8), 498; https://doi.org/10.3390/bios15080498 - 1 Aug 2025
Viewed by 111
Abstract
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted [...] Read more.
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa−1 over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
Show Figures

Figure 1

18 pages, 3318 KiB  
Article
Indirect AI-Based Estimation of Cardiorespiratory Fitness from Daily Activities Using Wearables
by Laura Saldaña-Aristizábal, Jhonathan L. Rivas-Caicedo, Kevin Niño-Tejada and Juan F. Patarroyo-Montenegro
Electronics 2025, 14(15), 3081; https://doi.org/10.3390/electronics14153081 - 1 Aug 2025
Viewed by 245
Abstract
Cardiorespiratory fitness is a predictor of long-term health, traditionally assessed through structured exercise protocols that require maximal effort and controlled laboratory conditions. These protocols, while clinically validated, are often inaccessible, physically demanding, and unsuitable for unsupervised monitoring. This study proposes a non-invasive, unsupervised [...] Read more.
Cardiorespiratory fitness is a predictor of long-term health, traditionally assessed through structured exercise protocols that require maximal effort and controlled laboratory conditions. These protocols, while clinically validated, are often inaccessible, physically demanding, and unsuitable for unsupervised monitoring. This study proposes a non-invasive, unsupervised alternative—predicting the heart rate a person would reach after completing the step test, using wearable data collected during natural daily activities. Ground truth post-exercise heart rate was obtained through the Queens College Step Test, which is a submaximal protocol widely used in fitness settings. Separately, wearable sensors recorded heart rate (HR), blood oxygen saturation, and motion data during a protocol of lifestyle tasks spanning a range of intensities. Two machine learning models were developed—a Human Activity Recognition (HAR) model that classified daily activities from inertial data with 96.93% accuracy, and a regression model that estimated post step test HR using motion features, physiological trends, and demographic context. The regression model achieved an average root mean squared error (RMSE) of 5.13 beats per minute (bpm) and a mean absolute error (MAE) of 4.37 bpm. These findings demonstrate the potential of test-free methods to estimate standardized test outcomes from daily activity data, offering an accessible pathway to infer cardiorespiratory fitness. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

24 pages, 1835 KiB  
Review
Multidomain Molecular Sensor Devices, Systems, and Algorithms for Improved Physiological Monitoring
by Lianna D. Soriano, Shao-Xiang Go, Lunna Li, Natasa Bajalovic and Desmond K. Loke
Micromachines 2025, 16(8), 900; https://doi.org/10.3390/mi16080900 (registering DOI) - 31 Jul 2025
Viewed by 115
Abstract
Molecular sensor systems, e.g., implantables and wearables, provide extensive health-related monitoring. Glucose sensor systems have historically prevailed in wearable bioanalysis applications due to their continuous and reliable glucose monitoring, a feat not yet accomplished for other biomarkers. However, the advancement of reagentless detection [...] Read more.
Molecular sensor systems, e.g., implantables and wearables, provide extensive health-related monitoring. Glucose sensor systems have historically prevailed in wearable bioanalysis applications due to their continuous and reliable glucose monitoring, a feat not yet accomplished for other biomarkers. However, the advancement of reagentless detection methodologies may facilitate the creation of molecular sensor systems for multiple analytes. Improving the sensitivity and selectivity of molecular sensor systems is also crucial for biomarker detection under intricate physiological circumstances. The term multidomain molecular sensor systems is utilized to refer, in general, to both biological and chemical sensor systems. This review examines methodologies for enhancing signal amplification, improving selectivity, and facilitating reagentless detection in multidomain molecular sensor devices. The review also analyzes the fundamental components of multidomain molecular sensor systems, including substrate materials, bodily fluids, power, and decision-making units. The review article further investigates how extensive data gathered from multidomain molecular sensor systems, in conjunction with current data processing algorithms, facilitate biomarker detection for precision medicine. Full article
Show Figures

Figure 1

24 pages, 624 KiB  
Systematic Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 - 31 Jul 2025
Viewed by 143
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

15 pages, 3532 KiB  
Article
Improving Motion Estimation Accuracy in Underdetermined Problems Using Physics-Informed Neural Networks with Inverse Kinematics and a Digital Human Model
by Yuya Hishikawa, Takashi Kusaka, Yoshifumi Tanaka, Yukiyasu Domae, Naoki Shirakura, Natsuki Yamanobe, Yui Endo, Mitsunori Tada, Natsuki Miyata and Takayuki Tanaka
Electronics 2025, 14(15), 3055; https://doi.org/10.3390/electronics14153055 - 30 Jul 2025
Viewed by 164
Abstract
With the rapid technological advancements in wearable devices, motion and health management have significantly improved, enabling the measurement of various biometric data with compact equipment. Our research focuses on motion measurement but, in general, full-body motion estimation requires motion capture systems or multiple [...] Read more.
With the rapid technological advancements in wearable devices, motion and health management have significantly improved, enabling the measurement of various biometric data with compact equipment. Our research focuses on motion measurement but, in general, full-body motion estimation requires motion capture systems or multiple inertial sensors, making it necessary to directly measure movement itself. In this study, we propose estimating full-body posture using inverse kinematics based on trunk posture and limb-end information collected through wearable devices. To enhance estimation accuracy in this underdetermined problem, we employ Physics-Informed Neural Networks (PINNs), which efficiently learn using physical laws as a loss function, along with a high-precision inverse kinematics model of a digital human. Through this approach, we enable high-accuracy full-body posture estimation even with wearable devices in underdetermined scenarios. Full article
(This article belongs to the Special Issue New Advances in Machine Learning and Its Applications)
Show Figures

Figure 1

18 pages, 3131 KiB  
Article
An Improved Model for Online Detection of Early Lameness in Dairy Cows Using Wearable Sensors: Towards Enhanced Efficiency and Practical Implementation
by Xiaofei Dai, Guodong Cheng, Lu Yang, Yali Wang, Zhongkun Li, Shuqing Han and Jifang Liu
Agriculture 2025, 15(15), 1643; https://doi.org/10.3390/agriculture15151643 - 30 Jul 2025
Viewed by 238
Abstract
This study proposed an online early lameness detection method for dairy cow health management to overcome the inability of wearable sensor-based methods for online detection and low sensitivity to early lameness. Wearable IMU sensors collected acceleration data in stationary and moving states; a [...] Read more.
This study proposed an online early lameness detection method for dairy cow health management to overcome the inability of wearable sensor-based methods for online detection and low sensitivity to early lameness. Wearable IMU sensors collected acceleration data in stationary and moving states; a threshold discrimination module using variance of motion-direction acceleration was designed to distinguish states within 2 s, enabling rapid data screening. For moving-state windowed data, the InceptionTime network was modified with YOLOConv1D and SeparableConv1D modules plus Dropout, which significantly reduced model parameters and helped mitigate overfitting risk, enhancing generalization on the test set. Typical gait features were fused with deep features automatically learned by the network, enabling accurate discrimination among healthy, mild (early) lameness, and severe lameness. Results showed that the online detection model achieved 80.6% dairy cow health status detection accuracy with 0.8 ms single-decision latency. The recall and F1 score for lameness, including early and severe cases, reached 89.11% and 88.93%, demonstrating potential for early and progressive lameness detection. This study improves lameness detection efficiency and validates the feasibility and practical value of wearable sensor-based gait analysis for dairy cow health management, providing new approaches and technical support for monitoring and early intervention on large-scale farms. Full article
Show Figures

Figure 1

16 pages, 2030 KiB  
Article
Study on Comb-Drive MEMS Acceleration Sensor Used for Medical Purposes: Monitoring of Balance Disorders
by Michał Szermer and Jacek Nazdrowicz
Electronics 2025, 14(15), 3033; https://doi.org/10.3390/electronics14153033 - 30 Jul 2025
Viewed by 263
Abstract
This article presents a comprehensive modeling and simulation framework for a capacitive MEMS accelerometer integrated with a sigma-delta analog-to-digital converter (ADC), with a focus on applications in wearable health and motion monitoring devices. The accelerometer used in the system is connected to a [...] Read more.
This article presents a comprehensive modeling and simulation framework for a capacitive MEMS accelerometer integrated with a sigma-delta analog-to-digital converter (ADC), with a focus on applications in wearable health and motion monitoring devices. The accelerometer used in the system is connected to a smartphone equipped with dedicated software and will be used to assess the risk of falling, which is crucial for patients with balance disorders. The authors designed the accelerometer with special attention paid to the specification required in a system, where the acceleration is ±2 g and the frequency is 100 Hz. They investigated the sensor’s behavior in the DC, AC, and time domains, capturing both the mechanical response of the proof mass and the resulting changes in output capacitance due to external acceleration. A key component of the simulation is the implementation of a second-order sigma-delta modulator designed to digitize the small capacitance variations generated by the sensor. The Simulink model includes the complete signal path from analog input to quantization, filtering, decimation, and digital-to-analog reconstruction. By combining MEMS+ modeling with MATLAB-based system-level simulations, the workflow offers a fast and flexible alternative to traditional finite element methods and facilitates early-stage design optimization for MEMS sensor systems intended for real-world deployment. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

18 pages, 3440 KiB  
Article
Ambient Electromagnetic Wave Energy Harvesting Using Human Body Antenna for Wearable Sensors
by Dairoku Muramatsu and Kazuki Amano
Sensors 2025, 25(15), 4689; https://doi.org/10.3390/s25154689 - 29 Jul 2025
Viewed by 357
Abstract
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to [...] Read more.
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to supply power to wearable sensors. The power density and frequency distribution of AEMWs were measured in diverse indoor, outdoor, and basement environments. We designed and fabricated a flexible HBA–circuit interface electrode, optimized for broadband impedance matching when worn on the body. Experimental comparisons using a simulated AEMW source demonstrated that the HBA outperformed a conventional small whip antenna, particularly at frequencies below 300 MHz. Furthermore, the outdoor measurements indicated that the power harvested by the HBA was estimated to be −31.9 dBm (0.64 μW), which is sufficient for the intermittent operation of low-power wearable sensors and Bluetooth Low Energy modules. The electromagnetic safety was also evaluated through numerical analysis, and the specific absorption rate was confirmed to be well below the international safety limits. These findings indicate that HBA-based AEMW energy harvesting provides a practical and promising approach to achieving battery-maintenance-free wearable devices. Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

14 pages, 298 KiB  
Review
Asthma Symptom Self-Monitoring Methods for Children and Adolescents: Present and Future
by Hyekyun Rhee and Nattasit Katchamat
Children 2025, 12(8), 997; https://doi.org/10.3390/children12080997 - 29 Jul 2025
Viewed by 297
Abstract
Asthma is the leading chronic condition in children and adolescents, requiring continuous monitoring to effectively prevent and manage symptoms. Symptom monitoring can guide timely and effective self-management actions by children and their parents and inform treatment decisions by healthcare providers. This paper examines [...] Read more.
Asthma is the leading chronic condition in children and adolescents, requiring continuous monitoring to effectively prevent and manage symptoms. Symptom monitoring can guide timely and effective self-management actions by children and their parents and inform treatment decisions by healthcare providers. This paper examines two conventional monitoring methods, including symptom-based and peak expiratory flow (PEF) monitoring, reviews early efforts to quantify respiratory symptoms, and introduces an emerging sensor-based mHealth approach. Although symptom-based monitoring is commonly used in clinical practice, its adequacy is a concern due to its subjective nature, as it primarily relies on individual perception. PEF monitoring, while objective, has shown weak correlations with actual asthma activity or lung function and suffers from suboptimal adherence among youth. To enhance objectivity in symptom monitoring, earlier efforts focused on quantifying respiratory symptoms by harnessing mechanical equipment. However, the practicality of these methods for daily use is limited due to the equipment’s bulkiness and the time- and labor-intensive nature of data processing and interpretation. As an innovative alternative, sensor-based mHealth devices have emerged to provide automatic, objective, and continuous monitoring of respiratory symptoms. These wearable technologies offer promising potential to overcome the issues of perceptual inaccuracy and poor adherence associated with conventional methods. However, many of these devices are still in developmental or testing phases, with limited data on their clinical efficacy, usability, and long-term impact on self-management behaviors. Future research and robust clinical trials are warranted to establish their role in asthma monitoring and management and improving asthma outcomes in children and adolescents. Full article
20 pages, 28928 KiB  
Article
Evaluating the Effectiveness of Plantar Pressure Sensors for Fall Detection in Sloped Surfaces
by Tarek Mahmud, Rujan Kayastha, Krishna Kisi, Anne Hee Ngu and Sana Alamgeer
Electronics 2025, 14(15), 3003; https://doi.org/10.3390/electronics14153003 - 28 Jul 2025
Viewed by 234
Abstract
Falls are a major safety concern in physically demanding occupations such as roofing, where workers operate on inclined surfaces under unstable postures. While inertial measurement units (IMUs) are widely used in wearable fall detection systems, they often fail to capture early indicators of [...] Read more.
Falls are a major safety concern in physically demanding occupations such as roofing, where workers operate on inclined surfaces under unstable postures. While inertial measurement units (IMUs) are widely used in wearable fall detection systems, they often fail to capture early indicators of instability related to foot–ground interactions. This study evaluates the effectiveness of plantar pressure sensors, alone and combined with IMUs, for fall detection on sloped surfaces. We collected data in a controlled laboratory environment using a custom-built roof mockup with incline angles of 0°, 15°, and 30°. Participants performed roofing-relevant activities, including standing, walking, stooping, kneeling, and simulated fall events. Statistical features were extracted from synchronized IMU and plantar pressure data, and multiple machine learning models were trained and evaluated, including traditional classifiers and deep learning architectures, such as MLP and CNN. Our results show that integrating plantar pressure sensors significantly improves fall detection. A CNN using just three IMUs and two plantar pressure sensors achieved the highest F1 score of 0.88, outperforming the full 17-sensor IMU setup. These findings support the use of multimodal sensor fusion for developing efficient and accurate wearable systems for fall detection and physical health monitoring. Full article
Show Figures

Figure 1

54 pages, 1242 KiB  
Review
Optical Sensor-Based Approaches in Obesity Detection: A Literature Review of Gait Analysis, Pose Estimation, and Human Voxel Modeling
by Sabrine Dhaouadi, Mohamed Moncef Ben Khelifa, Ala Balti and Pascale Duché
Sensors 2025, 25(15), 4612; https://doi.org/10.3390/s25154612 - 25 Jul 2025
Viewed by 241
Abstract
Optical sensor technologies are reshaping obesity detection by enabling non-invasive, dynamic analysis of biomechanical and morphological biomarkers. This review synthesizes recent advances in three key areas: optical gait analysis, vision-based pose estimation, and depth-sensing voxel modeling. Gait analysis leverages optical sensor arrays and [...] Read more.
Optical sensor technologies are reshaping obesity detection by enabling non-invasive, dynamic analysis of biomechanical and morphological biomarkers. This review synthesizes recent advances in three key areas: optical gait analysis, vision-based pose estimation, and depth-sensing voxel modeling. Gait analysis leverages optical sensor arrays and video systems to identify obesity-specific deviations, such as reduced stride length and asymmetric movement patterns. Pose estimation algorithms—including markerless frameworks like OpenPose and MediaPipe—track kinematic patterns indicative of postural imbalance and altered locomotor control. Human voxel modeling reconstructs 3D body composition metrics, such as waist–hip ratio, through infrared-depth sensing, offering precise, contactless anthropometry. Despite their potential, challenges persist in sensor robustness under uncontrolled environments, algorithmic biases in diverse populations, and scalability for widespread deployment in existing health workflows. Emerging solutions such as federated learning and edge computing aim to address these limitations by enabling multimodal data harmonization and portable, real-time analytics. Future priorities involve standardizing validation protocols to ensure reproducibility, optimizing cost-efficacy for scalable deployment, and integrating optical systems with wearable technologies for holistic health monitoring. By shifting obesity diagnostics from static metrics to dynamic, multidimensional profiling, optical sensing paves the way for scalable public health interventions and personalized care strategies. Full article
Show Figures

Figure 1

13 pages, 442 KiB  
Review
Sensor Technologies and Rehabilitation Strategies in Total Knee Arthroplasty: Current Landscape and Future Directions
by Theodora Plavoukou, Spiridon Sotiropoulos, Eustathios Taraxidis, Dimitrios Stasinopoulos and George Georgoudis
Sensors 2025, 25(15), 4592; https://doi.org/10.3390/s25154592 - 24 Jul 2025
Viewed by 315
Abstract
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter [...] Read more.
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter limitations in accessibility, patient adherence, and personalization. In response, emerging sensor technologies have introduced innovative solutions to support and enhance recovery following TKA. This review provides a thematically organized synthesis of the current landscape and future directions of sensor-assisted rehabilitation in TKA. It examines four main categories of technologies: wearable sensors (e.g., IMUs, accelerometers, gyroscopes), smart implants, pressure-sensing systems, and mobile health (mHealth) platforms such as ReHub® and BPMpathway. Evidence from recent randomized controlled trials and systematic reviews demonstrates their effectiveness in tracking mobility, monitoring range of motion (ROM), detecting gait anomalies, and delivering real-time feedback to both patients and clinicians. Despite these advances, several challenges persist, including measurement accuracy in unsupervised environments, the complexity of clinical data integration, and digital literacy gaps among older adults. Nevertheless, the integration of artificial intelligence (AI), predictive analytics, and remote rehabilitation tools is driving a shift toward more adaptive and individualized care models. This paper concludes that sensor-enhanced rehabilitation is no longer a future aspiration but an active transition toward a smarter, more accessible, and patient-centered paradigm in recovery after TKA. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

14 pages, 4639 KiB  
Article
CNTs/CNPs/PVA–Borax Conductive Self-Healing Hydrogel for Wearable Sensors
by Chengcheng Peng, Ziyan Shu, Xinjiang Zhang and Cailiu Yin
Gels 2025, 11(8), 572; https://doi.org/10.3390/gels11080572 - 23 Jul 2025
Viewed by 313
Abstract
The development of multifunctional conductive hydrogels with rapid self-healing capabilities and powerful sensing functions is crucial for advancing wearable electronics. This study designed and prepared a polyvinyl alcohol (PVA)–borax hydrogel incorporating carbon nanotubes (CNTs) and biomass carbon nanospheres (CNPs) as dual-carbon fillers. This [...] Read more.
The development of multifunctional conductive hydrogels with rapid self-healing capabilities and powerful sensing functions is crucial for advancing wearable electronics. This study designed and prepared a polyvinyl alcohol (PVA)–borax hydrogel incorporating carbon nanotubes (CNTs) and biomass carbon nanospheres (CNPs) as dual-carbon fillers. This hydrogel exhibits excellent conductivity, mechanical flexibility, and self-recovery properties. Serving as a highly sensitive piezoresistive sensor, it efficiently converts mechanical stimuli into reliable electrical signals. Sensing tests demonstrate that the CNT/CNP/PVA–borax hydrogel sensor possesses an extremely fast response time (88 ms) and rapid recovery time (88 ms), enabling the detection of subtle and rapid human motions. Furthermore, the hydrogel sensor also exhibits outstanding cyclic stability, maintaining stable signal output throughout continuous loading–unloading cycles exceeding 3200 repetitions. The hydrogel sensor’s characteristics, including rapid self-healing, fast-sensing response/recovery, and high fatigue resistance, make the CNT/CNP/PVA–borax conductive hydrogel an ideal choice for multifunctional wearable sensors. It successfully monitored various human motions. This study provides a promising strategy for high-performance self-healing sensing devices, suitable for next-generation wearable health monitoring and human–machine interaction systems. Full article
Show Figures

Figure 1

39 pages, 7688 KiB  
Review
Advances and Applications of Graphene-Enhanced Textiles: A 10-Year Review of Functionalization Strategies and Smart Fabric Technologies
by Patricia Rocio Durañona Aznar and Heitor Luiz Ornaghi Junior
Textiles 2025, 5(3), 28; https://doi.org/10.3390/textiles5030028 - 22 Jul 2025
Viewed by 410
Abstract
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten [...] Read more.
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten years, focusing on their functional properties and real-world applications. This article examines the main strategies used to incorporate graphene and its derivatives—such as graphene oxide and reduced graphene oxide—into textile substrates through coating, printing, or composite formation. The structural, electrical, thermal, mechanical, and electrochemical properties of these fabrics are discussed based on characterization techniques including microscopy, Raman spectroscopy, and cyclic voltammetry. Functional evaluations in wearable strain sensors, biosignal acquisition, electrothermal systems, and energy storage devices are highlighted to demonstrate the versatility of these materials. Although challenges remain in scalability, durability, and washability, recent developments in fabrication and encapsulation methods show significant potential to overcome these limitations. This review concludes by outlining the major opportunities and future directions for graphene-based textiles in areas such as personalized health monitoring, active thermal wear, and integrated wearable electronics. Full article
Show Figures

Figure 1

Back to TopTop