Improving Motion Estimation Accuracy in Underdetermined Problems Using Physics-Informed Neural Networks with Inverse Kinematics and a Digital Human Model
Abstract
1. Introduction
2. Methods
2.1. Concept of High-Precision Posture Estimation from Limited Information
2.2. Inverse Kinematics Network (IK-N) Based on MLP
2.3. Physics-Informed Neural Networks for IK Network Refinement
2.4. Digital Human Model for In-the-Loop IK-N Training
3. Results
3.1. Validation Experiment of IK-N Using Simple Motions
3.2. Generalizability to Diverse Motions and Design Hyperparameters of the PINN Loss Function
4. Discussion
4.1. Synergistic Integration of MLP and PINN for Efficient Posture Estimation
- Simple Architecture: Since the goal is to deploy the model on wearable systems, a simple structure is desirable for embedded implementation.
- Small-Data Learning: Given that the target domain is human motion, data collection is costly; the combination of PINN and MLP enables effective learning with limited data.
- Sufficient nonlinear representation capacity: The MLP possesses sufficient nonlinear expressive power for effective integration with PINNs.
4.2. Analysis of the Mechanism of Estimation Accuracy Improvement
4.3. Advantages and Limitations of Proposed Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ometov, A.; Shubina, V.; Klus, L.; Skibińska, J.; Saafi, S.; Pascacio, P.; Flueratoru, L.; Gaibor, D.Q.; Chukhno, N.; Chukhno, O.; et al. A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges. Comput. Netw. 2021, 193, 108074. [Google Scholar] [CrossRef]
- Gomes, N.; Pato, M.; Lourenço, A.R.; Datia, N. A Survey on Wearable Sensors for Mental Health Monitoring. Sensors 2023, 23, 1330. [Google Scholar] [CrossRef] [PubMed]
- Alattar, A.E.; Mohsen, S. A Survey on Smart Wearable Devices for Healthcare Applications. Wirel. Pers. Commun. 2023, 132, 775–783. [Google Scholar] [CrossRef]
- Kusaka, T.; Tanaka, T. Stateful Rotor for Continuity of Quaternion and Fast Sensor Fusion Algorithm Using 9-Axis Sensors. Sensors 2022, 22, 7989. [Google Scholar] [CrossRef] [PubMed]
- Kitaura, K.; Kusaka, T.; Shimatani, K.; Tanaka, T. Stabilization of Signal Decomposition Based on Frequency Entrainment Phenomena. Electronics 2025, 14, 1163. [Google Scholar] [CrossRef]
- THINKLET®|Fairy Devices. Available online: https://mimi.fairydevices.jp/technology/device/thinklet/en/ (accessed on 20 July 2025).
- Rogez, G.; Supancic, J.S.; Ramanan, D. First-person pose recognition using egocentric workspaces. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar] [CrossRef]
- Deshpande, K.; Heindl, C.; Stübl, G.; Kollingbaum, M.J.; Pichler, A. Novel First Person View for Human 3D Pose Estimation in Robotic Applications Using Fisheye Cameras. In Proceedings of the 2024 10th International Conference on Automation, Robotics and Applications (ICARA), Athens, Greece, 22–24 February 2024; pp. 112–116, ISSN 2767-7745. [Google Scholar] [CrossRef]
- Kusaka, T.; Tanaka, T. Fast and Accurate Approximation Methods for Trigonometric and Arctangent Calculations for Low-Performance Computers. Electronics 2022, 11, 2285. [Google Scholar] [CrossRef]
- Kusaka, T.; Tanaka, T. Pseudo-Normalization via Integer Fast Inverse Square Root and Its Application to Fast Computation without Division. Electronics 2024, 13, 2955. [Google Scholar] [CrossRef]
- Hou, Q.; Li, Y.; Singh, V.P.; Sun, Z.; Wei, J. Physics-informed neural network for solution of forward and inverse kinematic wave problems. J. Hydrol. 2024, 633, 130934. [Google Scholar] [CrossRef]
- Bensadoun, R.; Gur, S.; Blau, N.; Shenkar, T.; Wolf, L. Neural Inverse Kinematics. arXiv 2022, arXiv:2205.10837. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zou, T.; Jiang, X. A Neural Network Based Approach to Inverse Kinematics Problem for General Six-Axis Robots. Sensors 2022, 22, 8909. [Google Scholar] [CrossRef] [PubMed]
- Hamarsheh, Q.; Baniyounis, M.; Biesenbach, R.; Jernaz, M. An Artificial Neural Network Approach in Solving Inverse Kinematics of a 6 DOF KUKA Industrial Robot. In Proceedings of the 2023 20th International Multi-Conference on Systems, Signals & Devices (SSD), Mahdia, Tunisia, 20–23 February 2023; pp. 157–163, ISSN 2474-0446. [Google Scholar] [CrossRef]
- Korol, A.; Rodzin, T.; Zabava, K.; Gritsenko, V. Neural Networks-Based Approach to Solve Inverse Kinematics Problems for Medical Applications. In Proceedings of the 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 15–19 July 2024. [Google Scholar]
- Zhang, F.; Bazarevsky, V.; Vakunov, A.; Tkachenka, A.; Sung, G.; Chang, C.L.; Grundmann, M. MediaPipe Hands: On-device Real-time Hand Tracking. arXiv 2020, arXiv:2006.10214. [Google Scholar] [CrossRef]
- Calzada-Garcia, A.; Victores, J.G.; Naranjo-Campos, F.J.; Balaguer, C. A Review on Inverse Kinematics, Control and Planning for Robotic Manipulators With and Without Obstacles via Deep Neural Networks. Algorithms 2025, 18, 23. [Google Scholar] [CrossRef]
- Accelerating Deep Learning Based Large-Scale Inverse Kinematics with Intel® Distribution of OpenVINO™ Toolkit. Available online: https://www.intel.com/content/www/us/en/developer/articles/technical/accelerating-deep-learning-based-large-scale-inverse-kinematics-with-intel-distribution-of.html (accessed on 30 May 2025).
- Shah, M.F.; Khan, N.A.; Jamwal, P.K.; Chetty, G.; Goecke, R.; Hussain, S. Inverse kinematics solution for a six-degree-of-freedom upper limb rehabilitation robot using deep learning models. Neural Comput. Appl. 2025, 37, 12991–13009. [Google Scholar] [CrossRef]
- Martinez, J.; Black, M.J.; Romero, J. On human motion prediction using recurrent neural networks. arXiv 2017, arXiv:1705.02445. [Google Scholar]
- Fragkiadaki, K.; Levine, S.; Felsen, P.; Malik, J. Recurrent Network Models for Human Dynamics. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4346–4354. [Google Scholar] [CrossRef]
- Alkhodary, A.; Gur, B. Kinematics Transformer: Solving The Inverse Modeling Problem of Soft Robots using Transformers. arXiv 2022, arXiv:2211.06643. [Google Scholar]
- Endo, Y.; Tada, M.; Mochimaru, M. Dhaiba: Development of Virtual Ergonomic Assessment System with Human Models. In Proceedings of the Conference: Digital Human Modeling 2014, Crete, Greece, 22–27 June 2014. [Google Scholar]
- Nohara, R.; Endo, Y.; Murai, A.; Takemura, H.; Kouchi, M.; Tada, M. Multiple regression based imputation for individualizing template human model from a small number of measured dimensions. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2188–2193, ISSN 1558-4615. [Google Scholar] [CrossRef]
- Tolstikhin, I.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al. MLP-Mixer: An all-MLP Architecture for Vision. arXiv 2021, arXiv:2105.01601. [Google Scholar] [CrossRef]
- Mukai, T. Modeling ranges of limb motion for real-time inverse kinematics. In Proceedings of the SIGGRAPH Asia 2011 Posters, Hong Kong, China, 14 December 2011; p. 1. [Google Scholar] [CrossRef]
- Barnamehei, H.; Tabatabai Ghomsheh, F.; Safar Cherati, A.; Pouladian, M. Kinematic models evaluation of shoulder complex during the badminton overhead forehand smash task in various speed. Inform. Med. Unlocked 2021, 26, 100697. [Google Scholar] [CrossRef]
- Yang, J.J.; Feng, X.; Kim, J.H.; Xiang, Y.; Rajulu, S. Joint Coupling for Human Shoulder Complex. In Digital Human Modeling; Duffy, V.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 72–81. [Google Scholar] [CrossRef]
- Kim, Y.; Park, B.H.; Jung, K.M.; Han, J. Data-driven Shoulder Inverse Kinematics. arXiv 2016, arXiv:1612.07353. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hishikawa, Y.; Kusaka, T.; Tanaka, Y.; Domae, Y.; Shirakura, N.; Yamanobe, N.; Endo, Y.; Tada, M.; Miyata, N.; Tanaka, T. Improving Motion Estimation Accuracy in Underdetermined Problems Using Physics-Informed Neural Networks with Inverse Kinematics and a Digital Human Model. Electronics 2025, 14, 3055. https://doi.org/10.3390/electronics14153055
Hishikawa Y, Kusaka T, Tanaka Y, Domae Y, Shirakura N, Yamanobe N, Endo Y, Tada M, Miyata N, Tanaka T. Improving Motion Estimation Accuracy in Underdetermined Problems Using Physics-Informed Neural Networks with Inverse Kinematics and a Digital Human Model. Electronics. 2025; 14(15):3055. https://doi.org/10.3390/electronics14153055
Chicago/Turabian StyleHishikawa, Yuya, Takashi Kusaka, Yoshifumi Tanaka, Yukiyasu Domae, Naoki Shirakura, Natsuki Yamanobe, Yui Endo, Mitsunori Tada, Natsuki Miyata, and Takayuki Tanaka. 2025. "Improving Motion Estimation Accuracy in Underdetermined Problems Using Physics-Informed Neural Networks with Inverse Kinematics and a Digital Human Model" Electronics 14, no. 15: 3055. https://doi.org/10.3390/electronics14153055
APA StyleHishikawa, Y., Kusaka, T., Tanaka, Y., Domae, Y., Shirakura, N., Yamanobe, N., Endo, Y., Tada, M., Miyata, N., & Tanaka, T. (2025). Improving Motion Estimation Accuracy in Underdetermined Problems Using Physics-Informed Neural Networks with Inverse Kinematics and a Digital Human Model. Electronics, 14(15), 3055. https://doi.org/10.3390/electronics14153055