Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,074)

Search Parameters:
Keywords = wear losses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8202 KiB  
Article
Structure and Texture Synergies in Fused Deposition Modeling (FDM) Polymers: A Comparative Evaluation of Tribological and Mechanical Properties
by Patricia Isabela Brăileanu, Marius-Teodor Mocanu, Tiberiu Gabriel Dobrescu, Nicoleta Elisabeta Pascu and Dan Dobrotă
Polymers 2025, 17(15), 2159; https://doi.org/10.3390/polym17152159 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the interplay between infill structure and surface texture in Fused Deposition Modeling (FDM)-printed polymer specimens and their combined influence on tribological and mechanical performance. Unlike previous works that focus on single-variable analysis, this work offers a comparative evaluation of Shore [...] Read more.
This study investigates the interplay between infill structure and surface texture in Fused Deposition Modeling (FDM)-printed polymer specimens and their combined influence on tribological and mechanical performance. Unlike previous works that focus on single-variable analysis, this work offers a comparative evaluation of Shore D hardness and coefficient of friction (COF) for PLA and Iglidur materials, incorporating diverse infill patterns. The results reveal that specific combinations (e.g., grid infill with 90% density) optimize hardness and minimize friction, offering practical insights for design optimization in functional parts. Our aim is to provide design insights for enhanced wear resistance and hardness through tailored structural configurations. Carbon Fiber-reinforced PLA (PLA CF), aramid fiber-reinforced Acrylonitrile Styrene Acrylate (Kevlar), and Iglidur I180-BL tribofilament. Disc specimens were fabricated with gyroid infill densities ranging from 10% to 100%. Experimental methodologies included Ball-on-Disc tests conducted under dry sliding conditions (5 N normal load, 150 mm/s sliding speed) to assess friction and wear characteristics. These tribological evaluations were complemented by profilometric and microscopic analyses and Shore D hardness testing. The results show that Iglidur I180-BL achieved the lowest friction coefficients (0.141–0.190) and negligible wear, while PLA specimens with 90% infill demonstrated a polishing-type wear with minimal material loss and a friction coefficient (COF) of ~0.108. In contrast, PLA CF and Kevlar exhibited higher wear depths (up to 154 µm for Kevlar) and abrasive mechanisms due to fiber detachment. Shore hardness values increased with infill density, with PLA reaching a maximum of 82.7 Shore D. These findings highlight the critical interplay between infill architecture and surface patterning and offer actionable guidelines for the functional design of durable FDM components in load-bearing or sliding applications. Full article
(This article belongs to the Collection Mechanical Behavior of Polymer-Based Materials)
Show Figures

Figure 1

19 pages, 9214 KiB  
Article
Tribological Performance of Direct Metal Laser Sintered 20MnCr5 Tool Steel Countersamples Designed for Sheet Metal Forming Applications
by Krzysztof Żaba, Marcin Madej, Beata Leszczyńska-Madej, Tomasz Trzepieciński and Ryszard Sitek
Appl. Sci. 2025, 15(15), 8711; https://doi.org/10.3390/app15158711 - 6 Aug 2025
Abstract
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block [...] Read more.
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block tribotester. The samples were sheet metals made of materials with significantly different properties: Inconel 625, titanium-stabilised stainless steel 321, EN AW-6061 T0 aluminium alloy, and pure copper. The samples and countersamples were analysed in terms of their wear resistance, coefficient of friction (COF), changes in friction force during testing, and surface morphology after tribological contact under dry friction conditions. The tests were performed on DMLSed countersamples in the as-received state. The largest gain of countersample mass was observed for the 20MnCr5/EN AW-6061 T0 friction pair. The sample mass loss in this combination was also the largest, amounting to 19.96% of the initial mass. On the other hand, in the 20MnCr5/Inconel 625 friction pair, no significant changes in the mass of materials were recorded. For the Inconel 625 sample, a mass loss of 0.04% was observed. The basic wear mechanism of the samples was identified as abrasive wear. The highest friction forces were observed in the 20MnCr5/Cu friction pair (COF = 0.913) and 20MnCr5/EN AW-6061 T0 friction pair (COF = 1.234). The other two samples (Inconel 625, 321 steel) showed a very stable value of the friction force during the roller-block test resulting in a COF between 0.194 and 0.213. Based on the changes in friction force, COFs, and mass changes in friction pair components during wear tests, it can be concluded that potential tools in the form of inserts or working layers manufactured using 3D printing technology, the DMLS method, without additional surface treatment can be successfully used for forming sheets of 321 steel and Inconel 625. Full article
Show Figures

Figure 1

17 pages, 5353 KiB  
Article
Evaluation of Hardfacing Layers Applied by FCAW-S on S355MC Steel and Their Influence on Its Mechanical Properties
by Fineas Morariu, Timotei Morariu, Alexandru Bârsan, Sever-Gabriel Racz and Dan Dobrotă
Materials 2025, 18(15), 3664; https://doi.org/10.3390/ma18153664 - 4 Aug 2025
Viewed by 179
Abstract
Enhancing the wear resistance of structural steels used in demanding industrial applications is critical for extending components’ lifespan and ensuring mechanical reliability. In this study, we investigated the influence of flux-cored arc welding (FCAW) hardfacing on the tensile behavior of S355MC steel. Protective [...] Read more.
Enhancing the wear resistance of structural steels used in demanding industrial applications is critical for extending components’ lifespan and ensuring mechanical reliability. In this study, we investigated the influence of flux-cored arc welding (FCAW) hardfacing on the tensile behavior of S355MC steel. Protective Fe-Cr-C alloy layers were deposited in one and two successive passes using automated FCAW, followed by tensile testing of specimens oriented at varying angles relative to the weld bead direction. The methodology integrated 3D scanning and digital image correlation to accurately capture geometric and deformation parameters. The experimental results revealed a consistent reduction in tensile strength and ductility in all the welded configurations compared to the base material. The application of the second weld layer further intensified this effect, while specimen orientation influenced the degree of mechanical degradation. Microstructural analysis confirmed carbide refinement and good adhesion, but also identified welding-induced defects and residual stresses as factors that contributed to performance loss. The findings highlight a clear trade-off between improved surface wear resistance and compromised structural properties, underscoring the importance of process optimization. Strategic selection of welding parameters and bead orientation is essential to balance functional durability with mechanical integrity in industrial applications. Full article
(This article belongs to the Special Issue Advances in Welding of Alloy and Composites (2nd Edition))
Show Figures

Graphical abstract

19 pages, 4045 KiB  
Article
Response Surface Optimization Design for High-Speed Ball Bearing Double-Lip Seals Considering Wear Characteristics
by Hengdi Wang, Yulu Yue, Yongcun Cui, Lina Lou and Chang Li
Lubricants 2025, 13(8), 343; https://doi.org/10.3390/lubricants13080343 - 1 Aug 2025
Viewed by 219
Abstract
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to [...] Read more.
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to wear as indicators to evaluate sealing performance, this study analyzed the influence of lip seal structural parameters on sealing performance, performed response surface optimization of the seal structure parameters and conducted a comparative test on lip seals before and after optimization. The research results show that the contact pressure at the main lip of the lip seal was the greatest, which was 0.79 MPa, and the volume loss due to wear lip seal was 7.94 × 10−7 mm3. Optimal sealing performance is achieved when the seal lip inclination angle is 41.68°, the middle width of the lip seal is 0.153 mm, the main lip height is 0.179 mm, the spring center distance is 0.37 mm and the radial interference is 0.0034 mm. After optimization, the grease leakage rate of the sealing ring decreased by 48% compared to before optimization. Full article
Show Figures

Figure 1

22 pages, 29737 KiB  
Article
A Comparative Investigation of CFD Approaches for Oil–Air Two-Phase Flow in High-Speed Lubricated Rolling Bearings
by Ruifeng Zhao, Pengfei Zhou, Jianfeng Zhong, Duan Yang and Jie Ling
Machines 2025, 13(8), 678; https://doi.org/10.3390/machines13080678 - 1 Aug 2025
Viewed by 143
Abstract
Analyzing the two-phase flow behavior in bearing lubrication is crucial for understanding friction and wear mechanisms, optimizing lubrication design, and improving bearing operational efficiency and reliability. However, the complexity of oil–air two-phase flow in high-speed bearings poses significant research challenges. Currently, there is [...] Read more.
Analyzing the two-phase flow behavior in bearing lubrication is crucial for understanding friction and wear mechanisms, optimizing lubrication design, and improving bearing operational efficiency and reliability. However, the complexity of oil–air two-phase flow in high-speed bearings poses significant research challenges. Currently, there is a lack of comparative studies employing different simulation strategies to address this issue, leaving a gap in evidence-based guidance for selecting appropriate simulation approaches in practical applications. This study begins with a comparative analysis between experimental and simulation results to validate the reliability of the adopted simulation approach. Subsequently, a comparative evaluation of different simulation methods is conducted to provide a scientific basis for relevant decision-making. Evaluated from three dimensions—adaptability to rotational speed conditions, research focuses (oil distribution and power loss), and computational economy—the findings reveal that FVM excels at medium-to-high speeds, accurately predicting continuous oil film distribution and power loss, while MPS, leveraging its meshless Lagrangian characteristics, demonstrates superior capability in describing physical phenomena under extreme conditions, albeit with higher computational costs. Economically, FVM, supported by mature software ecosystems and parallel computing optimization, is more suitable for industrial design applications, whereas MPS, being more reliant on high-performance hardware, is better suited for academic research and customized scenarios. The study further proposes that future research could adopt an FVM-MPS coupled approach to balance efficiency and precision, offering a new paradigm for multi-scale lubrication analysis in bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

18 pages, 4093 KiB  
Article
Study of Mechanical and Wear Properties of Fabricated Tri-Axial Glass Composites
by Raghu Somanna, Rudresh Bekkalale Madegowda, Rakesh Mahesh Bilwa, Prashanth Malligere Vishveshwaraiah, Prema Nisana Siddegowda, Sandeep Bagrae, Madhukar Beejaganahalli Sangameshwara, Girish Hunaganahalli Nagaraju and Madhusudan Puttaswamy
J. Compos. Sci. 2025, 9(8), 409; https://doi.org/10.3390/jcs9080409 - 1 Aug 2025
Viewed by 211
Abstract
This study investigates the mechanical, morphological, and wear properties of SiO2-filled tri-axial warp-knitted (TWK) glass fiber-reinforced vinyl ester matrix composites, with a focus on void fraction, tensile, flexural, hardness, and wear behavior. Adding SiO2 fillers reduced void fractions, enhancing composite [...] Read more.
This study investigates the mechanical, morphological, and wear properties of SiO2-filled tri-axial warp-knitted (TWK) glass fiber-reinforced vinyl ester matrix composites, with a focus on void fraction, tensile, flexural, hardness, and wear behavior. Adding SiO2 fillers reduced void fractions, enhancing composite strength, with values ranging from 1.63% to 5.31%. Tensile tests revealed that composites with 5 wt% SiO2 (GV1) exhibited superior tensile strength, Young’s modulus, and elongation due to enhanced fiber–matrix interaction. Conversely, composites with 10 wt% SiO2 (GV2) showed decreased tensile performance, indicating increased brittleness. Flexural tests demonstrated that GV1 outperformed GV2, showcasing higher flexural strength, elastic modulus, and deflection, reflecting improved load-bearing capacity at optimal filler content. Shore D hardness tests confirmed that GV1 had the highest hardness among the specimens. SEM analysis revealed wear behavior under various loads and sliding distances. GV1 exhibited minimal wear loss at lower loads and distances, while higher loads caused significant matrix detachment and fiber damage. These findings highlight the importance of optimizing SiO2 filler content to enhance epoxy composites’ mechanical and tribological performance. Full article
Show Figures

Figure 1

25 pages, 4297 KiB  
Article
Application of Carbon–Silicon Hybrid Fillers Derived from Carbonised Rice Production Waste in Industrial Tread Rubber Compounds
by Valeryia V. Bobrova, Sergey V. Nechipurenko, Bayana B. Yermukhambetova, Andrei V. Kasperovich, Sergey A. Yefremov, Aigerim K. Kaiaidarova, Danelya N. Makhayeva, Galiya S. Irmukhametova, Gulzhakhan Zh. Yeligbayeva and Grigoriy A. Mun
Polymers 2025, 17(15), 2070; https://doi.org/10.3390/polym17152070 - 29 Jul 2025
Viewed by 330
Abstract
The disposal of agro-industrial waste is a pressing environmental issue. At the same time, due to the high silica content in specific agricultural residues, their processed products can be utilised in various industrial sectors as substitutes for commercial materials. This study investigates the [...] Read more.
The disposal of agro-industrial waste is a pressing environmental issue. At the same time, due to the high silica content in specific agricultural residues, their processed products can be utilised in various industrial sectors as substitutes for commercial materials. This study investigates the key technological, physico-mechanical, and viscoelastic properties of industrial elastomeric compounds based on synthetic styrene–butadiene rubber, intended for the tread of summer passenger car tyres, when replacing the commercially used highly reinforcing silica filler (SF), Extrasil 150VD brand (white carbon black), with a carbon–silica filler (CSF). The CSF is produced by carbonising a finely ground mixture of rice production waste (rice husks and stems) in a pyrolysis furnace at 550–600 °C without oxygen. It was found that replacing 20 wt.pts. of silica filler with CSF in industrial tread formulations improves processing parameters (Mooney viscosity increases by up to 5.3%, optimal vulcanisation time by up to 9.2%), resistance to plastic deformation (by up to 7.7%), and tackiness of the rubber compounds (by 31.3–34.4%). Viscoelastic properties also improved: the loss modulus and mechanical loss tangent decreased by up to 24.0% and 14.3%, respectively; the rebound elasticity increased by up to 6.3% and fatigue resistance by up to 2.7 thousand cycles; and the internal temperature of samples decreased by 7 °C. However, a decrease in tensile strength (by 10.7–27.0%) and an increase in wear rate (up to 43.3% before and up to 22.5% after thermal ageing) were observed. Nevertheless, the overall results of this study indicate that the CSF derived from the carbonisation of rice production waste—containing both silica and carbon components—can effectively be used as a partial replacement for the commercially utilised reinforcing silica filler in the production of tread rubber for summer passenger car tyres. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

14 pages, 1015 KiB  
Article
Integrating Dimensional Analysis and Machine Learning for Predictive Maintenance of Francis Turbines in Sediment-Laden Flow
by Álvaro Ospina, Ever Herrera Ríos, Jaime Jaramillo, Camilo A. Franco, Esteban A. Taborda and Farid B. Cortes
Energies 2025, 18(15), 4023; https://doi.org/10.3390/en18154023 - 29 Jul 2025
Viewed by 273
Abstract
The efficiency decline of Francis turbines, a key component of hydroelectric power generation, presents a multifaceted challenge influenced by interconnected factors such as water quality, incidence angle, erosion, and runner wear. This paper is structured into two main sections to address these issues. [...] Read more.
The efficiency decline of Francis turbines, a key component of hydroelectric power generation, presents a multifaceted challenge influenced by interconnected factors such as water quality, incidence angle, erosion, and runner wear. This paper is structured into two main sections to address these issues. The first section applies the Buckingham π theorem to establish a dimensional analysis (DA) framework, providing insights into the relationships among the operational variables and their impact on turbine wear and efficiency loss. Dimensional analysis offers a theoretical basis for understanding the relationships among operational variables and efficiency within the scope of this study. This understanding, in turn, informs the selection and interpretation of features for machine learning (ML) models aimed at the predictive maintenance of the target variable and important features for the next stage. The second section analyzes an extensive dataset collected from a Francis turbine in Colombia, a country that is heavily reliant on hydroelectric power. The dataset consisted of 60,501 samples recorded over 15 days, offering a robust basis for assessing turbine behavior under real-world operating conditions. An exploratory data analysis (EDA) was conducted by integrating linear regression and a time-series analysis to investigate efficiency dynamics. Key variables, including power output, water flow rate, and operational time, were extracted and analyzed to identify patterns and correlations affecting turbine performance. This study seeks to develop a comprehensive understanding of the factors driving Francis turbine efficiency loss and to propose strategies for mitigating wear-induced performance degradation. The synergy lies in DA’s ability to reduce dimensionality and identify meaningful features, which enhances the ML models’ interpretability, while ML leverages these features to model non-linear and time-dependent patterns that DA alone cannot address. This integrated approach results in a linear regression model with a performance (R2-Test = 0.994) and a time series using ARIMA with a performance (R2-Test = 0.999) that allows for the identification of better generalization, demonstrating the power of combining physical principles with advanced data analysis. The preliminary findings provide valuable insights into the dynamic interplay of operational parameters, contributing to the optimization of turbine operation, efficiency enhancement, and lifespan extension. Ultimately, this study supports the sustainability and economic viability of hydroelectric power generation by advancing tools for predictive maintenance and performance optimization. Full article
Show Figures

Figure 1

16 pages, 14261 KiB  
Article
Effect of Er Microalloying and Zn/Mg Ratio on Dry Sliding Wear Properties of Al-Zn-Mg Alloy
by Hanyu Chen, Xiaolan Wu, Xuxu Ding, Shengping Wen, Liang Hong, Kunyuan Gao, Wu Wei, Li Rong, Hui Huang and Zuoren Nie
Materials 2025, 18(15), 3541; https://doi.org/10.3390/ma18153541 - 29 Jul 2025
Viewed by 273
Abstract
In this study, dry sliding wear tests were carried out on Er, Zr-microalloyed Al-Zn-Mg alloys with different Zn/Mg ratios under 30–70 N loads. The effects of the Zn/Mg content ratio and Er microalloying on the friction coefficient, wear volume loss, worn surface, and [...] Read more.
In this study, dry sliding wear tests were carried out on Er, Zr-microalloyed Al-Zn-Mg alloys with different Zn/Mg ratios under 30–70 N loads. The effects of the Zn/Mg content ratio and Er microalloying on the friction coefficient, wear volume loss, worn surface, and wear debris during the friction process of Al-Zn-Mg alloys were analyzed. At the load of 30 N, abrasive wear, fatigue wear, and adhesive wear were synergistically involved. At a load of 50 N, the abrasive wear dominated, accompanied by fatigue wear and adhesive wear. At a load of 70 N, the primary wear mechanisms transitioned to abrasive wear and fatigue wear, with additional adhesive wear and oxidative wear observed. Reducing the Zn/Mg ratio mitigated wear volume across all tested loads. For the Al4.5Zn1.5Mg alloy, Er microalloying significantly reduced wear volume under moderate-to-low loads (30 N, 50 N). Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 3569 KiB  
Article
The Influence of Carbon Nanotube Additives on the Efficiency and Vibrations of Worm Gears
by Milan Bukvić, Aleksandar Vencl, Saša Milojević, Aleksandar Skulić, Sandra Gajević and Blaža Stojanović
Lubricants 2025, 13(8), 327; https://doi.org/10.3390/lubricants13080327 - 26 Jul 2025
Viewed by 269
Abstract
Worm gears are used in various mechanical constructions, especially in heavy industrial plants, where they are exposed to high operating loads, large torques, and high temperatures, particularly in conditions where it is necessary for the input and output shafts to be at an [...] Read more.
Worm gears are used in various mechanical constructions, especially in heavy industrial plants, where they are exposed to high operating loads, large torques, and high temperatures, particularly in conditions where it is necessary for the input and output shafts to be at an angle of 90°. Regarding tribological optimization, the application of carbon nanotube in lubricants can lead to significant improvements in the performance characteristics of worm gears, both in terms of increasing efficiency and reducing the coefficient of friction and wear, as well as minimizing mechanical losses, noise, and vibrations. The objective of this study is for the research results, through the use of oil with varying percentages of carbon nanotube additives (CNTs), to contribute to the optimization of worm gears by improving efficiency, extending service life, and reducing vibrations—both within the gearbox itself and within the industrial facility where it is applied. The research methodology involved laboratory testing of a worm gear using lubricants with varying concentrations of carbon nanotube. During the experiment, measurements of efficiency, vibrations, and noise levels were conducted in order to determine the impact of these additives on the operational performance of the gear system. The main contribution of this research is reflected in the experimental confirmation that the use of lubricants with optimized concentrations of carbon nanotube significantly enhances the operational performance of worm gears by increasing efficiency and reducing vibrations and noise, thereby enabling tribological optimization that contributes to improved reliability, extended service life, and enhanced workplace ergonomics under demanding industrial conditions. Furthermore, experimental investigations have shown that the efficiency of the gearbox increases from an initial value of 0.42–0.65, which represents an increase of 54%, the vibrations of the worm gear decrease from an initial value of 5.83–2.56 mm/s2, which represents an decrease of 56%, while the noise was reduced from 87.5 to 77.2 dB, which represents an decrease of 12% with the increasing percentage of carbon nanotube additives in the lubricant, up to a maximum value of 1%. However, beyond this experimentally determined threshold, a decrease in the efficiency of the tested worm gearbox, as well as an increase in noise and vibration levels was recorded. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

20 pages, 7139 KiB  
Article
Synergistic Effects of CuO and ZnO Nanoadditives on Friction and Wear in Automotive Base Oil
by Ádám István Szabó and Rafiul Hasan
Appl. Sci. 2025, 15(15), 8258; https://doi.org/10.3390/app15158258 - 24 Jul 2025
Viewed by 373
Abstract
Efficient lubrication lowers friction, wear, and energy losses in automotive drivetrain components. Advanced lubricants are key to sustainable transportation performance, durability, and efficiency. This study analyzes the tribological performance of Group III base oil with CuO and ZnO nanoadditive mixtures. These additives enhance [...] Read more.
Efficient lubrication lowers friction, wear, and energy losses in automotive drivetrain components. Advanced lubricants are key to sustainable transportation performance, durability, and efficiency. This study analyzes the tribological performance of Group III base oil with CuO and ZnO nanoadditive mixtures. These additives enhance the performance of Group III base oils, making them highly relevant for automotive lubricant applications. An Optimol SRV5 tribometer performed ball-on-disk sliding contact tests with 100Cr6 steel specimens subjected to a 50 N force and a temperature of 100 °C. The test settings are designed to mimic the boundary and mixed lubrication regimes commonly seen in the automobile industry. During the tests, the effect of nanoparticles on friction was measured. Microscopic wear analysis was performed on the worn specimens. The results demonstrate that adding 0.3 wt% CuO nanoparticles to Group III base oil achieves a 19% reduction in dynamic friction and a 47% decrease in disk wear volume compared to additive-free oil. Notably, a 2:1 CuO-to-ZnO mixture produced synergy, delivering up to a 27% friction reduction and a 54% decrease in disk wear. The results show the synergistic effect of CuO and ZnO in reducing friction and wear on specimens. This study highlights the potential of nanoparticles for lubricant development and automotive applications. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

13 pages, 2675 KiB  
Article
Material Removal in Mycelium-Bonded Composites Through Laser Processing
by Maciej Sydor, Grzegorz Pinkowski and Agata Bonenberg
J. Compos. Sci. 2025, 9(8), 389; https://doi.org/10.3390/jcs9080389 - 23 Jul 2025
Viewed by 421
Abstract
Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance [...] Read more.
Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance resulting from their unattractive appearance. Laser engraving provides a promising method for fabricating intricate patterns and functional surfaces on MBCs, minimizing tool wear, material loss, and environmental impact, while enhancing esthetic and engineering properties. This study investigates the influence of CO2 laser parameters on the material removal rate during the engraving of myco-composites, focusing on the effects of variable laser power, beam defocus, and head feed rate on engraving outcomes. The results demonstrate that laser power and beam focus significantly impact material removal in mycelium-bonded composites. Specifically, increasing the laser power results in greater material removal, which is more pronounced when the beam is focused due to higher energy density. In contrast, a beam defocused by 1 mm produces less intense material removal. These findings highlight the critical role of beam focus—surpassing the influence of power alone—in determining engraving quality, particularly on irregular or uneven surfaces. Moreover, reducing the laser head feed rate at a constant power level increases the material removal rate linearly; however, it also results in excessive charring and localized overheating, revealing the low thermal tolerance of myco-composites. These insights are essential for optimizing laser processing techniques to fully realize the potential of mycelium-bonded composites as sustainable engineering materials, simultaneously maintaining their appearance and functional properties. Full article
(This article belongs to the Special Issue Advances in Laser Fabrication of Composites)
Show Figures

Figure 1

19 pages, 4649 KiB  
Article
Cavitation Erosion Performance of the INCONEL 625 Superalloy Heat-Treated via Stress-Relief Annealing
by Robert Parmanche, Olimpiu Karancsi, Ion Mitelea, Ilare Bordeașu, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Appl. Sci. 2025, 15(15), 8193; https://doi.org/10.3390/app15158193 - 23 Jul 2025
Viewed by 175
Abstract
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in [...] Read more.
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in the crystal lattice (such as dissolved foreign atoms, grain boundaries, phase separation surfaces, etc.). The increase in mechanical properties, and consequently the resistance to cavitation erosion, is possible through the application of heat treatments and cold plastic deformation processes. These factors induce a series of hardening mechanisms that create structural barriers limiting the mobility of dislocations. Cavitation tests involve exposing a specimen to repeated short-duration erosion cycles, followed by mass loss measurements and surface morphology examinations using optical microscopy and scanning electron microscopy (SEM). The results obtained allow for a detailed study of the actual wear processes affecting the tested material and provide a solid foundation for understanding the degradation mechanism. The tested material is the Ni-based alloy INCONEL 625, subjected to stress-relief annealing heat treatment. Experiments were conducted using an ultrasonic vibratory device operating at a frequency of 20 kHz and an amplitude of 50 µm. Microstructural analyses showed that slip bands formed due to shock wave impacts serve as preferential sites for fatigue failure of the material. Material removal occurs along these slip bands, and microjets result in pits with sizes of several micrometers. Full article
Show Figures

Figure 1

15 pages, 2256 KiB  
Article
In Vivo Wear Analysis of Leucite-Reinforced Ceramic Inlays/Onlays After 14 Years
by Ragai-Edward Matta, Lara Berger, Oleksandr Sednyev, Dennis Bäuerle, Eva Maier, Werner Adler and Michael Taschner
Materials 2025, 18(15), 3446; https://doi.org/10.3390/ma18153446 - 23 Jul 2025
Viewed by 296
Abstract
Material wear significantly impacts the clinical success and longevity of dental ceramic restorations. This in vivo study aimed to assess the wear behavior of IPS Empress® glass-ceramic inlays and onlays over 14 years, considering the influence of different antagonist materials. Fifty-four indirect [...] Read more.
Material wear significantly impacts the clinical success and longevity of dental ceramic restorations. This in vivo study aimed to assess the wear behavior of IPS Empress® glass-ceramic inlays and onlays over 14 years, considering the influence of different antagonist materials. Fifty-four indirect restorations of 21 patients were available for comprehensive wear analysis, with complete follow-up data for up to 14 years. Three-dimensional measurements relied on digitized epoxy resin models produced immediately post-insertion (baseline) and subsequently at 2, 4, and 14 years. The occlusal region on the baseline model was delineated for comparative analysis. Three-dimensional superimpositions with models from subsequent time points were executed to assess wear in terms of average linear wear and volumetric loss. Statistical analyses were conducted in R (version 4.4.1), employing Mann–Whitney U tests (material comparisons) and Wilcoxon signed rank tests (time point comparisons), with a significance threshold of p ≤ 0.05. During the entire study period, an increase in wear was observed at each assessment interval, gradually stabilizing over time. Significant differences in substance loss were found between the follow-up time points, both for mean (−0.536 ± 0.249 mm after 14a) and integrated distance (−18,935 ± 11,711 mm3 after 14a). In addition, significantly higher wear was observed after 14 years with gold as antagonist compared to other materials (p ≤ 0.03). The wear behavior of IPS Empress® ceramics demonstrates clinically acceptable long-term outcomes, with abrasion characteristics exhibiting stabilization over time. Full article
(This article belongs to the Special Issue Advanced Dental Materials: From Design to Application, Second Volume)
Show Figures

Figure 1

12 pages, 395 KiB  
Article
Effects of Translucency-Enhancing Coloring Liquids on the Mechanical Properties of 3Y- and 4Y-TZP Zirconia Ceramics
by Andreas Pfeffer, Sebastian Hahnel, Angelika Rauch and Martin Rosentritt
Ceramics 2025, 8(3), 92; https://doi.org/10.3390/ceramics8030092 - 22 Jul 2025
Viewed by 276
Abstract
The aim of translucency-enhancing liquids (TEL) is to locally influence the phase composition of zirconia in order to increase its translucency. This study aimed to determine the influence of TEL on 3Y- and 4Y-TZP zirconia concerning roughness, hardness, wear, flexural strength, dynamic stability [...] Read more.
The aim of translucency-enhancing liquids (TEL) is to locally influence the phase composition of zirconia in order to increase its translucency. This study aimed to determine the influence of TEL on 3Y- and 4Y-TZP zirconia concerning roughness, hardness, wear, flexural strength, dynamic stability and fracture force of fixed dental prostheses after thermal cycling and mechanical loading. Two zirconia materials (4Y-TZP; 3Y-TZP-LA, n = 8 per material and test) were investigated with and without prior application of TEL. Two-body wear tests were performed in a pneumatic pin-on-block design (50 N, 120,000 cycles, 1.6 Hz) with steatite balls (r = 1.5 mm) as antagonists. Mean and maximum vertical loss as well as roughness (Ra, Rz) were measured with a 3D laser-scanning microscope (KJ 3D, Keyence, J). Antagonist wear was determined as percent area of the projected antagonist area. Martens hardness (HM; ISO 14577-1) and biaxial flexural strength (BFS; ISO 6872) were investigated. The flexural fatigue limit BFSdyn was determined under cyclic loading in a staircase approach with a piston-on-three-ball-test. Thermal cycling and mechanical loading (TCML: 2 × 3000 × 5 °C/55 °C, 2 min/cycle, H2O dist., 1.2 × 106 force á 50 N) was performed on four-unit fixed dental prostheses (FDPs) (n = 8 per group) and the fracture force after TCML was determined. Statistics: ANOVA, Bonferroni test, Kaplan–Meier survival, Pearson correlation; α = 0.05. TEL application significantly influences roughness, hardness, biaxial flexural strength, dynamic performance, as well as fracture force after TCML in 3Y-TZP. For 4Y-TZP, a distinct influence of TEL was only identified for BFS. The application of TEL on 3Y- or 4Y-TZP did not affect wear. TEL application has a strong effect on the mechanical properties of 3Y-TZP and minor effects on 4Y-TZP. All effects of the TEL application are of a magnitude that is unlikely to restrict clinical application. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop