Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = wavenumber shift

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 859 KiB  
Article
Fourier-Transform Infrared Spectroscopy Analysis of 3D-Printed Dental Resins Reinforced with Yttria-Stabilized Zirconia Nanoparticles
by Andrea Izabella Borș
Dent. J. 2025, 13(6), 272; https://doi.org/10.3390/dj13060272 - 18 Jun 2025
Viewed by 366
Abstract
Background/Objectives: This study investigates the chemical structure and molecular interactions in 3D-printed dental resins reinforced with varying concentrations of Yttria-Stabilized Zirconia (YSZ) nanoparticles, using Fourier-Transform Infrared Spectroscopy (FTIR) to assess the compatibility and bonding behavior at the molecular level. Methods: Three groups of [...] Read more.
Background/Objectives: This study investigates the chemical structure and molecular interactions in 3D-printed dental resins reinforced with varying concentrations of Yttria-Stabilized Zirconia (YSZ) nanoparticles, using Fourier-Transform Infrared Spectroscopy (FTIR) to assess the compatibility and bonding behavior at the molecular level. Methods: Three groups of 3D-printed methacrylate-based resin discs were fabricated: a control (0% YSZ), and experimental groups reinforced with 1% and 3% YSZ nanoparticles. Samples were produced using Digital Light Processing (DLP) technology and post-processed under standardized conditions. FTIR spectra were collected via ATR mode over a wavenumber range of 4000–600 cm−1. Spectral differences at key wavenumbers (1721.16, 1237.11, and 929.62 cm−1) were statistically analyzed using one-way ANOVA and Tukey’s post hoc test. Results: FTIR spectra showed no significant shifts in the ester carbonyl band at 1721.16 cm−1, suggesting the preservation of the core resin matrix. However, a statistically significant increase in absorbance at 1237.11 cm−1 was observed in the 1% YSZ group (p = 0.034), indicating dipolar interaction. A distinct new peak at 929.62 cm−1, corresponding to Zr–O vibrations, emerged in the 3% YSZ group (p = 0.002), confirming successful nanoparticle integration. Conclusions: YSZ nanoparticles enhance specific molecular interactions within methacrylate-based dental resins without compromising structural integrity. These findings support the potential application of YSZ-reinforced 3D-printed resins in durable, biocompatible permanent dental restorations. Full article
(This article belongs to the Special Issue Feature Papers in Digital Dentistry)
Show Figures

Figure 1

22 pages, 2988 KiB  
Article
Assessment of pH-Induced Conformational Changes in Whey Protein Isolate–Dextran Conjugate Using Spectral Technology
by Qingyuan Dai, Huiqin Wang, Xiuling Zhu, Polyanna Silveira Hornung, Yuru Zhang, Wenxuan Hu, Anqi Lin, Anyi Yao and Trust Beta
Foods 2025, 14(11), 1952; https://doi.org/10.3390/foods14111952 - 30 May 2025
Viewed by 663
Abstract
The functional properties of proteins are closely related to their structure and conformation. The effects of glycosylation and pH on the structural and conformational changes in whey protein isolate (WPI) were investigated using multispectral technology. More and higher-molecular-weight molecules of WPI–dextran conjugates (WDCs) [...] Read more.
The functional properties of proteins are closely related to their structure and conformation. The effects of glycosylation and pH on the structural and conformational changes in whey protein isolate (WPI) were investigated using multispectral technology. More and higher-molecular-weight molecules of WPI–dextran conjugates (WDCs) with increased degrees of glycosylation (DGs) in SDS-PAGE occurred at the expense of band intensities of α-lactalbumin, β-lactoglobulin, and bovine serum albumin. The higher wavenumber shift in FTIR peaks of WPI after glycosylation in the Amide I, II, and III regions and the decrease in its intensity occurred. The maximum absorption wavelength (λmax) of UV-Vis spectra of WPI before and after glycosylation in the range of 260–290 nm showed no significant difference in a pH range of 2.0–10.0. Moreover, the UV-Vis absorption intensities of WDCs at λmax around 278 nm were highly and positively correlated with their DGs. The λmax and intensities of total intrinsic fluorescence spectra of Tyr and Trp residues in WDCs with an increase in DGs had an obvious redshift and decrease, respectively. Although the intensities of synchronous fluorescence spectra of individual Tyr or Trp residues in WDCs with an increase in DGs also gradually decreased, the λmax of the former and latter had a blueshift and redshift, respectively. UV-Vis absorption and fluorescence spectroscopies indicated that the changes in the λmax and intensity of WPI were closely related to the protonation states of carbonyl groups and free amino groups and the degree of glycosylation. This work may be beneficial for understanding the structural and conformational changes in proteins by measuring the microenvironment around Tyr and/or Trp residues in proteins using UV-Vis absorption and synchronous fluorescence spectroscopies, providing a promising technique for quantitatively monitoring the degree of glycosylation (DG) in a rapid and practical way without any chemical reagents using UV-Vis absorption spectroscopy. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

10 pages, 2934 KiB  
Article
Ion Substitution Behavior and Chromatographic Study of “Ya’an Green” Seal Stone
by Yicong Sun, Yigeng Wang, Zixuan Wang, Zheng Zhang, Mingming Xie, Zhuchun Peng, Bin Meng, Siqi Yang and Endong Zu
Crystals 2025, 15(5), 420; https://doi.org/10.3390/cryst15050420 - 29 Apr 2025
Viewed by 296
Abstract
In recent years, domestic research on the ion substitution behavior and chromaticity of the mineral composition of “Ya’an Green” remains insufficient, while there is almost no relevant research on “Ya’an Green” abroad. In this study, X-ray powder diffraction (XRD), electron probe microanalysis (EPMA), [...] Read more.
In recent years, domestic research on the ion substitution behavior and chromaticity of the mineral composition of “Ya’an Green” remains insufficient, while there is almost no relevant research on “Ya’an Green” abroad. In this study, X-ray powder diffraction (XRD), electron probe microanalysis (EPMA), infrared spectroscopy (IR), ultraviolet–visible spectroscopy (UV-Vis), and colorimetry were employed. The results indicate that the green and yellow matrices of “Ya’an Green” are primarily composed of muscovite, with rutile also present in the yellow matrix. In contrast, the white–green samples are mainly composed of quartz, with muscovite as a secondary mineral. Additionally, it was observed that the (004) crystal plane of muscovite exhibits a peak shift to lower 2θ angles, attributed to the substitution of Al3+ by ions with larger radii, such as Ba2+, Cr3+, and Fe2+, leading to an increase in unit cell parameters and a consequent shift in the peak to lower wavenumbers. The main elements of “Ya’an Green” are Al, Si, and K, with minor elements including Na, Fe, and Cr. Furthermore, Mg2+, Ca2+, Ti4+, Cr3+, and Fe2+ in the samples can substitute for Al3+ through isomorphic substitution. The infrared spectrum of muscovite in the ‘Ya’an Green’ sample shows three typical absorption peaks, 422 cm−1 and 513 cm−1 caused by Si-O bending vibration, 697 cm−1 and 837 cm−1 caused by Si-O-Al vibration, 948 cm−1 caused by O-H bending vibration, and 3647 cm−1 caused by O-H stretching vibration. The peak at 837 cm−1 exhibits varying degrees of shift due to the substitution of Al3+ by ions with larger radii. The ultraviolet–visible spectra display two broad absorption bands at 422 nm and 615 nm, which are caused by Cr3+ transition, indicating that Cr is the chromogenic element responsible for the green color. A correlation was observed between the Cr3+ content and the hue angle h in “Ya’an Green” samples: the higher the Cr3+ content, the closer the hue angle is to 136°, resulting in a darker green color, while lower Cr3+ content leads to a deviation from the dark green hue. This study establishes for the first time the correlation between the mineral composition of ‘Ya’an Green’ and its chromatic parameters and explores the linear relationship between its color and the number of color-causing elements and elemental substitution, which provide data support and theoretical models for the study of the color of seal stones. Full article
Show Figures

Figure 1

11 pages, 1711 KiB  
Article
The Effect of Chromium on the Microstructure and Transparency of Diamond-like Carbon Films
by Vilius Dovydaitis, Mindaugas Milieška, Johnny Chimborazo, Enrico Gnecco and Liutauras Marcinauskas
Processes 2025, 13(4), 1098; https://doi.org/10.3390/pr13041098 - 6 Apr 2025
Cited by 1 | Viewed by 752
Abstract
Cr-doped diamond-like carbon (DLC) films were formed on silicon and glass substrates by magnetron sputtering (MS). The surface morphology, elemental composition, bonding structure, and transparency of the as-deposited films were analyzed by atomic force microscopy (AFM), the energy-dispersive X-ray spectroscopy (EDS), multiwavelength micro-Raman [...] Read more.
Cr-doped diamond-like carbon (DLC) films were formed on silicon and glass substrates by magnetron sputtering (MS). The surface morphology, elemental composition, bonding structure, and transparency of the as-deposited films were analyzed by atomic force microscopy (AFM), the energy-dispersive X-ray spectroscopy (EDS), multiwavelength micro-Raman spectrometer, and UV-VIS-NIR spectrophotometer. The study revealed that the oxygen concentration in the Cr-DLC films increased as the Cr content increased. The surface roughness of the films was slightly reduced when the Cr content was ~9.2 at.%, and further increase in the Cr content up to 13.1 at.% stimulated the growth of the highest-roughness Cr-DLC films. The micro-Raman analysis showed that the G peak position shifted to a higher wavenumber, and the sp² bond fraction increased as the Cr concentration in the DLC films rose. The optical transmittance of the Cr-DLC films was reduced by up to 30% compared to DLC coatings due to the increased graphitization process caused by chromium addition. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

27 pages, 1968 KiB  
Article
Wave-Power Extraction by an Oscillating Water Column Device over a Step Bottom
by Gagan Sahoo, Harekrushna Behera and Tai-Wen Hsu
Mathematics 2025, 13(7), 1067; https://doi.org/10.3390/math13071067 - 25 Mar 2025
Cited by 2 | Viewed by 799
Abstract
This study investigates wave-power extraction by an oscillating water column (OWC) device over a porous-to-rigid step bottom using linearized water-wave theory. The interaction between water waves and the OWC device is analyzed by solving the governing boundary-value problem with the eigenfunction expansion method [...] Read more.
This study investigates wave-power extraction by an oscillating water column (OWC) device over a porous-to-rigid step bottom using linearized water-wave theory. The interaction between water waves and the OWC device is analyzed by solving the governing boundary-value problem with the eigenfunction expansion method (EEM) and the boundary element method (BEM). The study examines the effects of key parameters, including the porous effect parameter of the bottom, OWC chamber width, and barrier height, on the device’s efficiency. The results indicate that the porous effect parameter significantly influences OWC performance, affecting resonance characteristics and efficiency oscillations. A wider OWC chamber enhances oscillatory efficiency patterns, leading to multiple peaks of full and zero efficiency. The efficiency shifts towards lower wavenumbers with increasing step depth and barrier height but becomes independent of these parameters at higher wavenumbers. Additionally, incident angle plays a crucial role, decreasing efficiency at lower angles and exhibiting oscillatory behavior at higher angles. Furthermore, susceptance and conductance follow an oscillatory pattern concerning the gap between the porous bottom and the OWC chamber as well as chamber width. The porous effect parameter strongly modulates these oscillations. The findings provide new insights for enhancing OWC efficiency with complex bottom topography. Full article
(This article belongs to the Special Issue Boundary Element Methods in Engineering)
Show Figures

Figure 1

16 pages, 2650 KiB  
Article
Hydrogen-Bonded Di(hydroperoxy)alkane Adducts of the Type Cy3P=O·(HOO)2CHR (R = Alkyl)
by Rahym Ashirov, Maya Todorovic, Nattamai Bhuvanesh and Janet Blümel
Molecules 2025, 30(2), 329; https://doi.org/10.3390/molecules30020329 - 15 Jan 2025
Cited by 1 | Viewed by 918
Abstract
Five representatives of a novel type of di(hydroperoxy)alkane adducts of phosphine oxides have been synthesized and fully characterized, including their solubility in organic solvents. The phosphine oxide Cy3PO (1) has been used in combination with the corresponding aldehydes to [...] Read more.
Five representatives of a novel type of di(hydroperoxy)alkane adducts of phosphine oxides have been synthesized and fully characterized, including their solubility in organic solvents. The phosphine oxide Cy3PO (1) has been used in combination with the corresponding aldehydes to create the adducts Cy3PO·(HOO)2CHCH3 (2), Cy3PO·(HOO)2CHCH2CH3 (3), Cy3PO·(HOO)2CH(CH2)2CH3 (4), Cy3PO·(HOO)2CH(CH2)3CH3 (5), and Cy3PO·(HOO)2CH(CH2)7CH3 (6). All adducts crystallize easily and contain the peroxide and phosphine oxide hydrogen-bonded in 1:1 ratios. The single crystal X-ray structures of 26 and their unique features are discussed. The 31P NMR spectra of the adducts 26 show downfield-shifted signals as compared to Cy3PO. In the IR spectra, the ν(P=O) wavenumbers of the adducts have smaller values than the neat phosphine oxide. All spectroscopic results of 26 show that the P=O bond is weakened by hydrogen-bonding to the di(hydroperoxy)alkane moieties. Adduct 6 selectively oxidizes PPh3 to OPPh3 within minutes, and nonanal is reformed in the process. The easy synthesis, handling, and administration of these stable, solid, and soluble peroxides with well-defined composition will have a positive impact on synthetic chemistry. Full article
Show Figures

Figure 1

19 pages, 23307 KiB  
Article
Application of Κ-Carrageenan for One-Pot Synthesis of Hybrids of Natural Curcumin with Iron and Copper: Stability Analysis and Application in Papilloscopy
by Danielle Tapia Bueno, Amanda Fonseca Leitzke, Juliana Porciúncula da Silva, Daisa Hakbart Bonemann, Gabrielly Quartieri Sejanes, Bruno Nunes da Rosa, Taís Poletti, Guilherme Kurz Maron, Bruno Vasconcellos Lopes, Matheus de Paula Goularte, Darci Alberto Gatto, André Luiz Missio, Neftali Lenin Villarreal Carreno and Claudio Martin Pereira de Pereira
Colorants 2025, 4(1), 3; https://doi.org/10.3390/colorants4010003 - 15 Jan 2025
Cited by 1 | Viewed by 1897
Abstract
In this study, hybrid materials were synthesized incorporating curcumin, Cu2+ or Fe3+, and Kappa-carrageenan as a reducing agent to improve stability, considering that curcumin has low thermal and solution stability, which limits its applications. Colorimetric analysis showed color changes [...] Read more.
In this study, hybrid materials were synthesized incorporating curcumin, Cu2+ or Fe3+, and Kappa-carrageenan as a reducing agent to improve stability, considering that curcumin has low thermal and solution stability, which limits its applications. Colorimetric analysis showed color changes in the hybrids, ultraviolet–visible spectroscopy revealed band shifts in the hybrids, and infrared analysis indicated shifts in wavenumbers, suggesting changes in the vibrational state of curcumin after bonding with metal ions. These techniques confirmed the formation of hybrid materials. Thermogravimetric and chromatographic analyses demonstrated greater thermal and solution stability for the hybrids compared to curcumin. Additionally, the hybrid composites effectively developed natural and sebaceous latent fingerprints with good clarity and contrast on glass surfaces. Both composites performed similarly to commercial Gold® powder. When applied to surfaces representative of forensic scenarios, the composites were versatile, revealing sufficient fingerprint details for human identification on both porous and non-porous surfaces. Scanning electron microscopy images showed greater clarity in sebaceous and natural fingerprints developed with the Fe composite compared to the Cu composite. Full article
(This article belongs to the Special Issue Feature Papers in Colorant Chemistry)
Show Figures

Figure 1

18 pages, 4423 KiB  
Article
Visualization of the 3D Structure of Subcritical Aqueous Ca(NO3)2 Solutions at 25~350 °C and 40 MPa by Raman and X-Ray Scattering Combined with Empirical Potential Structure Refinement Modeling
by Toshio Yamaguchi, Kousei Li, Yuki Matsumoto, Nami Fukuyama and Koji Yoshida
Liquids 2025, 5(1), 1; https://doi.org/10.3390/liquids5010001 - 24 Dec 2024
Viewed by 1130
Abstract
Raman scattering measurements were performed on 1 mol dm−3 aqueous calcium nitrate (Ca(NO3)2) and sodium nitrate (NaNO3) solutions containing 4% (w/w) D2O in a temperature range from 25 to 350 [...] Read more.
Raman scattering measurements were performed on 1 mol dm−3 aqueous calcium nitrate (Ca(NO3)2) and sodium nitrate (NaNO3) solutions containing 4% (w/w) D2O in a temperature range from 25 to 350 °C and pressure of 40 MPa. As the temperature increased, the N–O symmetric stretching vibrational band (ν1) of NO3 at 1045–1047 cm−1 shifted to a lower wavenumber by 5~6 cm−1. The band analysis using one Lorentzian component showed that the full-width at half maximum (FWHM) did not change significantly below 175 °C but increased rapidly above 200 °C for both solutions. The peak area for an aqueous Ca(NO3)2 solution showed a breakpoint between 225 and 250 °C, suggesting a change in the coordination shell of NO3 at 175~250 °C. The OD symmetric stretching vibrational band of HDO water was deconvoluted into two Gaussian components at 2530 and 2645 cm−1; the former component has high temperature dependence that is ascribed to the hydrogen bonds, whereas the latter one shows less temperature dependence due to the non-hydrogen bonds of water. X-ray scattering measurements were performed on a 1 mol dm−3 aqueous Ca(NO3)2 solution at 25 to 210 °C and 40 MPa. Empirical potential structure refinement (EPSR) modeling was used to analyze the X-ray scattering data. Ca2+ forms a rigid coordination shell consisting of about seven water molecules at 2.48 Å and one NO3 at 25~170 °C, with further water molecules substituted by NO3 at 210 °C. NO3 is surrounded by 13~14 water molecules at an N–Ow distance of 3.6~3.7 Å. The tetrahedral network structure of solvent water pertains from 25 to 170 °C but is transformed to a dense packing arrangement at 210 °C. Full article
(This article belongs to the Collection Feature Papers in Solutions and Liquid Mixtures Research)
Show Figures

Graphical abstract

15 pages, 4304 KiB  
Article
Experimental Study for the Sorption and Diffusion of Supercritical Carbon Dioxide into Polyetherimide
by Wei-Heng Huang, Pei-Hua Chen, Chin-Wen Chen, Chie-Shaan Su, Muoi Tang, Jung-Chin Tsai, Yan-Ping Chen and Feng-Huei Lin
Molecules 2024, 29(17), 4233; https://doi.org/10.3390/molecules29174233 - 6 Sep 2024
Cited by 3 | Viewed by 1520
Abstract
Supercritical carbon dioxide (SCCO2) is a non-toxic and environmentally friendly fluid and has been used in polymerization reactions, processing, foaming, and plasticizing of polymers. Exploring the behavior and data of SCCO2 sorption and dissolution in polymers provides essential information for [...] Read more.
Supercritical carbon dioxide (SCCO2) is a non-toxic and environmentally friendly fluid and has been used in polymerization reactions, processing, foaming, and plasticizing of polymers. Exploring the behavior and data of SCCO2 sorption and dissolution in polymers provides essential information for polymer applications. This study investigated the sorption and diffusion of SCCO2 into polyetherimide (PEI). The sorption and desorption processes of SCCO2 in PEI samples were measured in the temperature range from 40 to 60 °C, the pressure range from 20 to 40 MPa, and the sorption time from 0.25 to 52 h. This study used the ex situ gravimetric method under different operating conditions and applied the Fickian diffusion model to determine the mass diffusivity of SCCO2 during sorption and desorption processes into and out of PEI. The equilibrium mass gain fraction of SCCO2 into PEI was reported from 9.0 wt% (at 60 °C and 20 MPa) to 12.8 wt% (at 40 °C and 40 MPa). The sorption amount increased with the increasing SCCO2 pressure and decreased with the increasing SCCO2 temperature. This study showed the crossover phenomenon of equilibrium mass gain fraction isotherms with respect to SCCO2 density. Changes in the sorption mechanism in PEI were observed when the SCCO2 density was at approximately 840 kg/m3. This study qualitatively performed FTIR analysis during the SCCO2 desorption process. A CO2 antisymmetric stretching mode was observed near a wavenumber of 2340 cm−1. A comparison of loss modulus measurements of pure and SCCO2-treated PEI specimens showed the shifting of loss maxima. This result showed that the plasticization of PEI was achieved through the sorption process of SCCO2. Full article
(This article belongs to the Special Issue Polymer Composites: Chemical Synthesis and Applications)
Show Figures

Figure 1

20 pages, 19115 KiB  
Article
Correction of Ionospheric Phase in SAR Interferometry Considering Wavenumber Shift
by Gen Li, Zihan Hu, Yifan Wang, Zehua Dong and Han Li
Remote Sens. 2024, 16(14), 2555; https://doi.org/10.3390/rs16142555 - 12 Jul 2024
Viewed by 1546
Abstract
The ionospheric effects in repeat-pass SAR interferometry (InSAR) have become a rising concern with the increasing interest in low-frequency SAR. The ionosphere will introduce serious phase errors in the interferogram, which should be properly corrected. In this paper, the influence of the wavenumber [...] Read more.
The ionospheric effects in repeat-pass SAR interferometry (InSAR) have become a rising concern with the increasing interest in low-frequency SAR. The ionosphere will introduce serious phase errors in the interferogram, which should be properly corrected. In this paper, the influence of the wavenumber shift on the Range Split-Spectrum (RSS) method is analyzed quantitatively. It is shown that the split-spectrum processing deteriorates the coherence of the sub-band interferogram and then greatly reduces the estimation accuracy. The RSS method combined with common band filtering (CBF) can improve the coherence of sub-band interferograms and estimation accuracy, but the estimation is biased due to the RSS model mismatch. To address the problem, a modified truncated singular value decomposition (MTSVD) based multi-sub-band RSS method is proposed in this paper. The proposed method divides the range common spectrum into multiple sub-bands to jointly estimate the ionospheric phase. The performance of the proposed method is analyzed and validated based on simulation experiments. The results show that the proposed method has stronger robustness and higher accuracy. Full article
Show Figures

Figure 1

25 pages, 15644 KiB  
Article
Biological and Physicochemical Analysis of Sr-Doped Hydroxyapatite/Chitosan Composite Layers
by Maria Elena Zarif, Bogdan Bita, Sasa Alexandra Yehia-Alexe, Irina Negut, Gratiela Gradisteanu Pircalabioru, Ecaterina Andronescu and Andreea Groza
Polymers 2024, 16(13), 1922; https://doi.org/10.3390/polym16131922 - 5 Jul 2024
Cited by 3 | Viewed by 1512
Abstract
In this work results are presented on the evaluation of HAp, HApSr, HAp_CS, and HApSr_CS layers deposited on Ti substrates regarding L929 cell viability and cytotoxicity as well as antimicrobial activity against Staphylococcus aureus, in connection with their physicochemical properties. The HAp [...] Read more.
In this work results are presented on the evaluation of HAp, HApSr, HAp_CS, and HApSr_CS layers deposited on Ti substrates regarding L929 cell viability and cytotoxicity as well as antimicrobial activity against Staphylococcus aureus, in connection with their physicochemical properties. The HAp and HApSr layers generated by radio-frequency magnetron sputtering technique were further covered with chitosan by a matrix-assisted pulsed laser evaporation technique. During the plasma depositions, the Ti substrates were heated externally by a home-made oven above 100 °C. The HApSr_CS layers generated on the unpolished Ti substrates at 100 °C and 400 °C showed the highest biocompatibility properties and antimicrobial activity against Staphylococcus aureus. The morphology of the layer surfaces, revealed by scanning electron microscopy, is dependent on substrate temperature and substrate surface roughness. The optically polished surfaces of Ti substrates revealed grain-like and microchannel structure morphologies of the layers deposited at 25 °C substrate temperature and 400 °C, respectively. Chitosan has no major influence on HAp and HApSr layer surface morphologies. X-ray photoelectron spectroscopy indicated the presence of Ca 2p3/2 peak characteristic of the HAp structure even in the case of the HApSr_CS samples generated at a 400 °C substrate temperature. Fourier transform infrared spectroscopy investigations showed shifts in the wavenumber positions of the P-O absorption bands as a function of Sr or chitosan presence in the HAp layers generated at 25, 100, and 400 °C substrate temperatures. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Composites for Functional Applications)
Show Figures

Figure 1

23 pages, 9509 KiB  
Article
Two-Dimensional Autofocus for Ultra-High-Resolution Squint Spotlight Airborne SAR Based on Improved Spectrum Modification
by Min Chen, Xiaolan Qiu, Yao Cheng, Mingyang Shang, Ruoming Li and Wangzhe Li
Remote Sens. 2024, 16(12), 2158; https://doi.org/10.3390/rs16122158 - 14 Jun 2024
Viewed by 1316
Abstract
For ultra-high-resolution (UHR) squint spotlight airborne synthetic aperture radar (SAR), the severe range-azimuth coupling caused by squint mode and the spatial and frequency dependence of the motion error brought by ultra-wide bandwidth both make it difficult to obtain satisfactory imaging results. Although some [...] Read more.
For ultra-high-resolution (UHR) squint spotlight airborne synthetic aperture radar (SAR), the severe range-azimuth coupling caused by squint mode and the spatial and frequency dependence of the motion error brought by ultra-wide bandwidth both make it difficult to obtain satisfactory imaging results. Although some autofocus methods for squint airborne SAR have been presented in the published literature, their practical applicability in UHR situations remains limited. In this article, a new 2D wavenumber domain autofocus method combined with the Omega-K algorithm dedicated to UHR squint spotlight airborne SAR is proposed. First, we analyze the dependence of range envelope shift error (RESE) and range defocus on the squint angle and then propose a new spectrum modification strategy, after which the spectrum transforms into a quasi-side-looking one. The accuracy of estimation and compensation can be improved significantly in this way. Then, the 2D phase error can be calculated with the 1D estimated error by the mapping relationship, and after that the 2D compensation is performed in the wavenumber domain. Furthermore, the image-blocking technique and range-dependent motion error compensation method are embedded to accommodate the spatial-variant motion error for UHR cases. Simulations are carried out to verify the effectiveness of the proposed method. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

20 pages, 5308 KiB  
Article
Static Compaction on Coupled Precursors and Optimizing Molarity for Enhanced Strength and Durability of Geopolymer
by Khuram Rashid, Mounir Ltifi, Idrees Zafar, Muhammad Hashim Rafiqi and Muhammad Naeem Raoof
Materials 2024, 17(11), 2509; https://doi.org/10.3390/ma17112509 - 23 May 2024
Cited by 3 | Viewed by 824
Abstract
The static compaction technique emphasizes the reduced activator dosage required to develop geopolymers. Therefore, it is crucial to comprehend the optimal alkaline activator concentration for blending low-calcium precursor (fly ash) with high-calcium precursor (GGBS) to produce geopolymer blocks. This work was designed to [...] Read more.
The static compaction technique emphasizes the reduced activator dosage required to develop geopolymers. Therefore, it is crucial to comprehend the optimal alkaline activator concentration for blending low-calcium precursor (fly ash) with high-calcium precursor (GGBS) to produce geopolymer blocks. This work was designed to optimize structural blocks’ compressive strength and durability. In experimentation, fly ash (FA) and slag (GGBS) proportions were initially investigated under NaOH solution with varying molarity (8–12) and curing conditions to develop a load-bearing structural block. Subsequently, the durability of the optimized block was evaluated over 56 days through subjection to sulfate and acidic solutions, with efflorescence monitored over the same period. The results reveal that the structural block comprised of 100% FA exhibits the highest compressive strength and lowest bulk density. Conversely, the block incorporating 25% slag that underwent hot curing demonstrates a remarkable 305% strength increase compared to ambient curing. Considering the physico-mechanical performance, the 100% FA block was chosen for durability investigation. The findings indicate a substantial strength loss exceeding 40% after exposure to sulfate and acidic environments over 56 days, coupled with pronounced efflorescence. Catastrophic failure occurs in all cases due to significant strength deterioration. The FTIR spectrum revealed the shifting of the wavenumber to a higher value and verified the depolymerization and leaching of alumina under acidic exposure. However, the developed geopolymer blocks demonstrate superior sustainability and feasibility compared to conventional fired clay bricks and cement-based FA bricks. Despite slightly higher costs, these blocks exhibit greater strength than their counterparts after enduring severe exposures. Full article
Show Figures

Figure 1

13 pages, 1367 KiB  
Technical Note
Wide-Angle Repeat Pass Bistatic SAR Interferometry: A Geometrical Introduction
by Fabio Rocca
Remote Sens. 2024, 16(8), 1339; https://doi.org/10.3390/rs16081339 - 11 Apr 2024
Viewed by 1243
Abstract
Positioning a Synthetic Aperture Radar (SAR) receiver at a significant distance from an illuminator in a Low Earth Orbit (LEO) enables wide-angle repeat-pass bistatic interferometry. It’s crucial to define the positioning limits of the receiver with respect to the illuminator to ensure reasonable [...] Read more.
Positioning a Synthetic Aperture Radar (SAR) receiver at a significant distance from an illuminator in a Low Earth Orbit (LEO) enables wide-angle repeat-pass bistatic interferometry. It’s crucial to define the positioning limits of the receiver with respect to the illuminator to ensure reasonable coherences, altitudes of ambiguity, and a suitable common wavenumber support. I extended the standard monostatic formula, which yields the change in the interferometric travel path due to the vertical baseline. In the wide-angle bistatic case, the range-azimuth coordinate system is no longer orthogonal and we must consider the full 2D vector nature of the LOS orthogonal components. The two vertical baselines and the horizontal baseline of the receiver are needed to parameterize the system. Their impact on the interferometric coherence is quantified and bistatic limits are seen to be more flexible than those in the monostatic case due to the combination of independent baselines. I estimated the coherence, and then extended the analysis to the wavenumber domain, to quantify the common spectral support due to the wavenumber shifts due to the three baselines. The analysis carried out geometrically allows for combining together the effects of the transmitter’s and receiver’s vertical baselines and thus representing the residual spectral fraction with two instead of three parameters. Finally, I examined the achievable spatial resolution of the position of the interferer obtainable from the delay of the arrival of the interference between the illuminator (supposed to be silent) and the receiver. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

20 pages, 6079 KiB  
Article
Near-Infrared Spectroscopic Study of Biotite–Phlogopite (Mg# = 30~99): OH-Stretching Modes and Mg# Content Prediction Equation
by Zhentao Yang, Mingyue He, Shaokun Wu, Mei Yang and Bijie Peng
Crystals 2024, 14(4), 336; https://doi.org/10.3390/cryst14040336 - 31 Mar 2024
Cited by 4 | Viewed by 1941
Abstract
Biotite–phlogopite minerals are a complete Mg–Fe isomorphism series of phyllosilicates. A Fourier transform infrared spectroscopy (FTIR) and electron microprobe analysis (EMPA) were conducted on end-member phlogopite, Mg–biotite, and annite samples. In the mid-infrared region, absorption peaks were observed at 460, 1000, 3680, and [...] Read more.
Biotite–phlogopite minerals are a complete Mg–Fe isomorphism series of phyllosilicates. A Fourier transform infrared spectroscopy (FTIR) and electron microprobe analysis (EMPA) were conducted on end-member phlogopite, Mg–biotite, and annite samples. In the mid-infrared region, absorption peaks were observed at 460, 1000, 3680, and 3710 cm−1 in the biotite group. Samples with higher Mg content exhibited stronger peaks assigned to OH vibrations and a weak absorption peak at 810 cm−1. In the near-infrared region, combination peaks were observed near 4200, 4300, and 4450 cm−1, with wavenumbers showing a linear inverse relationship with the Mg# [=100 × Mg/(Mg + FeT)] value. For annite, combination peaks occurred at 4173, 4292, and 4439 cm−1, decreasing by 10–15 cm−1 compared to end-member phlogopite. Judging the fundamental peaks of the combination band contributes to identifying suitable near-infrared characteristic peaks for quantitative research. The 4300 cm−1 absorption peak in biotite–phlogopite was assigned to OH-bending and -stretching vibrations, making it suitable for mineral identification and Mg# estimations across all biotite groups. The 4450 cm−1 characteristic peak, assigned to Al–O-stretching vibrations and OH-stretching vibrations, is suitable for accurately predicting Mg# values in high AlVI samples. The first overtones of biotite–phlogopite appeared at 7250 cm−1, with an average factor of 1.955 between the fundamental and corresponding overtones. This study aims to refine the patterns of OH-stretching vibrations and characteristic peak shifts in the near-infrared spectral region of phyllosilicate minerals, providing data references for planetary spectroscopy and ore deposit studies. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

Back to TopTop