Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (833)

Search Parameters:
Keywords = wave propagation mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 13718 KB  
Article
Study on the Propagation Characteristics of Ultrasonic Longitudinal Guided Wave in BFRP Bolt Anchorage Structure
by Yue Li, Jun He, Wen He and Manman Wang
Buildings 2026, 16(3), 518; https://doi.org/10.3390/buildings16030518 - 27 Jan 2026
Abstract
Basalt Fiber Reinforced Polymer (BFRP) bolts offer a high mechanical performance, yet their non-destructive evaluation in anchorage systems remains scarcely investigated. This work examines guided wave propagation in BFRP bolt anchorage structures through a combined experimental and numerical analysis. Optimal excitation within 35–100 [...] Read more.
Basalt Fiber Reinforced Polymer (BFRP) bolts offer a high mechanical performance, yet their non-destructive evaluation in anchorage systems remains scarcely investigated. This work examines guided wave propagation in BFRP bolt anchorage structures through a combined experimental and numerical analysis. Optimal excitation within 35–100 kHz was determined experimentally, revealing 40 kHz as the most stable mode, with a pronounced bottom reflection and a peak-to-peak amplitude of 0.31 V. Numerical simulations explored the influence of anchorage medium properties, bolt characteristics, and de-bonding defect locations and lengths on dispersion, attenuation, velocity, radial energy distribution, and echo response. The results indicate that denser anchorage media reduce velocity and attenuation but enhance radial nonuniformity, whereas a higher elastic modulus decreases amplitude and increases attenuation; a larger Poisson’s ratio elevates both velocity and attenuation. For the bolt, a higher density lowers velocity and attenuation, while a greater modulus amplifies both; Poisson’s ratio exerts a minor positive effect. Defect echo time varies linearly with defect position, and increasing the defect length elevates velocity yet diminishes amplitude. These findings elucidate the interplay between material parameters, defect geometry, and guided wave behavior, offering a basis for the optimized non-destructive testing (NDT) of BFRP bolts and facilitating their deployment in engineering applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 9088 KB  
Article
GMM-Enhanced Mixture-of-Experts Deep Learning for Impulsive Dam-Break Overtopping at Dikes
by Hanze Li, Yazhou Fan, Luqi Wang, Xinhai Zhang, Xian Liu and Liang Wang
Water 2026, 18(3), 311; https://doi.org/10.3390/w18030311 - 26 Jan 2026
Viewed by 12
Abstract
Impulsive overtopping generated by dam-break surges is a critical hazard for dikes and flood-protection embankments, especially in reservoirs and mountainous catchments. Unlike classical coastal wave overtopping, which is governed by long, irregular wave trains and usually characterized by mean overtopping discharge over many [...] Read more.
Impulsive overtopping generated by dam-break surges is a critical hazard for dikes and flood-protection embankments, especially in reservoirs and mountainous catchments. Unlike classical coastal wave overtopping, which is governed by long, irregular wave trains and usually characterized by mean overtopping discharge over many waves, these dam-break-type events are dominated by one or a few strongly nonlinear bores with highly transient overtopping heights. Accurately predicting the resulting overtopping levels under such impulsive flows is therefore important for flood-risk assessment and emergency planning. Conventional cluster-then-predict approaches, which have been proposed in recent years, often first partition data into subgroups and then train separate models for each cluster. However, these methods often suffer from rigid boundaries and ignore the uncertainty information contained in clustering results. To overcome these limitations, we propose a GMM+MoE framework that integrates Gaussian Mixture Model (GMM) soft clustering with a Mixture-of-Experts (MoE) predictor. GMM provides posterior probabilities of regime membership, which are used by the MoE gating mechanism to adaptively assign expert models. Using SPH-simulated overtopping data with physically interpretable dimensionless parameters, the framework is benchmarked against XGBoost, GMM+XGBoost, MoE, and Random Forest. Results show that GMM+MoE achieves the highest accuracy (R2=0.9638 on the testing dataset) and the most centralized residual distribution, confirming its robustness. Furthermore, SHAP-based feature attribution reveals that relative propagation distance and wave height are the dominant drivers of overtopping, providing physically consistent explanations. This demonstrates that combining soft clustering with adaptive expert allocation not only improves accuracy but also enhances interpretability, offering a practical tool for dike safety assessment and flood-risk management in reservoirs and mountain river valleys. Full article
Show Figures

Figure 1

20 pages, 4232 KB  
Article
Bandgap Properties of Periodically Supported Beam with Inertial Amplification Mechanism
by Qiang Yi, Pu Wang, Zelin Chen, Yuan Gao and Shuguo Wang
Buildings 2026, 16(2), 464; https://doi.org/10.3390/buildings16020464 - 22 Jan 2026
Viewed by 33
Abstract
Periodically supported beams are widely employed in engineering structures, where effective control of low-frequency vibration and noise is often required. To achieve broadband elastic wave manipulation, an inertial amplification (IA) mechanism was introduced to generate low-frequency and ultra-wide bandgaps. Based on the Timoshenko [...] Read more.
Periodically supported beams are widely employed in engineering structures, where effective control of low-frequency vibration and noise is often required. To achieve broadband elastic wave manipulation, an inertial amplification (IA) mechanism was introduced to generate low-frequency and ultra-wide bandgaps. Based on the Timoshenko beam theory, analytical models for flexural wave propagation in periodically supported beams with IA structures were established using the generalized state transfer matrix method and the Floquet transform method, respectively. The validity of the analytical models was verified by vibration transmission analysis using a finite element model. The results demonstrate that the Floquet transform method enables rapid and accurate solution of the wave model. The introduction of the IA mechanism can generate low-frequency bandgaps, which are most sensitive to the amplification angle and amplification mass. The bandgap formation mechanism arises from the modulation of Bragg scattering in the periodically supported beam by the IA structure. This modulation causes the standing wave mode frequencies to shift to lower frequencies, thereby widening the bandgaps. Furthermore, hybrid IA structure configuration can achieve broader bandgaps, facilitating elastic wave control in the ultra-wide low-frequency range. These findings provide valuable insights for low-frequency vibration and noise attenuation in engineering structures. Full article
Show Figures

Figure 1

17 pages, 8142 KB  
Article
The Combined Influence of the Detonator Position and Anvil Type on the Weld Quality of Explosively Welded A1050/AZ31 Joints
by Bir Bahadur Sherpa, Shu Harada, Saravanan Somasundaram, Shigeru Tanaka and Kazuyuki Hokamoto
Metals 2026, 16(1), 128; https://doi.org/10.3390/met16010128 - 22 Jan 2026
Viewed by 72
Abstract
The present study systematically investigates, for the first time, the combined influences of detonator position (top-edge and bottom-edge initiations) and anvil material (steel and sand) on the interfacial microstructure and mechanical performance of explosively welded A1050/AZ31 dissimilar joints. When welding was conducted using [...] Read more.
The present study systematically investigates, for the first time, the combined influences of detonator position (top-edge and bottom-edge initiations) and anvil material (steel and sand) on the interfacial microstructure and mechanical performance of explosively welded A1050/AZ31 dissimilar joints. When welding was conducted using a steel anvil with the detonator positioned at the top edge, significant cracking occurred both at the surface and along the weld interface. In contrast, placing the detonator at the bottom edge noticeably reduced these defects. Moreover, the use of a sand anvil nullified these defects by damping the reflecting shockwaves and minimizing vibrations. Hardness measurements revealed substantial increase at the interface under all the conditions, with the highest value observed with the steel anvil. Welds subjected to top-edge detonation showed higher hardness values compared to those of welds subjected to bottom-edge detonation. Overall, the results suggest that sand anvils with bottom-edge detonation provide the optimal weld quality. The rigid steel anvil reflects the shockwave, generating high pressure and velocity at the interface, whereas the sand anvil absorbs a part of the shock energy, suppressing high-magnitude reflections. The position of the detonator influences the propagation dynamics of the detonation wave and the resulting collision velocity, which in turn, affect the interfacial morphology and overall quality of the weld. Full article
Show Figures

Figure 1

23 pages, 4797 KB  
Article
Rotor–Stator Interaction-Induced Pressure Pulsation Propagation and Dynamic Stress Response in an Ultra-High-Head Pump-Turbine
by Feng Jin, Le Gao, Dawei Zheng, Xingxing Huang, Zebin Lai, Meng Liu, Zhengwei Wang and Jian Liu
Processes 2026, 14(2), 311; https://doi.org/10.3390/pr14020311 - 15 Jan 2026
Viewed by 202
Abstract
Unsteady flow-induced pressure fluctuations and the consequent dynamic stresses in pump-turbines are critical determinants of their operational reliability and fatigue resistance. This investigation systematically examines the spatiotemporal propagation of Rotor–Stator Interaction (RSI)-induced pressure pulsations and evaluates the corresponding dynamic stress mechanisms based on [...] Read more.
Unsteady flow-induced pressure fluctuations and the consequent dynamic stresses in pump-turbines are critical determinants of their operational reliability and fatigue resistance. This investigation systematically examines the spatiotemporal propagation of Rotor–Stator Interaction (RSI)-induced pressure pulsations and evaluates the corresponding dynamic stress mechanisms based on a phase-resolved fluid–structure interaction strategy. The results reveal a significant hydrodynamic duality: RSI pressure waves manifest as convective traveling waves on the pressure side but as modal standing waves on the suction side. Crucially, a severe spanwise phase mismatch is identified between the hub and shroud streamlines, which induces a periodic hydrodynamic torsional moment on the blade. Due to the rigid constraint at the blade–crown junction, this torsional tendency is restricted, resulting in high-amplitude constrained tensile stresses at the root. This explains why the stress concentration at the crown inlet is significantly higher than in other regions. Additionally, the stress spectrum shows strong load dependence, characterized by low-frequency modulations on the suction side under high-load conditions. Full article
(This article belongs to the Special Issue CFD Simulation of Fluid Machinery)
Show Figures

Figure 1

15 pages, 1784 KB  
Article
Deep Neural Network-Based Inversion Method for Electron Density Profiles in Ionograms
by Longlong Niu, Chen Zhou, Na Wei, Guosheng Han, ZhongXin Deng and Wen Liu
Atmosphere 2026, 17(1), 88; https://doi.org/10.3390/atmos17010088 - 15 Jan 2026
Viewed by 164
Abstract
Accurate inversion of ionograms of the ionosonde is of great significance for studying ionospheric structure and radio wave propagation. Traditional inversion methods usually describe the electron density profile based on preset polynomial functions, but such functions are difficult to fully match the complex [...] Read more.
Accurate inversion of ionograms of the ionosonde is of great significance for studying ionospheric structure and radio wave propagation. Traditional inversion methods usually describe the electron density profile based on preset polynomial functions, but such functions are difficult to fully match the complex dynamic distribution characteristics of the ionosphere, especially in accurately representing special positions such as the F2 layer peak. To this end, this paper proposes an inversion model based on a Variational Autoencoder, named VSII-VAE, which realizes the mapping from ionograms to electron density profiles through an encoder–decoder structure. To enable the model to learn inversion patterns with physical significance, we introduced physical constraints into the latent variable space and the decoder, constructing a neural network inversion model that integrates data-driven approaches with physical mechanisms. Using multi-class ionograms as input and the electron density measured by Incoherent Scatter Radar as the training target, experimental results show that the electron density profiles retrieved by VSII-VAE are highly consistent with ISR observations, with errors between synthetic virtual heights and measured virtual heights generally below 5 km. On the independent test set, the model evaluation metrics reached R2 = 0.82, RMSE = 0.14 MHz, rp = 0.94, outperforming the ARTIST method and verifying the effectiveness and superiority of the model inversion. Full article
(This article belongs to the Special Issue Research and Space-Based Exploration on Space Plasma)
Show Figures

Figure 1

27 pages, 2034 KB  
Review
The Multilayered Landscape of Ferroptosis: Plasticity, Propagation, and Evolutionary Perspectives
by Hong Chen, Hongfa Yan, Hong Bu and Feng Ye
Antioxidants 2026, 15(1), 111; https://doi.org/10.3390/antiox15010111 - 15 Jan 2026
Viewed by 460
Abstract
Ferroptosis is a distinct form of regulated necrotic cell death driven by iron-dependent phospholipid peroxidation, characterized by flexible and context-dependent mechanisms rather than a single fixed linear pathway. This study elucidates the critical lipid peroxidation networks and antioxidant defense systems used in determining [...] Read more.
Ferroptosis is a distinct form of regulated necrotic cell death driven by iron-dependent phospholipid peroxidation, characterized by flexible and context-dependent mechanisms rather than a single fixed linear pathway. This study elucidates the critical lipid peroxidation networks and antioxidant defense systems used in determining ferroptosis, specifically emphasizing how these mechanisms underpin the plasticity of this cell death mode and its correlation with therapeutic resistance. We examine the catastrophic propagation of ferroptosis, detailing the multi-layered amplification mechanisms—ranging from intracellular organelle crosstalk to intercellular trigger waves—that may facilitate massive tissue damage in degenerative diseases and ischemic injuries. Furthermore, the evolutionary conservation of ferroptosis-like phenomena across diverse species is summarized, underscoring its fundamental role in development and host–pathogen interactions. To conclude, we explore pivotal knowledge gaps that remain in our understanding of ferroptosis. By integrating these complex regulatory networks, this review provides a comprehensive framework for understanding ferroptosis as an adaptable, self-amplifying process, informing future efforts to modulate ferroptosis in disease contexts. Notably, this review focuses on the amplification, execution, and propagation phases of ferroptosis rather than on its initial triggering mechanisms, which remain an area of active investigation. Full article
Show Figures

Figure 1

26 pages, 12455 KB  
Article
Analysis of Geometric Wave Impedance Effect and Stress Wave Propagation Mechanism in Slack Wire Ropes
by Enze Zhou, Yonglei Dai, Ge Wang, Kaijie Yang, Runyuan Zheng and Lin Li
Appl. Sci. 2026, 16(2), 754; https://doi.org/10.3390/app16020754 - 11 Jan 2026
Viewed by 169
Abstract
The dynamic behavior of relaxed steel wire ropes under slowly varying pulse loads is dominated by the geometric wave impedance effect caused by the helical geometric topology. This study proposes a numerical analysis framework based on high-fidelity parametric solid modeling and implicit dynamics [...] Read more.
The dynamic behavior of relaxed steel wire ropes under slowly varying pulse loads is dominated by the geometric wave impedance effect caused by the helical geometric topology. This study proposes a numerical analysis framework based on high-fidelity parametric solid modeling and implicit dynamics to investigate a Seale-type 6×19S-WSC steel wire rope. Under baseline conditions without pretension and friction, the helical structure forces significant modal conversion and geometric scattering of the axially incident waves, producing an energy attenuation effect akin to “geometric filtering”. Parametric analysis varying the core wire diameter reveals that the helical structure causes the axial wave speed to decrease by orders of magnitude compared to the material’s inherent wave speed. Furthermore, changes in core wire size induce a non-monotonic variation in the dynamic response, revealing a competitive mechanism between overall stiffness increase and a “dynamic decoupling” effect caused by interlayer gaps. This study confirms the dominant role of geometric wave impedance in the dynamic performance of relaxed steel wire ropes. Full article
Show Figures

Figure 1

8 pages, 2392 KB  
Proceeding Paper
Guided Wave-Based Damage Detection Using Integrated PZT Sensors in Composite Plates
by Lenka Šedková, Ondřej Vích and Michal Král
Eng. Proc. 2025, 119(1), 49; https://doi.org/10.3390/engproc2025119049 - 7 Jan 2026
Viewed by 120
Abstract
The ultrasonic guided wave method is successfully used for structural health monitoring (SHM) of aircraft structures utilizing PZT (Pb-Zr-Ti based piezoceramic material) sensors for guided wave generation and detection. To increase the mechanical durability of the sensors in operational conditions, this paper demonstrates [...] Read more.
The ultrasonic guided wave method is successfully used for structural health monitoring (SHM) of aircraft structures utilizing PZT (Pb-Zr-Ti based piezoceramic material) sensors for guided wave generation and detection. To increase the mechanical durability of the sensors in operational conditions, this paper demonstrates the feasibility of the integration of PZTs into the Glass fiber/Polymethyl methacrylate (G/PMMA) composite plate and evaluates the possibility of impact damage detection using generated guided waves. Two types of PZT sensors were embedded into different layers during the manufacturing process. Generally, radial mode disc sensors are used for Lamb wave generation, and thickness-shear square-shaped sensors are used for both Lamb and shear wave generation. First, the wave propagation was analyzed considering the sensor type and sensor placement within the layup. The main objective was to propose the optimal sensor network with embedded sensors for successful impact damage detection. Lamb wave frequency tuning of disk sensors and unique vibrational characteristics of integrated shear sensors were exploited to selectively actuate only one guided wave mode. Finally, the Reconstruction Algorithm for the Probabilistic Inspection of Damage (RAPID) was utilized for damage localization and visualization. Full article
Show Figures

Figure 1

17 pages, 13236 KB  
Article
Influence of Initial Stress on Wave Propagation in Microelongated Thermo-Elastic Media Under the Refined Fractional Dual Phase Lag Model
by Mohamed F. Ismail, Hamdy M. Ahmed, Taha Radwan, Soliman Alkhatib, M. Elsaid Ramadan and Eslam Nabil Shawki El-Ganzoury
Fractal Fract. 2026, 10(1), 30; https://doi.org/10.3390/fractalfract10010030 - 4 Jan 2026
Viewed by 194
Abstract
This paper focuses on analyzing how initial stress influences wave propagation phenomena in a microelongated thermoelastic medium described within the framework of fractional conformable derivative, considering both the dual phase lag (DPL) and refined dual phase lag (RDPL) theories. The fundamental governing equations [...] Read more.
This paper focuses on analyzing how initial stress influences wave propagation phenomena in a microelongated thermoelastic medium described within the framework of fractional conformable derivative, considering both the dual phase lag (DPL) and refined dual phase lag (RDPL) theories. The fundamental governing equations for heat transfer, mechanical motion, and microelongation are established to incorporate finite thermal wave speed and microelongation effects. Through an appropriate non-dimensionalization procedure and the application of the normal mode analysis technique, the coupled partial differential system is transformed into a form that admits explicit analytical solutions. These solutions provide expressions for displacement, microelongation, temperature distribution, and stress components, allowing a comprehensive examination of the thermomechanical wave behavior within the medium. To better comprehend the theoretical results, numerical evaluations are performed to emphasize the comparison of DPL and RDPL in the presence and absence of initial stress, as well as the influence of the fractional-order parameter and different times on wave properties. The results show that initial stress has a considerable effect on wave propagation characteristics such as amplitude modulation, propagation speed, and attenuation rate. Furthermore, the use of fractional conformable derivatives and the RDPL formulation allows for more precise modeling and control of the thermal relaxation dynamics. The current study contributes to a better understanding of the linked microelongated and thermal effects in thermoelastic media, as well as significant insights for designing and modeling advanced microscale thermoelastic systems. Full article
(This article belongs to the Special Issue Feature Papers for Mathematical Physics Section 2026)
Show Figures

Figure 1

24 pages, 1513 KB  
Article
A Biophysical Framework for High-Intensity Laser Therapy Based on Photoacoustic Pressure Thresholds
by Damiano Fortuna, Fabrizio Margheri, Scott Parker and Francesca Rossi
Appl. Sci. 2026, 16(1), 487; https://doi.org/10.3390/app16010487 - 3 Jan 2026
Viewed by 274
Abstract
High-Intensity Laser Therapy (HILT) represents a mechanistic subset of High-Power Laser Therapy (HPLT), distinguished by the addition of a photoacoustic component to established photochemical and photothermal effects. High-peak (kW), short-pulse emission generates pressure waves exceeding 10 kPa in water (27 °C) and approximately [...] Read more.
High-Intensity Laser Therapy (HILT) represents a mechanistic subset of High-Power Laser Therapy (HPLT), distinguished by the addition of a photoacoustic component to established photochemical and photothermal effects. High-peak (kW), short-pulse emission generates pressure waves exceeding 10 kPa in water (27 °C) and approximately 100 kPa in vivo, levels that are compatible with the activation of mechanotransductive processes relevant to cellular differentiation. These pressure waves propagate several centimeters into biological tissues, extending beyond the optical penetration depth of light. We introduce Pulse Energy Dose (PED), a physically grounded and clinically oriented dose metric, to determine whether a laser system meets the photoacoustic threshold while remaining within the thermoelastic regime. Only systems combining kilowatt-range peak power, microsecond pulses, high pulse energy, and very low duty cycles (<1%) consistently induce pressure waves within the therapeutic thermoelastic regime. PED was validated against the Margheri equation, showing a strong linear correlation with calculated pressure wave amplitude (Pearson r > 0.9, p < 0.0001). Based on these results, we define operational bounds that identify high-power laser systems capable of producing reproducible photoacoustic effects within thermoelastic conditions. This framework shifts classification from average power to mechanism of action, providing guidance for safe parameter selection and supporting a mechanism-based clinical use of high-power lasers, particularly in musculoskeletal disorders, cartilage regeneration, bone healing, and deep-tissue repair. Full article
Show Figures

Figure 1

16 pages, 2799 KB  
Article
Coupling Effect of the Bottom Type-Depth Configuration on the Sonar Detection Range in Seamount Environments
by Xiaofang Sun, Shisong Zhang, Feiyu Chen and Pingbo Wang
J. Mar. Sci. Eng. 2026, 14(1), 89; https://doi.org/10.3390/jmse14010089 - 2 Jan 2026
Viewed by 278
Abstract
Seabed topography exerts a profound influence on underwater acoustic propagation, and the coupling effect between bottom acoustic properties and the source–receiver geometric configuration remains insufficiently quantified, particularly in seamount shielding scenarios. To address this gap, in this study, the BELLHOP ray model was [...] Read more.
Seabed topography exerts a profound influence on underwater acoustic propagation, and the coupling effect between bottom acoustic properties and the source–receiver geometric configuration remains insufficiently quantified, particularly in seamount shielding scenarios. To address this gap, in this study, the BELLHOP ray model was integrated with Earth topography 1 (ETOPO1) topographic data and Hybrid Coordinate Ocean Model (HYCOM) hydrological data for seamounts east of Taiwan. Transmission loss (TL) of 300 Hz sound waves was simulated across four typical bottom types (rock, coarse sand, silt, and clay) under varying source depths (50–1000 m) and receiver depths (50–500 m). The maximum sonar detection range was delineated using an 80 dB TL threshold as the criterion for effective detection. The key findings reveal that the bottom properties are the primary factors that reduce the detection range: the maximum detection range over rock bottom exceeds that over clay by more than 8-fold. Notably, a shallow source–shallow receiver configuration mitigates the acoustic shadow effect induced by seamounts, whereas deep receiver deployment (≥500 m) diminishes the discriminative impact of bottom types on the propagation behavior. Furthermore, a segmented empirical prediction formula was established, which reconciles both the physical mechanisms (e.g., bottom reflection-absorption and seamount shielding) and engineering applicability. This formula provides a robust theoretical basis for evaluating sonar performance in complex seabed topography settings, thereby facilitating optimized underwater detection strategies in seamount-dominated marine environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 5609 KB  
Article
Characteristics of Compressive Stress Wave Propagation Across a Nonlinear Viscoelastic Filled Rock Joint
by Zhifa Zhan, Xiaolin Huang, Jiahu Du, Yilin Sun and Jilin Wang
Appl. Sci. 2026, 16(1), 428; https://doi.org/10.3390/app16010428 - 30 Dec 2025
Viewed by 184
Abstract
Filled joints significantly influence the dynamic response of rock masses, exhibiting coupled nonlinear compression-hardening and viscous deformation. However, the combined effects of these mechanisms on wave propagation remain unclear. This study develops a theoretical model based on a nonlinear viscoelastic formulation, in which [...] Read more.
Filled joints significantly influence the dynamic response of rock masses, exhibiting coupled nonlinear compression-hardening and viscous deformation. However, the combined effects of these mechanisms on wave propagation remain unclear. This study develops a theoretical model based on a nonlinear viscoelastic formulation, in which a compression-hardening spring (governed by the Bandis–Barton model, with its initial compressive stiffness and maximum allowable closure) is connected in series with a viscous dashpot. Using the displacement discontinuity method and the method of characteristics, we analyze the transmission of compressive stress waves across a filled joint. The results show that the transmission coefficient increases with incident wave amplitude but decreases with frequency, whereas reflection exhibits the opposite trends. The initial compressive stiffness has a minimal impact on transmission but induces a nonlinear decrease in reflection. Increasing the maximum allowable closure slightly reduces transmission but sharply increases reflection, whereas higher viscous stiffness enhances transmission and slightly suppresses reflection. Energy attenuation grows rapidly with amplitude before stabilizing. The initial compressive stiffness is most influential at low amplitudes, the maximum allowable closure is most significant at moderate amplitudes, and viscous effects remain consistent across all amplitudes. Increases in frequency lead to a nonlinear decrease in attenuation, with the initial compressive stiffness and maximum allowable closure dominating at high frequencies, and viscous effects prevailing at low frequencies. This work systematically reveals the coupled roles of nonlinear compression-hardening and viscosity in wave propagation across filled joints, providing theoretical support for dynamic hazard mitigation and geophysical exploration. Full article
Show Figures

Figure 1

17 pages, 2987 KB  
Article
Analysis of the Water Hammer Effect and Structural Response Characteristics in the Fire-Resistant Oil System of Gas Turbine Units
by Guangjie Zhou, Qiang Ma, Sufeng Xue, Gang Wang, Lijun Jia and Kaimin Yang
Energies 2026, 19(1), 147; https://doi.org/10.3390/en19010147 - 26 Dec 2025
Viewed by 240
Abstract
In gas turbine fire-resistant oil systems, valve actuations induce transient pressure fluctuations and the water hammer effect, causing pressure oscillations and structural vibrations. This study uses a coupled CFD and transient structural simulation to analyze the effects of different valve strategies on pressure [...] Read more.
In gas turbine fire-resistant oil systems, valve actuations induce transient pressure fluctuations and the water hammer effect, causing pressure oscillations and structural vibrations. This study uses a coupled CFD and transient structural simulation to analyze the effects of different valve strategies on pressure wave propagation and structural response. Results show that a higher valve opening rate leads to a more significant water hammer effect, increasing structural deformation and stress. The maximum equivalent stress was verified at 201.9 MPa, maintaining a 30% safety margin and meeting American Society of Mechanical Engineers (ASME) B31.3 requirements. Finally, a “slow-fast-slow” (S-shaped) valve strategy is proposed to significantly improve the system’s pressure response characteristics, providing theoretical and engineering guidance for safe operation. Full article
Show Figures

Figure 1

17 pages, 1221 KB  
Article
Conservation Laws, Soliton Dynamics, and Stability in a Nonlinear Schrödinger Equation with Second-Order Spatiotemporal Dispersion
by Naila Nasreen, Ismat Latif, Kashifa Basheer, Muhammad Arshad and Zhaoliang Jiang
Mathematics 2026, 14(1), 54; https://doi.org/10.3390/math14010054 - 23 Dec 2025
Viewed by 344
Abstract
This paper presents the construction of exact wave solutions for the generalized nonlinear Schrödinger equation (NLSE) with second-order spatiotemporal dispersion using the modified exponential rational function method (mERFM). The NLSE plays a vital role in various fields such as quantum mechanics, oceanography, transmission [...] Read more.
This paper presents the construction of exact wave solutions for the generalized nonlinear Schrödinger equation (NLSE) with second-order spatiotemporal dispersion using the modified exponential rational function method (mERFM). The NLSE plays a vital role in various fields such as quantum mechanics, oceanography, transmission lines, and optical fiber communications, particularly in modeling pulse dynamics extending beyond the traditional slowly varying envelope estimation. By incorporating higher-order dispersion and nonlinear effects, including cubic–quintic nonlinearities, this generalized model provides a more accurate representation of ultrashort pulse propagation in optical fibers and oceanic environments. A wide range of soliton solutions is obtained, including bright and dark solitons, as well as trigonometric, hyperbolic, rational, exponential, and singular forms. These solutions offer valuable insights into nonlinear wave dynamics and multi-soliton interactions relevant to shallow- and deep-water wave propagation. Conservation laws associated with the model are also derived, reinforcing the physical consistency of the system. The stability of the obtained solutions is investigated through the analysis of modulation instability (MI), confirming their robustness and physical relevance. Graphical representations based on specific parameter selections further illustrate the complex dynamics governed by the model. Overall, the study demonstrates the effectiveness of mERFM in solving higher-order nonlinear evolution equations and highlights its applicability across various domains of physics and engineering. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

Back to TopTop