Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (945)

Search Parameters:
Keywords = wave energy converters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7789 KB  
Article
Wave Energy Conversion to Decarbonize Offshore Aquaculture: Multi-Level Techno-Economic Analysis for a Case Study in Peniche, Portugal
by Maïlys Bertrand, Gianmaria Giannini, Ajab Gul Majidi, Cassandre Senocq, Paulo Rosa-Santos and Daniel Clemente
Energies 2025, 18(22), 5934; https://doi.org/10.3390/en18225934 - 11 Nov 2025
Viewed by 98
Abstract
By 2050, global population growth will lead to a significant increase in demand for animal-based products, including seafood. Aquaculture is a key solution to meet these needs while reducing pressure on wild aquatic stocks. However, its environmental footprint and energy demand remain open [...] Read more.
By 2050, global population growth will lead to a significant increase in demand for animal-based products, including seafood. Aquaculture is a key solution to meet these needs while reducing pressure on wild aquatic stocks. However, its environmental footprint and energy demand remain open concerns. This study explores the co-location of offshore aquaculture with a wave energy converter—WaveRoller—as a renewable power source. Using a 44-year dataset from the Portuguese coast near Peniche, the analysis evaluates the survivability and operation of the WaveRoller, long-term percentile trends, seasonal energy production, extrapolated extreme events using probabilistic modeling, and confidence intervals for energy costs. A scenario-based range of energy demand is constructed from a baseline blue mussel production of over 400 tons/yr. The K-Means clustering method is applied to reduce data size while maintaining its representativeness. Results show that a 600 kW WaveRoller is similarly suited to operational wave conditions compared to a 1000 kW device, though it excels when aquaculture energy demand peaks in Summertime. The probability that a single WaveRoller fails to meet annual aquaculture energy needs is nearly zero, though, during Summer, it can become statistically significant. The opposite is verified on survivability during Winter, under harsher wave conditions. The Levelized Cost of Energy is calculated for different expenditure scenarios, with minimum values slightly under 200 EUR/MWh being reported only under ideal conditions. Future work should include climate change scenarios and life cycle assessments to better evaluate environmental impacts and techno-economic viability. Full article
Show Figures

Figure 1

20 pages, 5102 KB  
Article
Outflow Boundary Conditions for Turbine-Integrated Rotating Detonation Combustors
by Tsung-Ming Hsieh, K. Mark Bryden, Richard P. Dalton, John Crane and Tom I-P. Shih
Appl. Sci. 2025, 15(22), 11922; https://doi.org/10.3390/app152211922 - 10 Nov 2025
Viewed by 146
Abstract
This study examines outflow boundary conditions (BCs) in computational fluid dynamics (CFD) simulations of a transition duct with and without guide vanes that converts supersonic flow exiting a rotating detonation combustor (RDC) to subsonic flow to drive a turbine. Since the flow exiting [...] Read more.
This study examines outflow boundary conditions (BCs) in computational fluid dynamics (CFD) simulations of a transition duct with and without guide vanes that converts supersonic flow exiting a rotating detonation combustor (RDC) to subsonic flow to drive a turbine. Since the flow exiting the transition duct has swirling shock waves with significant spatial and temporal variations in pressure, temperature, and Mach number, imposing proper BCs poses a challenge. To ensure all swirling shock waves exit the transition duct without creating non-physical reflected waves at its outlet, this study examined three outflow BCs: (1) the average pressure imposed at the duct’s outlet, (2) a nonreflecting BC (NRBC) with a specified average pressure imposed at the duct’s outlet, (3) the average pressure imposed at the outlet of an extension duct made up of a buffer layer and a sponge layer. This study is based on the three-dimensional, unsteady density-weighted-ensemble-averaged continuity, Navier–Stokes, and energy equations for a thermally perfect gas closed by the realizable k–ε model and “enhanced” wall functions. The results obtained show that imposing an average pressure at the transition duct’s outlet produces spurious waves that degrade the physical meaningfulness of the solution. When the NRBC was applied, swirling shock waves exited the duct’s outlet without creating spurious waves. However, its usage requires the gas to be thermally, as well as calorically, perfect, which this study shows could be a concern. By imposing the average pressure at the outlet of an extension duct, the gas does not need to be calorically perfect. The results obtained show the effects of the sponge layer’s length and coarsening ratio on damping nonuniformities in non-physical reflected waves to ensure the flow exiting the transition duct’s outlet can do so as if there are no boundaries present and has the desired average pressure—even though the BC is applied at the extension duct’s outlet. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics in Mechanical Engineering)
Show Figures

Figure 1

24 pages, 6126 KB  
Article
An Integrated Tuned Hydro-PTO Semi-Submersible Platform for Deep-Sea Wind-Wave Cogeneration: Design, Hydrodynamic Analysis
by Guohua Wang, Haolin Yang, Fangyuan Zhou, Yuhang Shen, Zhirui Zhang, Hailong Jiang, Runnan Liu, Jiaxin Liu and Yi Zhang
Energies 2025, 18(21), 5778; https://doi.org/10.3390/en18215778 - 2 Nov 2025
Viewed by 233
Abstract
The ocean offers abundant wind and wave energy resources. This paper proposes an integrated concept that co-locates a semi-submersible floating wind platform with wave energy converters (WECs) to exploit the geographical consistency of these resources. By sharing the platform foundation and power transmission [...] Read more.
The ocean offers abundant wind and wave energy resources. This paper proposes an integrated concept that co-locates a semi-submersible floating wind platform with wave energy converters (WECs) to exploit the geographical consistency of these resources. By sharing the platform foundation and power transmission infrastructure, this integrated system enhances the utilization efficiency of marine space and renewable energy. Inspired by the principles of the Tuned Mass Damper (TMD) and leveraging mature hydraulic technologies from wave energy conversion and offshore drilling heave compensation systems, this study introduces a novel scheme. This scheme integrates a heave plate with a hydraulic Power Take-Off (PTO) system, functionally acting as a wave energy converter, to the floating platform. The primary objective is to mitigate the platform’s motion response while simultaneously generating electricity. The research investigates the motion performance improvement of this integrated platform under South China Sea conditions. The results demonstrate that the proposed WEC–PTO system not only improves the platform’s wave resistance and adaptability to deep-sea environments but also increases the overall efficiency of marine energy equipment deployment. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

13 pages, 1282 KB  
Article
Multi-Objective Optimization for PTO Damping of Floating Offshore Wind–Wave Hybrid Systems Under Extreme Conditions
by Suchun Yang, Shuo Zhang, Fan Zhang, Xianzhi Wang and Dongsheng Qiao
J. Mar. Sci. Eng. 2025, 13(11), 2084; https://doi.org/10.3390/jmse13112084 - 1 Nov 2025
Viewed by 272
Abstract
Floating offshore wind–wave hybrid systems, as a novel structural form integrating floating wind turbine foundations and WECs, can effectively enhance the efficiency of renewable energy utilization when properly designed. A numerical model is established to investigate the dynamic responses of a wind–wave hybrid [...] Read more.
Floating offshore wind–wave hybrid systems, as a novel structural form integrating floating wind turbine foundations and WECs, can effectively enhance the efficiency of renewable energy utilization when properly designed. A numerical model is established to investigate the dynamic responses of a wind–wave hybrid system comprising a semi-submersible FOWT and PA wave energy converters. The optimal damping values of the PTO system for the wind–wave hybrid system are determined based on an NSGA-II. Subsequently, a comparative analysis of dynamic responses is carried out for the PTO system with different states: latching, fully released, and optimal damping. Under the same extreme irregular wave conditions, the pitch motion of the FOWT with optimal damping is reduced to 71% and 50% compared to the latching and fully released states, respectively. The maximum mooring line tension in the optimal damping state is similar to that in the fully released state, but nearly 40% lower than in the latching state. This optimal control strategy not only sustains power generation but also enhances structural stability and efficiency compared to traditional survival strategies, offering a promising approach for cost-effective offshore wind and wave energy utilization. Full article
(This article belongs to the Special Issue Optimized Design of Offshore Wind Turbines)
Show Figures

Figure 1

25 pages, 5464 KB  
Article
A Computational Framework for Fully Coupled Time-Domain Aero-Hydro-Servo-Elastic Analysis of Hybrid Offshore Wind and Wave Energy Systems by Deploying Generalized Modes
by Nikos Mantadakis, Eva Loukogeorgaki and Peter Troch
J. Mar. Sci. Eng. 2025, 13(11), 2047; https://doi.org/10.3390/jmse13112047 - 25 Oct 2025
Viewed by 396
Abstract
In this paper, a generic computational framework, based on the generalized-mode approach, is developed for the fully coupled time-domain aero-hydro-servo-elastic analysis of Hybrid Offshore Wind and Wave Energy Systems (HOWiWaESs), consisting of a Floating Offshore Wind Turbine (FOWT) and several wave energy converters [...] Read more.
In this paper, a generic computational framework, based on the generalized-mode approach, is developed for the fully coupled time-domain aero-hydro-servo-elastic analysis of Hybrid Offshore Wind and Wave Energy Systems (HOWiWaESs), consisting of a Floating Offshore Wind Turbine (FOWT) and several wave energy converters (WECs) mechanically connected to it. The FOWT’s platform and the WECs of the HOWiWaES are modeled as a single floating body with conventional rigid-body modes, while the motions of the WECs relative to the FOWT are described as additional generalized modes of motion. A numerical tool is established by appropriately modifying/extending the OpenFAST source code. The frequency-dependent exciting forces and hydrodynamic coefficients, as well as hydrostatic stiffness terms, are obtained using the traditional boundary integral equation method, whilst the generalized-mode shapes are determined by developing appropriate 3D vector shape functions. The tool is applied for a 5 MW FOWT with a spar-type floating platform and a conic WEC buoy hinged on it via a mechanical arm, and results are compared with those of other investigators utilizing the multi-body approach. Two distinctive cases of a pitching and a heaving WEC are considered. A quite good agreement is established, indicating the potential of the developed tool to model floating HOWiWaESs efficiently. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 6714 KB  
Article
Techno-Economic Analysis of Marine Hybrid Clusters for Use in Chile and Mexico
by Emiliano Gorr-Pozzi, Jorge Olmedo-González, Diego Selman-Caro, Manuel Corrales-González, Héctor García-Nava, Fabiola García-Vega, Itxaso Odériz, Giuseppe Giorgi, Rosa de G. González-Huerta, José A. Zertuche-González and Rodolfo Silva
Energies 2025, 18(20), 5543; https://doi.org/10.3390/en18205543 - 21 Oct 2025
Viewed by 472
Abstract
This study assesses the feasibility and profitability of marine hybrid clusters, combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena, Chile, with high and consistent wave energy resources, and [...] Read more.
This study assesses the feasibility and profitability of marine hybrid clusters, combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena, Chile, with high and consistent wave energy resources, and Ensenada, Mexico, with moderate and more variable wave power. Two WEC technologies, Wave Dragon (WD) and Pelamis (PEL), were evaluated alongside lithium-ion battery storage and green hydrogen production for surplus energy storage. Results show that La Serena’s high wave power (26.05 kW/m) requires less hybridization than Ensenada’s (13.88 kW/m). The WD device in La Serena achieved the highest energy production, while PEL arrays in Ensenada were more effective. The PEL-OWT cluster proved the most cost-effective in Ensenada, whereas the WD-OWT performed better in La Serena. Supplying electricity for seaweed aquaculture, particularly in La Serena, proves more profitable than for households. Ensenada’s clusters generate more surplus electricity, suitable for the electricity market or hydrogen conversion. This study emphasizes the importance of tailoring emerging WEC systems to local conditions, optimizing hybridization strategies, and integrating consolidated industries, such as aquaculture, to enhance both economic and environmental benefits. Full article
(This article belongs to the Special Issue Advanced Technologies for the Integration of Marine Energies)
Show Figures

Figure 1

25 pages, 6042 KB  
Article
Design and Development of an Efficiently Harvesting Buoy-Type Wave Energy Converter
by Ganesh Korwar, Timotei István Erdei, Nitin Satpute, Atul P Kulkarni and Attila Szántó
Appl. Sci. 2025, 15(20), 11185; https://doi.org/10.3390/app152011185 - 18 Oct 2025
Viewed by 556
Abstract
This paper presents an innovative approach to efficiently harvesting energy from ocean waves through a buoy-type Wave Energy Converter (WEC). The proposed methodology integrates a buoy, a Mechanical Motion Rectifier (MMR), a Motion Rectifier (MR), an Energy Storage Element (ESE), and an electric [...] Read more.
This paper presents an innovative approach to efficiently harvesting energy from ocean waves through a buoy-type Wave Energy Converter (WEC). The proposed methodology integrates a buoy, a Mechanical Motion Rectifier (MMR), a Motion Rectifier (MR), an Energy Storage Element (ESE), and an electric generator. A MATLAB-2023 model has been employed to assess the electrical power generated under varying wave heights and frequencies. Experimental data and numerical simulations reveal that the prototype Wave Energy Harvester (WEH) achieved a peak voltage of 6.7 V, peak power of 3.6 W, and an average power output of 8.5 mW, with an overall efficiency of 47.2% for the device’s actual size. Additionally, a theoretical analysis has been conducted to investigate the impact of incorporating additional buoys on the electrical power output. Full article
Show Figures

Figure 1

35 pages, 15785 KB  
Article
Power Smoothing in a Wave Energy Conversion Using Energy Storage Systems: Benefits of Forecasting-Enhanced Filtering for Reduction in Energy Storage Requirements
by Marcos Blanco, Luis Mazorra, Isabel Villalba, Gustavo Navarro, Jorge Nájera and Marcos Lafoz
Appl. Sci. 2025, 15(20), 11106; https://doi.org/10.3390/app152011106 - 16 Oct 2025
Viewed by 275
Abstract
This paper presents a power smoothing strategy for wave energy converters (WECs) by means of energy storage systems (ESS) with integrated forecasting filtering algorithms applied to their control. The oscillatory nature of wave energy leads to high variability in power output, posing significant [...] Read more.
This paper presents a power smoothing strategy for wave energy converters (WECs) by means of energy storage systems (ESS) with integrated forecasting filtering algorithms applied to their control. The oscillatory nature of wave energy leads to high variability in power output, posing significant challenges for grid integration. A case study in Tenerife, Spain, was modeled in MATLAB-Simulink (release r2020b) to evaluate the impact of prediction-enhanced smoothing filters on ESS sizing. Various forecasting algorithms were assessed, including Bayesian Neural Networks, ARMA models, and persistence models. The simulation results demonstrate that the use of forecasting algorithms substantially reduces energy storage requirements while maintaining grid stability. Specifically, the application of Bayesian Neural Networks reduced the required ESS energy by up to 36.52% compared to traditional filters. In a perfect prediction scenario, reductions of up to 53.91% were achieved. These results highlight the importance of combining appropriate filtering strategies with advanced forecasting techniques to improve the technical and economic viability of wave energy projects. The paper concludes with a parametric analysis of moving average filter windows and prediction horizons, identifying the optimal combinations for different sea conditions. In summary, this study provides practical information into reducing the storage capacity required for power smoothing in wave energy systems, thereby contributing to the mitigation of grid integration challenges that may arise with the large-scale deployment of marine renewable energy Full article
Show Figures

Figure 1

19 pages, 2080 KB  
Article
Design and Optimization of a Wave-Adaptive Mechanical Converter for Renewable Energy Harvesting Along NEOM’s Surf Coast
by Abderraouf Gherissi, Ibrahim Elnasri, Abderrahim Lakhouit and Malek Ali
Processes 2025, 13(10), 3229; https://doi.org/10.3390/pr13103229 - 10 Oct 2025
Viewed by 588
Abstract
This study introduces a novel adaptive Mechanical Wave Energy Converter (MWEC) designed to efficiently capture nearshore wave energy for sustainable electricity generation along the southeast surf coast of NEOM (135° longitude). The MWEC system features a polyvinyl chloride (PVC) cubic buoy integrated with [...] Read more.
This study introduces a novel adaptive Mechanical Wave Energy Converter (MWEC) designed to efficiently capture nearshore wave energy for sustainable electricity generation along the southeast surf coast of NEOM (135° longitude). The MWEC system features a polyvinyl chloride (PVC) cubic buoy integrated with a mechanical power take-off (PTO) mechanism, optimized for deployment in shallow waters for a depth of around 1 m. Three buoy volumes, V1: 6000 cm3, V2: 30,000 cm3, and V3: 72,000 cm3, were experimentally evaluated under consistent PTO and spring tension configurations. The findings reveal a direct relationship between buoy volume and force output, with larger buoys exhibiting greater energy capture potential, while smaller buoys provided faster and more stable response dynamics. The energy retention efficiency of the buoy–PTO system was measured at 20% for V1, 14% for V2, and 10% for V3, indicating a trade-off between responsiveness and total energy capture. Notably, the largest buoy (V3) generated a peak power output of 213 W at an average wave amplitude of 65 cm, confirming its suitability for high-energy conditions along NEOM’s surf coast. In contrast, the smaller buoy (V1) performed more effectively during periods of reduced wave activity. Wave climate data collected during November and December 2024 support a hybrid deployment strategy, utilizing different buoy sizes to adapt to seasonal wave variability. These results highlight the potential of modular, wave-adaptive mechanical systems for scalable, site-specific renewable energy solutions in coastal environments like NEOM. The proposed MWEC offers a promising path toward low-cost, low-maintenance wave energy harvesting in shallow waters, contributing to Saudi Arabia’s sustainable energy goals. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

13 pages, 3661 KB  
Article
An Energy Storage Unit Design for a Piezoelectric Wind Energy Harvester with a High Total Harmonic Distortion
by Davut Özhan and Erol Kurt
Processes 2025, 13(10), 3217; https://doi.org/10.3390/pr13103217 - 9 Oct 2025
Viewed by 469
Abstract
A new energy storage unit, which is fed by a piezoelectric wind energy harvester, is explored. The outputs of a three-phase piezoelectric wind energy device have been initially recorded from the laboratory experiments. Following the records of voltage outputs, the power ranges of [...] Read more.
A new energy storage unit, which is fed by a piezoelectric wind energy harvester, is explored. The outputs of a three-phase piezoelectric wind energy device have been initially recorded from the laboratory experiments. Following the records of voltage outputs, the power ranges of the device were measured at several hundred microwatts. The main issue of piezoelectric voltage generation is that voltage waveforms of piezoelectric materials have high total harmonic distortion (THD) with incredibly high subharmonics and superharmonics. Therefore, such a material reply causes a certain power loss at the output of the wind energy generator. In order to fix this problem, we propose a combination of a rectifier and a storage system, where they can operate compatibly under high THD rates (i.e., 125%). Due to high THD values, current–voltage characteristics are not linear-dependent; indeed, because of capacitive effect of the piezoelectric (i.e., lead zirconium titanite) material, harvested power from the material is reduced by nearly a factor of 20% in the output. That also negatively affects the storage on the Li-based battery. In order to compensate, the output waveform of the device, the waveforms, which are received from the energy-harvester device, are first rectified by a full-wave rectifier that has a maximum power point tracking (MPPT) unit. The SOC values prove that almost 40% of the charge is stored in 1.2 s under moderate wind speeds, such as 6.1 m/s. To conclude, a better harvesting performance has been obtained by storing the energy into the Li-ion battery under a current–voltage-controlled boost converter technique. Full article
Show Figures

Figure 1

12 pages, 2841 KB  
Article
Mesoscopic Liquids Emit Thermal Waves Under Shear Strain or Microflow
by Laurence Noirez, Eni Kume and Patrick Baroni
Liquids 2025, 5(4), 27; https://doi.org/10.3390/liquids5040027 - 9 Oct 2025
Viewed by 291
Abstract
Liquids like water are not expected to produce a thermal change under shear strain or flow (away from extreme conditions). In this study, we reveal experimental conditions for which the conventional athermal hydrodynamic assumption is no longer valid. We highlight the establishment of [...] Read more.
Liquids like water are not expected to produce a thermal change under shear strain or flow (away from extreme conditions). In this study, we reveal experimental conditions for which the conventional athermal hydrodynamic assumption is no longer valid. We highlight the establishment of non-equilibrium hot and cold thermal states occurring when a mesoscopic confined liquid is set in motion. Two stress situations are considered: low-frequency shear stress at large strain amplitude and microfluidic transport (pressure gradient). Two liquids are tested: water and glycerol at room temperature. In confined conditions (submillimeter scale), these liquids exhibit stress-induced thermal waves. We interpret the emergence of non-equilibrium temperatures as a consequence of the solicitation of the mesoscopic liquid elasticity. In analogy with elastic deformation, the mesoscopic volume decreases or increases slightly, which leads to a change in temperature (thermo-mechanical energy conversion). The energy acquired or released is converted to heat or cold, respectively. To account for these non-equilibrium temperatures, the mesoscopic flow is no longer considered as a complete dissipative process but as a way of propagating shear and thus compressive waves. This conclusion is consistent with recent theoretical developments showing that liquids propagate shear elastic waves at small scales. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

24 pages, 1259 KB  
Article
Concept Selection of Hybrid Wave–Current Energy Systems Using Multi-Criteria Decision Analysis
by Cheng Yee Ng and Muk Chen Ong
J. Mar. Sci. Eng. 2025, 13(10), 1903; https://doi.org/10.3390/jmse13101903 - 3 Oct 2025
Viewed by 402
Abstract
Hybrid marine energy platforms that integrate wave energy converters (WECs) and hydrokinetic turbines (HKTs) offer potential to improve energy yield and system stability in marine environments. This study identifies a compatible WEC–HKT integrated system concept through a structured concept selection framework based on [...] Read more.
Hybrid marine energy platforms that integrate wave energy converters (WECs) and hydrokinetic turbines (HKTs) offer potential to improve energy yield and system stability in marine environments. This study identifies a compatible WEC–HKT integrated system concept through a structured concept selection framework based on multi-criteria decision analysis (MCDA). The framework follows a two-stage process: individual technology assessment using eight criteria (efficiency, TRL, self-starting capability, structural simplicity, integration feasibility, environmental adaptability, installation complexity, and indicative cost) and pairing evaluation using five integration-focused criteria (structural compatibility, PTO feasibility, mooring synergy, co-location feasibility, and control compatibility). Criterion weights were assigned through a four-level importance framework based on expert judgment from 11 specialists, with unequal weights for the individual evaluation and equal weights for the integration stage. Four WEC types (oscillating water column, point absorber, overtopping wave energy converter, and oscillating wave surge converter) and four HKT types (Darrieus, Gorlov, Savonius, and hybrid Savonius–Darrieus rotor) are assessed using literature-derived scoring and weighted ranking. The results show that the oscillating water column achieved the highest weighted score among the WECs with 4.05, slightly ahead of the point absorber, which scored 3.85. For the HKTs, the Savonius rotor led with a score of 4.05, surpassing the hybrid Savonius–Darrieus rotor, which obtained 3.50, by 0.55 points. In the pairing stage, the OWC–Savonius configuration achieved the highest integration score of 4.2, surpassing the PA–Savonius combination, which scored 3.4, by 0.8 points. This combination demonstrates favorable structural layout, PTO independence, and mooring simplicity, making it the most promising option for early-stage hybrid platform development. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

31 pages, 13931 KB  
Article
Bi-Layer Model Predictive Control with Extended Horizons for Multi-Axis Underactuated Wave Energy Converters
by Xinrui Lu and Yuan Chen
J. Mar. Sci. Eng. 2025, 13(10), 1902; https://doi.org/10.3390/jmse13101902 - 3 Oct 2025
Viewed by 339
Abstract
In the field of wave energy, multi-axis wave energy converters (WECs) have emerged as a research priority owing to their enhanced energy absorption, leading to increased computational complexity. Conventional model predictive control (MPC) approaches have demonstrated limitations in the trade-off between real-time requirements [...] Read more.
In the field of wave energy, multi-axis wave energy converters (WECs) have emerged as a research priority owing to their enhanced energy absorption, leading to increased computational complexity. Conventional model predictive control (MPC) approaches have demonstrated limitations in the trade-off between real-time requirements and control performance. This paper proposes a bi-layer MPC strategy, including a long-term energy maximization layer and a short-term trajectory-tracking layer. First, a multi-axis underactuated WEC (MU-WEC) is proposed, which incorporates an inertial cable-driven parallel mechanism to absorb energy from multiple directions. In addition, a control-oriented dynamic model of a MU-WEC is established. Then, a bi-layer MPC strategy is proposed, which decouples computationally intensive optimization processes from time-sensitive real-time control, alleviating the computational burden significantly. Therefore, the upper layer achieves enhanced control performance by enabling extended prediction horizons, whereas the lower layer serves to ensure real-time requirements. Moreover, numerical simulations under irregular wave conditions demonstrate the performance of the proposed bi-layer MPC: under different waves, bi-layer MPC improves energy absorption by 127–311% over conventional MPC. This performance enhancement stems from the 5 times extension of the prediction horizon enabled by the reduced computational burden. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 5853 KB  
Article
Effects of Dish-Shaped Buoy and Perforated Damping Plate on Power Absorption in Floating Two-Body Wave Energy Converters
by Lilei Li, Changdong Wei, Mingchen Li, Xuening Song, Yanjun Liu and Gang Xue
J. Mar. Sci. Eng. 2025, 13(10), 1881; https://doi.org/10.3390/jmse13101881 - 1 Oct 2025
Viewed by 373
Abstract
Floating two-body wave energy converters (WECs) exhibit advantages, including insensitivity to water depth and tidal range, along with adaptability to multi-level sea states. However, WECs suffer from drawbacks, including unstable power generation and low wave energy capture efficiency. To enhance the hydrodynamic performance [...] Read more.
Floating two-body wave energy converters (WECs) exhibit advantages, including insensitivity to water depth and tidal range, along with adaptability to multi-level sea states. However, WECs suffer from drawbacks, including unstable power generation and low wave energy capture efficiency. To enhance the hydrodynamic performance and energy capture efficiency, a dish-shaped buoy and perforated damping plate configuration was designed based on conventional two-body WECs. First, four two-body WECs were developed according to these configurations. Second, a numerical model based on potential flow theory and the boundary element method (BEM) was established, with its accuracy validated through sea trials. Finally, the frequency domain response, motion response, mooring tension and power absorption effect of the WECs under wave excitation of grades 3, 4 and 5 were analyzed. The results demonstrate that both the dish-shaped buoy and perforated damping plate significantly improve the device stability and energy capture potential. Regarding the motion response, both configurations reduced the peak response amplitudes in heave and roll, enhancing the device stability. For mooring tension, both configurations reduced the mooring line tension. For power absorption, the perforated damping plate effectively increased the energy capture efficiency, while the dish-shaped buoy also demonstrated superior performance under higher-energy wave conditions. Overall, this study provides a theoretical foundation and design guidance for floating two-body WECs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 10042 KB  
Article
CFD Study of a Novel Wave Energy Converter in Survival Mode
by Cassandre Senocq, Daniel Clemente, Mailys Bertrand, Paulo Rosa-Santos and Gianmaria Giannini
Energies 2025, 18(19), 5189; https://doi.org/10.3390/en18195189 - 30 Sep 2025
Viewed by 566
Abstract
Harnessing Europe’s strong wave energy could support net-zero emissions goals, but extreme ocean loads still make wave energy expensive and delay the rollout of commercial wave-energy converters (WECs). To address this, the twin-floater CECO WEC has been redesigned into a single-pivot device called [...] Read more.
Harnessing Europe’s strong wave energy could support net-zero emissions goals, but extreme ocean loads still make wave energy expensive and delay the rollout of commercial wave-energy converters (WECs). To address this, the twin-floater CECO WEC has been redesigned into a single-pivot device called the Pivoting WEC (PWEC), which includes a passive duck diving survival mode to reduce extreme wave impacts. Its performance is evaluated using detailed wave simulations based on Reynolds-Averaged Navier–Stokes (RANS) equations and the Volume-of-Fluid (VoF) method in OpenFOAM-olaFlow, which is validated with data from small-scale (1:20) wave tank experiments. Extreme non-breaking and breaking waves are simulated based on 100-year hindcast data for the case study site of Matosinhos (Portugal) using a modified Miche criterion. These are validated using data of surface elevation and force sensors. Wave height errors averaged 5.13%, and period errors remain below 0.75%. The model captures well major wave loads with a root mean square error down to 47 kN compared to a peak load of 260 kN and an R2 up to 0.80. The most violent plunging waves increase peak forces by 5 to 30% compared to the highest non-breaking crests. The validated numerical approach provides accurate extreme load predictions and confirms the effectiveness of the PWEC’s passive duck diving survival mode. The results contribute to the development of structurally resilient WECs, supporting the progress of WECs toward higher readiness levels. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

Back to TopTop