Bi-Layer Model Predictive Control with Extended Horizons for Multi-Axis Underactuated Wave Energy Converters
Abstract
1. Introduction
2. Energy Conversion Principle and Control-Oriented Dynamic Modeling of MU-WEC
2.1. Inertia-Driven Mechanism and Energy Conversion Principle of MU-WEC
2.2. Control-Oriented Modeling of MU-WEC with Two-Body Coupling Dynamics
3. Bi-Layer Model Predictive Control Strategy
3.1. Framework of Bi-Layer MPC Strategy
3.2. Long-Term Energy Maximizing Layer
3.3. Short-Term Trajectory-Tracking Layer
3.4. Cable Tension Distribution of the Control Force
4. Simulation and Results
4.1. Simulation Settings
4.2. Generation of Wave Excitation
4.3. Optimization of Mechanical Parameters
4.4. Comparison Between the BI-Layer MPC and Conventional MPC
4.5. Effects of the Trajectory Update Latency
4.6. Performance Evaluation Under Extreme Wave Conditions
4.7. Performance Evaluation Under Wave Prediction Errors and Extreme Wave Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Cheng, Y.; Liu, W.; Dai, S.; Yuan, Z.; Incecik, A. Wave energy conversion by multi-mode exciting wave energy converters arrayed around a floating platform. Energy 2024, 313, 133621. [Google Scholar] [CrossRef]
- Lande-Sudall, D.R.; Nyland, J.; Rykkje, T.R.; Stansby, P.K.; Impelluso, T. Hydrodynamic modelling of a multi-body wave energy converter using the Moving Frame Method. Mar. Struct. 2023, 87, 103332. [Google Scholar] [CrossRef]
- Liao, Z.; Stansby, P.; Li, G. A generic linear non-causal optimal control framework integrated with wave excitation force prediction for multi-mode wave energy converters with application to M4. Appl. Ocean. Res. 2020, 97, 102056. [Google Scholar] [CrossRef]
- Tran, N.; Sergiienko, N.Y.; Cazzolato, B.S.; Ghayesh, M.H.; Arjomandi, M. Design considerations for a three-tethered point absorber wave energy converter with nonlinear coupling between hydrodynamic modes. Ocean. Eng. 2022, 254, 111351. [Google Scholar] [CrossRef]
- Ali, R.; Meek, M.; Robertson, B. Submerged wave energy converter dynamics and the impact of PTO-mooring configuration on power performance. Renew. Energ. 2025, 243, 122525. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Z.; Liu, J.; Jin, Z.; Zhang, X.; Gao, F. Efficiency analysis of a 3-DOF wave energy converter (SJTU-WEC) based on modeling, simulation and experiment. Energy 2021, 220, 119718. [Google Scholar] [CrossRef]
- Ma, Y.; Xie, G.; Liu, S.; Zhao, T.; Zhu, Y.; Zhang, X. Hydrodynamic performance investigation of the multi-degree of freedom oscillating-buoy wave energy converter. Ocean. Eng. 2023, 285, 115345. [Google Scholar] [CrossRef]
- Yu, T.; Chen, X.; Tang, Y.; Wang, J.; Wang, Y.; Huang, S. Numerical modelling of wave run-up heights and loads on multi-degree-of-freedom buoy wave energy converters. Appl. Energ. 2023, 344, 121255. [Google Scholar] [CrossRef]
- Michailides, C.; Loukogeorgaki, E.; Sheng, W.; Aggidis, G. Response and Power Absorption Assessment of the TALOS Wave Energy Converter in Time Domain. Int. J. Offshore Polar 2024, 34, 29–36. [Google Scholar] [CrossRef]
- Shadmani, A.; Nikoo, M.R.; Gandomi, A.H.; Chen, M. An optimization approach for geometry design of multi-axis wave energy converter. Energy 2024, 301, 131714. [Google Scholar] [CrossRef]
- Yao, T.; Wang, Y.; Wang, Z.; Li, T.; Tan, Z. Research on Energy-Capture Characteristics of a Direct-Drive Wave-Energy Converter Based on Parallel Mechanism. Energies 2022, 15, 1670. [Google Scholar] [CrossRef]
- Clemente, D.; Rosa-Santos, P.; Taveira-Pinto, F.; Martins, P.; Paulo-Moreira, A. Proof-of-concept study on a wave energy converter based on the roll oscillations of multipurpose offshore floating platforms. Energ. Convers. Manag. 2020, 224, 113363. [Google Scholar] [CrossRef]
- Carapellese, F.; Pasta, E.; Paduano, B.; Faedo, N.; Mattiazzo, G. Intuitive LTI energy-maximising control for multi-degree of freedom wave energy converters: The PeWEC case. Ocean. Eng. 2022, 256, 111444. [Google Scholar] [CrossRef]
- Antoniadis, I.A.; Georgoutsos, V.; Paradeisiotis, A. Fully enclosed multi-axis inertial reaction mechanisms for wave energy conversion. J. Ocean. Eng. Sci. 2017, 2, 5–17. [Google Scholar] [CrossRef]
- Aggidis, G.A.; Taylor, C.J. Overview of wave energy converter devices and the development of a new multi-axis laboratory prototype. IFAC-Pap. 2017, 50, 15651–15656. [Google Scholar] [CrossRef]
- Ringwood, J.V.; Zhan, S.; Faedo, N. Empowering wave energy with control technology: Possibilities and pitfalls. Annu. Rev. Control 2023, 55, 18–44. [Google Scholar] [CrossRef]
- Faedo, N.; Carapellese, F.; Pasta, E.; Mattiazzo, G. On the principle of impedance-matching for underactuated wave energy harvesting systems. Appl. Ocean. Res. 2022, 118, 102958. [Google Scholar] [CrossRef]
- Barone, P.; Truscelli, F.; Castiglione, T.; Bova, S. Latching control of a point-absorber wave energy converter with a hydraulic power take-off system: A calabrian case study. Ocean. Eng. 2024, 310, 118775. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, S. Latching control: A wave energy converter inspired vibration control strategy. Mech. Syst. Signal Process. 2024, 208, 110912. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, M.; Zhang, D.; Yuan, Z. Optimal declutching control of hinged multiple floating bodies. Ocean. Eng. 2024, 306, 117992. [Google Scholar] [CrossRef]
- Zou, S.; Abdelkhalik, O. Time-varying linear quadratic Gaussian optimal control for three-degree-of-freedom wave energy converters. Renew. Energ. 2020, 149, 217–225. [Google Scholar] [CrossRef]
- Ligeikis, C.H.; Scruggs, J.T. Causal, Stochastic MPC for Wave Energy Converters. IEEE Trans. Control Syst. Technol. 2024, 32, 351–367. [Google Scholar] [CrossRef]
- Faedo, N.; Olaya, S.; Ringwood, J.V. Optimal control, MPC and MPC-like algorithms for wave energy systems: An overview. IFAC J. Syst. Control 2017, 1, 37–56. [Google Scholar] [CrossRef]
- Hall, C.; Sheng, W.; Wu, Y.; Aggidis, G. The impact of model predictive control structures and constraints on a wave energy converter with hydraulic power take off system. Renew. Energ. 2024, 224, 120172. [Google Scholar] [CrossRef]
- Sergiienko, N.Y.; Cocho, M.; Cazzolato, B.S.; Pichard, A. Effect of a model predictive control on the design of a power take-off system for wave energy converters. Appl. Ocean. Res. 2021, 115, 102836. [Google Scholar] [CrossRef]
- Schwenzer, M.; Ay, M.; Bergs, T.; Abel, D. Review on model predictive control: An engineering perspective. Int. J. Adv. Manuf. Technol. 2021, 117, 1327–1349. [Google Scholar] [CrossRef]
- Zhan, S.; Chen, Y.; Ringwood, J.V. Computationally-efficient nonlinear model predictive control of wave energy converters with imperfect wave excitation previews. Ocean. Eng. 2025, 319, 120125. [Google Scholar] [CrossRef]
- Liao, Z.; Li, G. Model predictive control of a wave-to-wire wave energy converter system with non-linear dynamics and non-linear constraints using a tailored pseudo-spectral method. Energy 2024, 304, 132060. [Google Scholar] [CrossRef]
- Paparella, F.; Bacelli, G.; Paulmeno, A.; Mouring, S.E.; Ringwood, J.V. Multibody Modelling of Wave Energy Converters Using Pseudo-Spectral Methods with Application to a Three-Body Hinge-Barge Device. IEEE Trans. Sustain. Energy 2016, 7, 966–974. [Google Scholar] [CrossRef]
- Guerrero-Fernandez, J.L.; González-Villarreal, O.J.; Rossiter, J.A. Efficiency-aware nonlinear model-predictive control with real-time iteration scheme for wave energy converters. Int. J. Control 2023, 96, 1909–1921. [Google Scholar] [CrossRef]
- Zhan, S.; Stansby, P.; Liao, Z.; Li, G. A Fast Model Predictive Control Framework for Multi-Float and Multi-Mode-Motion Wave Energy Converters. IEEE Trans. Control Syst. Technol. 2023, 31, 1443–1450. [Google Scholar] [CrossRef]
- Lin, Z.; Huang, X.; Xiao, X. Approximate Dynamic Programming for Control of Wave Energy Converters with Implementation and Validation on a Point Absorber Prototype. IEEE Trans. Ind. Electron. 2024, 71, 4753–4761. [Google Scholar] [CrossRef]
- Liu, Z.; Jia, Y. Optimizing energy conversion efficiency of nonlinear wave energy converters via robust Koopman economic model predictive control. Ocean. Eng. 2025, 337, 121916. [Google Scholar] [CrossRef]
- Liang, H.; Qin, H.; Su, H.; Wen, Z.; Mu, L. Environmental-Sensing and adaptive optimization of wave energy converter based on deep reinforcement learning and computational fluid dynamics. Energy 2024, 297, 131254. [Google Scholar] [CrossRef]
- Bu, Y.; Swartz, C.L.E.; Wu, C. A two-level MPC method for the operation of a gas pipeline system under demand variation. Comput. Chem. Eng. 2024, 183, 108597. [Google Scholar] [CrossRef]
- Wei, X.; Wang, H.; Wang, K.; Li, K.; Li, M.; Luo, A. Robust Two-Layer Model Predictive Control for Full-Bridge NPC Inverter-Based Class-D Voltage Mode Amplifier. Electronics 2019, 8, 1346. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zhang, Y.; Ghaeminezhad, N.; Chen, J.; Wang, Z.; Hu, X.; Li, J. Module-Based Active Equalization for Battery Packs: A Two-Layer Model Predictive Control Strategy. IEEE Trans. Transp. Electrif. 2022, 8, 149–159. [Google Scholar] [CrossRef]
- Luan, F.; Wang, Z. Double-layer model predictive control for wave energy converters with model mismatch. Energy Rep. 2023, 9, 2463–2472. [Google Scholar] [CrossRef]
- Zhan, S.; Na, J.; Li, G.; Wang, B. Adaptive Model Predictive Control of Wave Energy Converters. IEEE Trans. Sustain. Energy 2020, 11, 229–238. [Google Scholar] [CrossRef]
- Ning, D.; Ding, B. Modelling and Optimisation of Wave Energy Converters; CRC Press: Boca Raton, FL, USA, 2023; pp. 98–105. [Google Scholar]
- Yu, J.; Tao, J.; Wang, G.; Li, X.; Wang, H. Research on stiffness control of a redundant cable-driven parallel mechanism. J. Mech. Sci. Technol. 2022, 36, 5735–5743. [Google Scholar] [CrossRef]
- Zhan, S.; Li, G.; Na, J.; He, W. Feedback noncausal model predictive control of wave energy converters. Control Eng. Pr. 2019, 85, 110–120. [Google Scholar] [CrossRef]
- Li, G.; Belmont, M.R. Model predictive control of sea wave energy converters—Part I: A convex approach for the case of a single device. Renew Energy 2014, 69, 453–463. [Google Scholar] [CrossRef]
- Zhai, M.; Sun, N.; Yang, T.; Fang, Y. Underactuated Mechanical Systems with Both Actuator and Actuated/Unactuated State Constraints: A Predictive Control-Based Approach. IEEE/ASME Trans. Mechatron. 2023, 28, 1359–1371. [Google Scholar] [CrossRef]
- Verhoeven, R. Analysis of the Workspace of Tendon-Based Stewart Platforms; University of Duisburg-Essen. 2004. Available online: https://core.ac.uk/works/20031398/?t=10f2cf9799a366e68221b60c5159fbe5-20031398 (accessed on 29 July 2024).
- Ding, D.; Liu, Y.; Wang, S. Computation of 3-D form-closure grasps. IEEE Trans. Robot. Autom. 2001, 17, 515–522. [Google Scholar] [CrossRef]
- Zarebidoki, M.; Dhupia, J.S.; Xu, W. A Review of Cable-Driven Parallel Robots: Typical Configurations, Analysis Techniques, and Control Methods. IEEE Robot. Autom. Mag. 2022, 29, 89–106. [Google Scholar] [CrossRef]
- Bachynski, E.E.; Young, Y.L.; Yeung, R.W. Analysis and optimization of a tethered wave energy converter in irregular waves. Renew. Energ. 2012, 48, 133–145. [Google Scholar] [CrossRef]
- Windt, C.; Davidson, J.; Ringwood, J.V. High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks. Renew. Sustain. Energy Rev. 2018, 93, 610–630. [Google Scholar] [CrossRef]
- Mohapatra, S.C.; Amouzadrad, P.; Bispo, I.B.D.S.; Guedes Soares, C. Hydrodynamic Response to Current and Wind on a Large Floating Interconnected Structure. J. Mar. Sci. Eng. 2025, 13, 63. [Google Scholar] [CrossRef]
- Bispo, I.B.S.; Mohapatra, S.C.; Soares, C.G. Numerical model of a WEC-type attachment of a moored submerged horizontal set of articulated plates. In Trends in Maritime Technology and Engineering; Taylor & Francis Group: Abingdon, UK, 2022; Volume 2, pp. 335–344. [Google Scholar]
- Bearing Friction, Power Loss and Starting Torque. Available online: https://www.skf.com/uk/products/rolling-bearings/principles-of-rolling-bearing-selection/bearing-selection-process/operating-temperature-and-speed/bearing-friction-power-loss-and-starting-torque (accessed on 15 September 2025).
- Han, L.; Wang, J.; Gao, J.; Wang, X.; Wu, H. Analysis of wave energy resources in northern waters of chudao island in Shandong province. Acta Energiae Solaris Sin 2020, 41, 165–171. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Zhang, Y.; Li, G. Non-Causal Linear Optimal Control of Wave Energy Converters with Enhanced Robustness by Sliding Mode Control. IEEE Trans. Sustain. Energy 2020, 11, 2201–2209. [Google Scholar] [CrossRef]













| Parameters | Values | Parameters | Values |
|---|---|---|---|
| 5 m | 3.6 m | ||
| 4 m | 2.5 m | ||
| 9 m | 2.5 m | ||
| 3 m | 1.5 m |
| Initialization //upper layer while ture Predict wave forces Update the current system state and time step Calculate energy-maximized trajectory Transfer the energy-maximized trajectory to the lower layer end //lower layer While ture if the calculation of upper layer is completed Update energy-maximized trajectory Predict wave forces Update the current system state and time step Track the updated energy maximization trajectory from the current time step else Predict wave forces Update the current system state and time step Track the energy maximization trajectory end end |
| Parameters | Values |
|---|---|
| PTO damping | 15.1 kN·s/m |
| PTO stiffness | 26.4 kN/m |
| Mass ratio | 1 |
| Total mass | 33,697 kg |
| Optimal annual mean power | 4201 W |
| Prediction Horizon | Iteration | ± 95% CI | P95 | P99 | Max. | Min. | Ave. | Deadline-Miss Rate | Constraint Violation Rate | |
|---|---|---|---|---|---|---|---|---|---|---|
| U | 0.5 | 2001 | [3.5 × 10−3, 3.6 × 10−3] | 4.9 × 10−3 | 5.9 × 10−3 | 0.011 | 2.7 × 10−3 | 3.5 × 10−3 | 0 | 0 |
| L | 2000 | [7.5 × 10−4, 7.7 × 10−4] | 1.3 × 10−3 | 1.8 × 10−3 | 2.5 × 10−3 | 4.7 × 10−4 | 7.6 × 10−4 | 0 | 0 | |
| U | 0.75 | 2001 | [3.5 × 10−3, 3.6 × 10−3] | 4.3 × 10−3 | 4.9 × 10−3 | 6.7 × 10−3 | 2.9 × 10−3 | 3.5 × 10−3 | 0 | 0 |
| L | 2000 | [6.0 × 10−4, 6.1 × 10−4] | 9.5 × 10−4 | 1.1 × 10−3 | 2.3 × 10−3 | 4.2 × 10−4 | 6.1 × 10−4 | 0 | 0 | |
| U | 1 | 2001 | [5.5 × 10−3, 5.6 × 10−3] | 6.6 × 10−3 | 7.2 × 10−3 | 8.1 × 10−3 | 4.1 × 10−3 | 5.5 × 10−3 | 0 | 0 |
| L | 2000 | [5.9 × 10−4, 5.9 × 10−4] | 8.1 × 10−4 | 9.4 × 10−4 | 1.4 × 10−3 | 4.5 × 10−4 | 5.9 × 10−4 | 0 | 0 | |
| U | 1.25 | 2001 | [9.3 × 10−3, 9.4 × 10−3] | 0.011 | 0.012 | 0.014 | 6.6 × 10−3 | 9.3 × 10−3 | 0 | 0 |
| L | 2000 | [6.7 × 10−4, 6.8 × 10−4] | 8.8 × 10−4 | 9.9 × 10−4 | 1.5 × 10−3 | 4.8 × 10−4 | 6.7 × 10−4 | 0 | 0 | |
| U | 1.5 | 2001 | [0.015, 0.015] | 0.019 | 0.021 | 0.023 | 0.010 | 0.015 | 0 | 0 |
| L | 2000 | [7.1 × 10−4, 7.3 × 10−4] | 9.9 × 10−4 | 1.3 × 10−3 | 2.5 × 10−3 | 5.7 × 10−4 | 7.2 × 10−4 | 0 | 0 | |
| U | 1.75 | 2001 | [0.023, 0.024] | 0.029 | 0.033 | 0.039 | 0.016 | 0.023 | 0 | 0 |
| L | 2000 | [7.2 × 10−4, 7.4 × 10−4] | 1.0 × 10−3 | 1.3 × 10−3 | 2.4 × 10−3 | 5.9 × 10−4 | 7.3 × 10−4 | 0 | 0 | |
| U | 2 | 1999 | [0.033, 0.033] | 0.041 | 0.045 | 0.050 | 0.022 | 0.033 | 0 | 0 |
| L | 2000 | [7.1 × 10−4, 7.3 × 10−4] | 9.8 × 10−4 | 1.1 × 10−3 | 2.5 × 10−3 | 4.5 × 10−4 | 7.2 × 10−4 | 0 | 0 | |
| U | 2.25 | 1691 | [0.044, 0.044] | 0.055 | 0.060 | 0.066 | 0.030 | 0.044 | 0 | 0 |
| L | 2000 | [6.8 × 10−4, 6.9 × 10−4] | 9.8 × 10−4 | 1.1 × 10−3 | 1.4 × 10−3 | 4.3 × 10−4 | 6.8 × 10−4 | 0 | 0 | |
| U | 2.5 | 1096 | [0.058, 0.059] | 0.075 | 0.081 | 0.089 | 0.039 | 0.058 | 0 | 0 |
| L | 2000 | [6.1 × 10−4, 6.2 × 10−4] | 9.1 × 10−4 | 1.1 × 10−3 | 1.2 × 10−3 | 4.2 × 10−4 | 6.1 × 10−4 | 0 | 0 | |
| U | 2.75 | 979 | [0.075, 0.076] | 0.099 | 0.11 | 0.12 | 0.050 | 0.076 | 0 | 0 |
| L | 2000 | [5.9 × 10−4, 6.0 × 10−4] | 9.1 × 10−4 | 1.1 × 10−3 | 1.5 × 10−3 | 4.0 × 10−4 | 6.0 × 10−4 | 0 | 0 | |
| U | 3 | 850 | [0.096, 0.098] | 0.13 | 0.13 | 0.16 | 0.067 | 0.097 | 0 | 0 |
| L | 2000 | [5.7 × 10−4, 5.8 × 10−4] | 8.6 × 10−4 | 1.0 × 10−3 | 1.5 × 10−3 | 3.9 × 10−4 | 5.8 × 10−4 | 0 | 0 | |
| U | 3.25 | 677 | [0.12, 0.12] | 0.16 | 0.18 | 0.20 | 0.078 | 0.12 | 0 | 0 |
| L | 2000 | [5.5 × 10−4, 5.6 × 10−4] | 8.4 × 10−4 | 1.0 × 10−3 | 1.6 × 10−3 | 3.9 × 10−4 | 5.6 × 10−4 | 0 | 0 | |
| U | 3.5 | 578 | [0.15, 0.15] | 0.20 | 0.22 | 0.24 | 0.097 | 0.15 | 0 | 0 |
| L | 2000 | [5.7 × 10−4, 5.9 × 10−4] | 9.7 × 10−4 | 1.2 × 10−3 | 2.5 × 10−3 | 3.7 × 10−4 | 5.8 × 10−4 | 0 | 0 | |
| U | 3.75 | 457 | [0.19, 0.20] | 0.28 | 0.39 | 0.45 | 0.11 | 0.20 | 0 | 0 |
| L | 2000 | [5.6 × 10−4, 5.8 × 10−4] | 9.7 × 10−4 | 1.4 × 10−3 | 3.9 × 10−3 | 3.7 × 10−4 | 5.7 × 10−4 | 0 | 0 | |
| U | 4 | 378 | [0.23, 0.24] | 0.32 | 0.36 | 0.38 | 0.15 | 0.24 | 0 | 0 |
| L | 2000 | [5.7 × 10−4, 5.9 × 10−4] | 9.8 × 10−4 | 1.6 × 10−3 | 2.8 × 10−3 | 3.8 × 10−4 | 5.8 × 10−4 | 0 | 0 | |
| U | 4.25 | 336 | [0.27, 0.28] | 0.35 | 0.40 | 0.41 | 0.19 | 0.28 | 0 | 0 |
| L | 2000 | [5.3 × 10−4, 5.4 × 10−4] | 8.3 × 10−4 | 1.2 × 10−3 | 1.9 × 10−3 | 3.8 × 10−4 | 5.4 × 10−4 | 0 | 0 | |
| U | 4.5 | 279 | [0.33, 0.34] | 0.44 | 0.48 | 0.58 | 0.21 | 0.34 | 0 | 0 |
| L | 2000 | [5.1 × 10−4, 5.3 × 10−4] | 8.5 × 10−4 | 1.3 × 10−3 | 2.9 × 10−3 | 3.7 × 10−4 | 5.2 × 10−4 | 0 | 0 | |
| U | 4.75 | 243 | [0.38, 0.40] | 0.50 | 0.56 | 0.60 | 0.24 | 0.39 | 0 | 0 |
| L | 2000 | [4.8 × 10−4, 4.9 × 10−4] | 7.3 × 10−4 | 1.1 × 10−3 | 2.2 × 10−3 | 3.6 × 10−4 | 4.9 × 10−4 | 0 | 0 | |
| U | 5 | 212 | [0.44, 0.46] | 0.62 | 0.70 | 0.79 | 0.30 | 0.45 | 0 | 0 |
| L | 2000 | [4.8 × 10−4, 4.9 × 10−4] | 7.5 × 10−4 | 1.1 × 10−3 | 1.8 × 10−3 | 3.7 × 10−4 | 4.9 × 10−4 | 0 | 0 |
| Prediction Horizon | Iteration | ± 95% CI | P95 | P99 | Max. | Min. | Ave. | Deadline -Miss Rate | Constraint Violation Rate | |
|---|---|---|---|---|---|---|---|---|---|---|
| C | 0.5 | 2000 | [3.6 × 10−3, 3.7 × 10−3] | 5.0 × 10−3 | 5.9 × 10−3 | 7.4 × 10−3 | 2.7 × 10−3 | 3.6 × 10−3 | 0.00% | 0 |
| MM | 2000 | [3.7 × 10−3, 3.7 × 10−3] | 4.3 × 10−3 | 4.8 × 10−3 | 0.010 | 3.0 × 10−3 | 3.7 × 10−3 | 0.00% | 0 | |
| C | 0.75 | 2000 | [3.4 × 10−3, 3.5 × 10−3] | 4.1 × 10−3 | 4.8 × 10−3 | 7.0 × 10−3 | 2.8 × 10−3 | 3.4 × 10−3 | 0.00% | 0 |
| MM | 2000 | [4.0 × 10−3, 4.0 × 10−3] | 4.4 × 10−3 | 4.7 × 10−3 | 6.2 × 10−3 | 3.3 × 10−3 | 4.0 × 10−3 | 0.00% | 0 | |
| C | 1 | 2000 | [5.5 × 10−3, 5.6 × 10−3] | 6.7 × 10−3 | 7.5 × 10−3 | 8.9 × 10−3 | 4.1 × 10−3 | 5.6 × 10−3 | 0.00% | 0 |
| MM | 2000 | [5.8 × 10−3, 5.8 × 10−3] | 6.7 × 10−3 | 7.1 × 10−3 | 9.9 × 10−3 | 4.7 × 10−3 | 5.8 × 10−3 | 0.00% | 0 | |
| C | 1.25 | 2000 | [8.7 × 10−3, 8.8 × 10−3] | 0.011 | 0.012 | 0.014 | 6.4 × 10−3 | 8.8 × 10−3 | 0.00% | 0 |
| MM | 2000 | [8.9 × 10−3, 9.0 × 10−3] | 0.011 | 0.012 | 0.014 | 6.7 × 10−3 | 8.9 × 10−3 | 0.00% | 0 | |
| C | 1.5 | 2000 | [0.014, 0.014] | 0.017 | 0.019 | 0.022 | 9.2 × 10−3 | 0.014 | 0.00% | 0 |
| MM | 2000 | [0.014, 0.014] | 0.017 | 0.019 | 0.022 | 9.9 × 10−3 | 0.014 | 0.00% | 0 | |
| C | 1.75 | 2000 | [0.022, 0.022] | 0.027 | 0.029 | 0.035 | 0.015 | 0.022 | 0.00% | 0 |
| MM | 2000 | [0.021, 0.022] | 0.026 | 0.029 | 0.033 | 0.014 | 0.021 | 0.00% | 0 | |
| C | 2 | 2000 | [0.031, 0.031] | 0.039 | 0.042 | 0.054 | 0.019 | 0.031 | 0.05% | 0 |
| MM | 2000 | [0.030, 0.030] | 0.038 | 0.041 | 0.053 | 0.019 | 0.030 | 0.15% | 0 | |
| C | 2.25 | 2000 | [0.042, 0.043] | 0.053 | 0.058 | 0.091 | 0.028 | 0.042 | 11.75% | 0 |
| MM | 2000 | [0.041, 0.041] | 0.051 | 0.057 | 0.061 | 0.028 | 0.041 | 7.25% | 0 | |
| C | 2.5 | 2000 | [0.055, 0.056] | 0.071 | 0.078 | 0.090 | 0.037 | 0.056 | 73.40% | 0 |
| MM | 2000 | [0.053, 0.054] | 0.066 | 0.074 | 0.082 | 0.034 | 0.053 | 64.35% | 0 | |
| C | 2.75 | 2000 | [0.072, 0.073] | 0.093 | 0.099 | 0.12 | 0.046 | 0.073 | 99.50% | 0 |
| MM | 2000 | [0.068, 0.069] | 0.087 | 0.096 | 0.13 | 0.045 | 0.069 | 98.30% | 0 | |
| C | 3 | 2000 | [0.11, 0.12] | 0.17 | 0.20 | 0.28 | 0.057 | 0.11 | 100.00% | 0 |
| MM | 2000 | [0.088, 0.089] | 0.11 | 0.12 | 0.13 | 0.053 | 0.088 | 100.00% | 0 | |
| C | 3.25 | 2000 | [0.16, 0.16] | 0.22 | 0.26 | 0.43 | 0.088 | 0.16 | 100.00% | 0 |
| MM | 2000 | [0.11, 0.11] | 0.15 | 0.17 | 0.23 | 0.072 | 0.11 | 100.00% | 0 | |
| C | 3.5 | 2000 | [0.18, 0.18] | 0.26 | 0.30 | 0.41 | 0.095 | 0.18 | 100.00% | 0 |
| MM | 2000 | [0.15, 0.16] | 0.21 | 0.23 | 0.41 | 0.085 | 0.16 | 100.00% | 0 | |
| C | 3.75 | 2000 | [0.25, 0.25] | 0.33 | 0.36 | 0.42 | 0.12 | 0.25 | 100.00% | 0 |
| MM | 2000 | [0.19, 0.19] | 0.27 | 0.34 | 0.48 | 0.11 | 0.19 | 100.00% | 0 | |
| C | 4 | 2000 | [0.33, 0.34] | 0.60 | 0.72 | 0.81 | 0.15 | 0.33 | 100.00% | 0 |
| MM | 2000 | [0.25, 0.26] | 0.34 | 0.39 | 0.52 | 0.15 | 0.26 | 100.00% | 0 | |
| C | 4.25 | 2000 | [0.35, 0.37] | 0.60 | 0.83 | 0.98 | 0.17 | 0.36 | 100.00% | 0 |
| MM | 2000 | [0.29, 0.30] | 0.38 | 0.44 | 0.60 | 0.18 | 0.29 | 100.00% | 0 | |
| C | 4.5 | 2000 | [0.36, 0.37] | 0.61 | 0.88 | 1.1 | 0.20 | 0.36 | 100.00% | 0 |
| MM | 2000 | [0.36, 0.36] | 0.48 | 0.59 | 0.84 | 0.22 | 0.36 | 100.00% | 0 | |
| C | 4.75 | 2000 | [0.37, 0.37] | 0.48 | 0.53 | 0.59 | 0.24 | 0.37 | 100.00% | 0 |
| MM | 2000 | [0.43, 0.44] | 0.61 | 0.71 | 1.0 | 0.24 | 0.43 | 100.00% | 0 | |
| C | 5 | 2000 | [0.44, 0.45] | 0.58 | 0.74 | 1.1 | 0.28 | 0.44 | 100.00% | 0 |
| MM | 2000 | [0.51, 0.53] | 0.73 | 0.89 | 1.2 | 0.28 | 0.52 | 100.00% | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Chen, Y. Bi-Layer Model Predictive Control with Extended Horizons for Multi-Axis Underactuated Wave Energy Converters. J. Mar. Sci. Eng. 2025, 13, 1902. https://doi.org/10.3390/jmse13101902
Lu X, Chen Y. Bi-Layer Model Predictive Control with Extended Horizons for Multi-Axis Underactuated Wave Energy Converters. Journal of Marine Science and Engineering. 2025; 13(10):1902. https://doi.org/10.3390/jmse13101902
Chicago/Turabian StyleLu, Xinrui, and Yuan Chen. 2025. "Bi-Layer Model Predictive Control with Extended Horizons for Multi-Axis Underactuated Wave Energy Converters" Journal of Marine Science and Engineering 13, no. 10: 1902. https://doi.org/10.3390/jmse13101902
APA StyleLu, X., & Chen, Y. (2025). Bi-Layer Model Predictive Control with Extended Horizons for Multi-Axis Underactuated Wave Energy Converters. Journal of Marine Science and Engineering, 13(10), 1902. https://doi.org/10.3390/jmse13101902
