Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (166)

Search Parameters:
Keywords = water retention and drainage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1437 KiB  
Article
Exploration of Microbially Induced Carbonate Precipitation Technology for the Protection of Soil on Agricultural Drainage Ditch Slopes
by Xinran Huang, Jiang Li, Mingxiao Su, Xiyun Jiao, Qiuming Wu and Zhe Gu
Water 2025, 17(13), 2010; https://doi.org/10.3390/w17132010 - 4 Jul 2025
Viewed by 382
Abstract
Microbially induced carbonate precipitation (MICP) offers an eco-friendly approach to stabilize porous materials. This study evaluates its feasibility for protecting agricultural drainage ditch slopes through laboratory tests. Liquid experiments assessed calcium carbonate (CaCO3) precipitation rates under varying bacteria–cementation solution ratios (BCR), [...] Read more.
Microbially induced carbonate precipitation (MICP) offers an eco-friendly approach to stabilize porous materials. This study evaluates its feasibility for protecting agricultural drainage ditch slopes through laboratory tests. Liquid experiments assessed calcium carbonate (CaCO3) precipitation rates under varying bacteria–cementation solution ratios (BCR), cementation solution concentrations (1–2 mol/L), and urease inhibitor (NBPT) contents (0–0.3%). Soil experiments further analyzed the effects of solidified layer thickness (4 cm vs. 8 cm) and curing cycles on soil stabilization. The results showed that CaCO3 precipitation peaked at a BCR of 4:5 and declined when NBPT exceeded 0.1%. Optimal parameters (0.1% NBPT, 1 mol/L cementation solution, BCR 4:5) were applied to soil tests, revealing that multi-cycle treatments enhanced soil water retention and CaCO3 content (up to 7.6%) and reduced disintegration rates (by 70%) and permeability (by 83%). A 4 cm solidified layer achieved higher Ca2+ utilization, while an 8 cm layer matched or exceeded 4 cm performance with shorter curing. Calcite crystals dominated CaCO3 formation. Crucially, reagent dosage should approximate four times the target layer’s requirement to ensure efficacy. These findings demonstrate that MICP, when optimized, effectively stabilizes ditch slopes using minimal reagents, providing a sustainable strategy for agricultural soil conservation. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

17 pages, 3175 KiB  
Article
Impact of Different Building Roof Types on Hydrological Processes at the Urban Community Scale
by Chaohui Chen, Hao Hou, Yongguo Shi, Ping Zhao, Yao Li, Yong Wang, Yindong Zhang and Tangao Hu
Hydrology 2025, 12(6), 154; https://doi.org/10.3390/hydrology12060154 - 18 Jun 2025
Viewed by 481
Abstract
As urbanization accelerates and urban hydrological cycles evolve, roof typology emerges as a pivotal role in water retention capacity and drainage efficiency. To systematically evaluate the influence of various roof types on urban hydrological processes, this study designed four distinct catchment scenarios: Thiessen [...] Read more.
As urbanization accelerates and urban hydrological cycles evolve, roof typology emerges as a pivotal role in water retention capacity and drainage efficiency. To systematically evaluate the influence of various roof types on urban hydrological processes, this study designed four distinct catchment scenarios: Thiessen Polygon Scenarios (TS), Roof Type Consideration Scenarios (RS), Full Flat-Roof Scenarios (FS), and Full Pitched-Roof Scenarios (PS). This study employed the Urban Flood Intelligent Model (UFIM) to simulate urban flooding scenarios, utilizing precipitation data from 21 August 2024 combined with four distinct return periods (1a, 5a, 10a, and 20a) as hydrological inputs. The results show that roof types significantly affected hydrological processes in urban communities. Flat roofs accumulate water and drain slowly, making it easy to form larger areas of accumulated water during peak rainfall periods, thereby increasing the risk of urban flooding. Pitched roofs drain quickly but experience a brief rise in water level during peak hours due to rapid drainage. Based on these insights, priority should be given to the use of sloped roof design in areas prone to accumulated water to accelerate drainage. In areas requiring runoff mitigation, the strategic integration of flat roofs with green roofs enhances rainwater retention capacity, thereby optimizing urban hydrological regulation and bolstering flood resilience. Full article
(This article belongs to the Special Issue Advances in Urban Hydrology and Stormwater Management)
Show Figures

Figure 1

30 pages, 8526 KiB  
Article
Water-Sensitive Urban Design (WSUD) Performance in Mitigating Urban Flooding in a Wet Tropical North Queensland Sub-Catchment
by Sher Bahadur Gurung, Robert J. Wasson, Michael Bird and Ben Jarihani
Hydrology 2025, 12(6), 151; https://doi.org/10.3390/hydrology12060151 - 15 Jun 2025
Viewed by 553
Abstract
Existing wet tropical urban drainage systems often fail to accommodate runoff generated during extreme rainfall. Water-sensitive urban design (WSUD) systems have the potential to retrofit the existing urban drainage system by enhancing infiltration and retention functions. However, studies supporting this assumption were based [...] Read more.
Existing wet tropical urban drainage systems often fail to accommodate runoff generated during extreme rainfall. Water-sensitive urban design (WSUD) systems have the potential to retrofit the existing urban drainage system by enhancing infiltration and retention functions. However, studies supporting this assumption were based on temperate or arid climatic conditions, raising questions about its relevance in wet tropical catchments. To answer these questions, in this study a comprehensive modelling study of WSUD effectiveness in a tropical environment was implemented. Engineers Park, a small sub-catchment of 0.27 km2 at Saltwater Creek, Cairns, Queensland, Australia was the study site in which the flood mitigation capabilities of grey and WSUD systems under major (1% Annual Exceedance Probability—AEP), moderate (20% AEP), and minor (63.2% AEP) magnitudes of rainfall were evaluated. A detailed one-dimensional (1D) and coupled 1D2D hydrodynamic model in MIKE+ were developed and deployed for this study. The results highlighted that the existing grey infrastructure within the catchment underperformed during major events resulting in high peak flows and overland flow, while minor rainfall events increased channel flow and shifted the location of flooding. However, the integration of WSUD with grey infrastructure reduced peak flow by 0% to 42%, total runoff volume by 0.9% to 46%, and the flood extent ratio to catchment area from 0.3% to 1.1%. Overall, the WSUD integration positively contributed to reduced flooding in this catchment, highlighting its potential applicability in tropical catchments subject to intense rainfall events. However, careful consideration is required before over-generalization of these results, since the study area is small. The results of this study can be used in similar study sites by decision-makers for planning and catchment management purposes, but with careful interpretation. Full article
Show Figures

Figure 1

23 pages, 4743 KiB  
Article
Utilizing Remote Sensing for Sponge City Development: Enhancing Flood Management and Urban Resilience in Karachi
by Asifa Iqbal, Lubaina Soni, Ammad Waheed Qazi and Humaira Nazir
Remote Sens. 2025, 17(11), 1818; https://doi.org/10.3390/rs17111818 - 23 May 2025
Viewed by 2199
Abstract
Rapid urbanization in Karachi, Pakistan, has resulted in increased impervious surfaces, leading to significant challenges, such as frequent flooding, urban heat islands, and loss of vegetation. These issues pose challenges to urban resilience, livability, and sustainability, which further demand solutions that incorporate urban [...] Read more.
Rapid urbanization in Karachi, Pakistan, has resulted in increased impervious surfaces, leading to significant challenges, such as frequent flooding, urban heat islands, and loss of vegetation. These issues pose challenges to urban resilience, livability, and sustainability, which further demand solutions that incorporate urban greening and effective water management. This research uses remote sensing technologies and Geographic Information Systems (GISs), to analyze current surface treatments and their relationship to Karachi’s blue-green infrastructure. By following this approach, we evaluate flood risk and identify key flood-conditioning factors, including elevation, slope, rainfall distribution, drainage density, and land use/land cover changes. By utilizing the Analytical Hierarchy Process (AHP), we develop a flood risk assessment framework and a comprehensive flood risk map. Additionally, this research proposes an innovative Sponge City (SC) framework that integrates nature-based solutions (NBS) into urban planning, especially advocating for the establishment of green infrastructure, such as green roofs, rain gardens, and vegetated parks, to enhance water retention and drainage capacity. The findings highlight the urgent need for targeted policies and stakeholder engagement strategies to implement sustainable urban greening practices that address flooding and enhance the livability of Karachi. This work not only advances the theoretical understanding of Sponge Cities but also provides practical insights for policymakers, urban planners, and local communities facing similar sustainability challenges. Full article
Show Figures

Figure 1

26 pages, 9187 KiB  
Article
A New Perspective on Blue–Green Infrastructure for Climate Adaptation in Urbanized Areas: A Soil-Pipe System as a Multifunctional Solution
by Henrike Walther, Christoph Bennerscheidt, Dirk Jan Boudeling, Markus Streckenbach, Felix Simon, Christoph Mudersbach, Saphira Schnaut, Mark Oelmann and Markus Quirmbach
Land 2025, 14(5), 1065; https://doi.org/10.3390/land14051065 - 14 May 2025
Viewed by 939
Abstract
The implementation of a decentralized blue–green infrastructure (BGI) is a key strategy in climate adaptation and stormwater management. However, the integration of urban trees into the multifunctional infrastructure remains insufficiently addressed, particularly regarding rooting space in dense urban environments. Addressing this gap, the [...] Read more.
The implementation of a decentralized blue–green infrastructure (BGI) is a key strategy in climate adaptation and stormwater management. However, the integration of urban trees into the multifunctional infrastructure remains insufficiently addressed, particularly regarding rooting space in dense urban environments. Addressing this gap, the BoRSiS project developed the soil-pipe system (SPS), which repurposes the existing underground pipe trenches and roadway space to provide trees with significantly larger root zones without competing for additional urban space. This enhances tree-related ecosystem services, such as cooling, air purification, and runoff reduction. The SPS serves as a stormwater retention system by capturing excess rainwater during heavy precipitation events of up to 180 min, reducing the pressure on drainage systems. System evaluations show that, on average, each SPS module (20 m trench length) can store 1028–1285 L of water, enabling a moisture supply to trees for 3.4 to 25.7 days depending on the species and site conditions. This capacity allows the system to buffer short-term drought periods, which, according to climate data, recur with frequencies of 9 (7-day) and 2 (14-day) events per year. Geotechnical and economic assessments confirm the system stability and cost-efficiency. These findings position the SPS as a scalable, multifunctional solution for urban climate adaptation, tree vitality, and a resilient infrastructure. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

19 pages, 5008 KiB  
Article
The Application and Development of Innovative Models in the Sustainable Management of Natural Gully Consolidation and Highland Protection Projects
by Aidi Huo, Peizhe Li, Yilu Zhao, Mohamed EL-Sayed Abuarab, Salah Elsayed and Jinchun Zhang
Sustainability 2025, 17(10), 4329; https://doi.org/10.3390/su17104329 - 10 May 2025
Viewed by 533
Abstract
The Loess Plateau is threatened by severe gully erosion and tableland retreat, primarily driven by uncontrolled surface runoff. Numerical simulations of Gully Consolidation and Highland Protection (GCHP) demonstrate that individual measures such as check dams, terraces, and gully head backfilling can reduce sediment [...] Read more.
The Loess Plateau is threatened by severe gully erosion and tableland retreat, primarily driven by uncontrolled surface runoff. Numerical simulations of Gully Consolidation and Highland Protection (GCHP) demonstrate that individual measures such as check dams, terraces, and gully head backfilling can reduce sediment by 31–35% in the short term, but their effectiveness declines after approximately 10 years. This study classifies GCHP models into four types, progressively integrating drainage, filling, slope protection, and ecological measures. Simulation results confirm that the most comprehensive model—coupling all four types—offers the highest and most sustainable effectiveness in both erosion control and ecological restoration. To address long-term challenges, the study proposes a Sustainable Natural GCHP Management Method, combining cascade interception, guided drainage, and ecological retention, thereby enhancing project resilience and supporting China’s Yellow River Basin ecological protection strategy. Full article
(This article belongs to the Special Issue Geological Engineering and Sustainable Environment)
Show Figures

Figure 1

20 pages, 5116 KiB  
Review
Assessment of the Hydrological Performance of Grass Swales for Urban Stormwater Management: A Bibliometric Review from 2000 to 2023
by Xuefei Wang, Run Zhang, Qi Hu, Chuanhao Sun, Rana Muhammad Adnan Ikram, Mo Wang and Guo Cheng
Water 2025, 17(10), 1425; https://doi.org/10.3390/w17101425 - 9 May 2025
Viewed by 740
Abstract
Grass swales have emerged as a cost-effective and sustainable stormwater management solution, addressing the increasing challenges of urbanization, flooding, and water pollution. This study conducted a bibliometric analysis of 224 publications to assess research trends, key contributors, and knowledge gaps in grass swale [...] Read more.
Grass swales have emerged as a cost-effective and sustainable stormwater management solution, addressing the increasing challenges of urbanization, flooding, and water pollution. This study conducted a bibliometric analysis of 224 publications to assess research trends, key contributors, and knowledge gaps in grass swale applications. Findings highlighted the growing emphasis on optimizing hydrological performance, particularly in response to intensifying climate change and urban flood risks. Experimental and simulation-based studies have demonstrated that grass swale efficiency is influenced by multiple design factors, including vegetation type, substrate composition, hydraulic retention time, and slope gradient. Notably, pollutant removal efficiency varies significantly, with total suspended solids (TSS) reduced by 34.09–89.90%, chemical oxygen demand (COD) by 7.75–56.71%, and total nitrogen (TN) by 32.37–56.71%. Additionally, studies utilizing the Storm Water Management Model (SWMM) and TRAVA models have demonstrated that integrating grass swales into urban drainage systems can result in a 17% reduction in total runoff volume and peak flow attenuation. Despite these advancements, key research gaps remain, including cost-effective design strategies, long-term maintenance protocols, and integration with other green infrastructure systems. Future research should focus on developing innovative, low-cost swale designs, refining optimal vegetation selection, and assessing seasonal variations in performance. Addressing these challenges will enhance the scientific foundation for grass swale implementation, ensuring their sustainable integration into climate-resilient urban planning. Full article
Show Figures

Figure 1

18 pages, 12080 KiB  
Article
Synergistic Regulation of Soil Salinity and Ion Transport in Arid Agroecosystems: A Field Study on Drip Irrigation and Subsurface Drainage in Xinjiang, China
by Qianqian Zhu, Hui Wang, Honghong Ma, Feng Ding, Wanli Xu, Xiaopeng Ma and Yanbo Fu
Water 2025, 17(9), 1388; https://doi.org/10.3390/w17091388 - 5 May 2025
Viewed by 592
Abstract
The salinization of cultivated soil in arid zones is a core obstacle restricting the sustainable development of agriculture, particularly in regions like Xinjiang, China, where extreme aridity and intensive irrigation practices exacerbate salt accumulation through evaporation–crystallization cycles. Conventional drip irrigation, while temporarily mitigating [...] Read more.
The salinization of cultivated soil in arid zones is a core obstacle restricting the sustainable development of agriculture, particularly in regions like Xinjiang, China, where extreme aridity and intensive irrigation practices exacerbate salt accumulation through evaporation–crystallization cycles. Conventional drip irrigation, while temporarily mitigating surface salinity, often leads to secondary salinization due to elevated water tables and inefficient leaching. Recent studies highlight the potential of integrating drip irrigation with subsurface drainage systems to address these challenges, yet the synergistic mechanisms governing ion transport dynamics, hydrochemical thresholds, and their interaction with crop physiology remain poorly understood. In this study, we analyzed the effects of spring irrigation during the non-fertile period, soil hydrochemistry variations, and salt ion dynamics across three arid agroecosystems in Xinjiang. By coupling drip irrigation with optimized subsurface drainage configurations (burial depths: 1.4–1.6 m; lateral spacing: 20–40 m), we reveal a layer-domain differentiation in salt migration, Cl and Na+ were leached to 40–60 cm depths, while SO42− formed a “stagnant salt layer” at 20–40 cm due to soil colloid adsorption. Post-irrigation hydrochemical shifts included a 40% decline in conductivity, emphasizing the risk of adsorbed ion retention. Subsurface drainage systems suppressed capillary-driven salinity resurgence, maintaining salinity at 8–12 g·kg−1 in root zones during critical growth stages. This study establishes a “surface suppression–middle blocking–deep leaching” three-dimensional salinity control model, providing actionable insights for mitigating secondary salinization in arid agroecosystems. Full article
(This article belongs to the Special Issue Advanced Technologies in Agricultural Water-Saving Irrigation)
Show Figures

Figure 1

21 pages, 4253 KiB  
Article
Enhancing Urban Resilience: Stormwater Retention and Evapotranspiration Performance of Green Roofs Under Extreme Rainfall Events
by Marc Breulmann, Amelie Merbach, Katy Bernhard and Lucie Moeller
Land 2025, 14(5), 977; https://doi.org/10.3390/land14050977 - 1 May 2025
Viewed by 758
Abstract
Rapid urbanisation and climate change have intensified extreme rainfall events, exacerbating stormwater runoff and overwhelming urban drainage systems. Nature-based solutions, such as green roofs with integrated retention capacity, offer promising strategies to mitigate these challenges. This study investigates the influence of substrate thickness [...] Read more.
Rapid urbanisation and climate change have intensified extreme rainfall events, exacerbating stormwater runoff and overwhelming urban drainage systems. Nature-based solutions, such as green roofs with integrated retention capacity, offer promising strategies to mitigate these challenges. This study investigates the influence of substrate thickness and retention volume on the stormwater retention and evapotranspiration (ET) performance of three green roof variants under extreme rainfall scenarios (natural and 5-, 30- and 100-year events). Using lysimeter-based experimental setups, we show that the overall retention capacity is highly dependent on the filling status of the retention layer. Near full capacity, retention performance decreases significantly, resulting in runoff behaviour similar to that of conventional green roofs, while empty systems store up to 99% of rainfall. In addition, ET rates tend to decrease in systems with higher substrate layers and larger retention spaces due to reduced surface evaporation and greater thermal insulation. However, higher substrate layers store more water, allowing plants to maintain transpiration during dry periods, potentially increasing total cumulative ET over time. Overall, this study highlights the importance of designing intensive retention green roofs with dynamic water management to optimise both rainwater retention and ET, thereby increasing urban resilience to increasing rainfall extremes caused by climate change. Full article
(This article belongs to the Special Issue Potential for Nature-Based Solutions in Urban Green Infrastructure)
Show Figures

Figure 1

44 pages, 21810 KiB  
Review
A Historical Review of the Land Subsidence Phenomena Interaction with Flooding, Land Use Changes, and Storms at the East Thessaly Basin—Insights from InSAR Data
by Nikolaos Antoniadis and Constantinos Loupasakis
Land 2025, 14(4), 827; https://doi.org/10.3390/land14040827 - 10 Apr 2025
Viewed by 1567
Abstract
The Thessaly Plain, Greece’s largest alluvial basin, has undergone significant geological, hydrological, and anthropogenic transformations. This study synthesises historical records, geological and hydrogeological studies to assess the evolution of the East Thessaly Plain, focusing on land use changes, groundwater management, and environmental challenges. [...] Read more.
The Thessaly Plain, Greece’s largest alluvial basin, has undergone significant geological, hydrological, and anthropogenic transformations. This study synthesises historical records, geological and hydrogeological studies to assess the evolution of the East Thessaly Plain, focusing on land use changes, groundwater management, and environmental challenges. Intensive agricultural practices, particularly from the 1970s onward, have led to groundwater overexploitation, land subsidence, and declining water quality. The overexploitation of the aquifers, exacerbated by extensive irrigation and inefficient water management, has resulted in critical groundwater shortages and widespread subsidence, particularly in the Larissa–Karla and Titarisios Cone systems. Additionally, recent extreme weather events, including Medicane Daniel (2023) and Medicane Ianos (2020), have highlighted the region’s vulnerability to hydrological hazards, with extensive flooding affecting urban and agricultural areas. The re-emergence of Lake Karla as a flood retention area underscores the unintended consequences of past drainage efforts. Remote sensing, geodetic surveys, and historical records have been examined to assess the interplay between groundwater withdrawals, land subsidence, and flood risks. Full article
(This article belongs to the Special Issue Assessing Land Subsidence Using Remote Sensing Data)
Show Figures

Figure 1

27 pages, 9953 KiB  
Article
City Diagnosis as a Strategic Component in Preparing Urban Areas for Climate Change: Insights from the ‘City with Climate’ Project
by Katarzyna Samborska-Goik, Marta Pogrzeba, Joachim Bronder, Patrycja Obłój and Magdalena Głogowska
Appl. Sci. 2025, 15(8), 4092; https://doi.org/10.3390/app15084092 - 8 Apr 2025
Viewed by 690
Abstract
The aim of this study is to present a methodology for diagnosing cities in terms of hydrological and meteorological threats, with the goal of improving water management and helping cities adapt to changing conditions. Urbanisation is expected to progress unevenly across countries and [...] Read more.
The aim of this study is to present a methodology for diagnosing cities in terms of hydrological and meteorological threats, with the goal of improving water management and helping cities adapt to changing conditions. Urbanisation is expected to progress unevenly across countries and cities, influenced by factors such as climatic conditions, economic disparities, and governance structures. Consequently, urban landscapes should strive for a balanced approach that integrates safety and risk management, commercial spaces, emotional well-being, and the promotion of biodiversity. Cities play a pivotal role in addressing climate change, as they account for a significant share of global energy consumption and greenhouse gas emissions. In Poland, numerous national and international projects are being implemented to help cities mitigate the impacts of climate change. Among these, the City with Climate project aimed to enhance residents’ quality of life while facilitating a pro-climate transition for cities. A holistic and multifaceted approach was adopted, incorporating the analysis of historical flood events based on archival documents and rescue service reports, detailed GIS data such as soil sealing, non-drained basins, NDVI, NDBI, and a multi-criteria analysis targeting hydrological and water management factors to develop effective solutions for urban retention challenges. The main findings indicate that: (1) combining insightful analyses using well-established methods provides a robust foundation for informed decision-making by city authorities; (2) overlaying information layers, such as local flooding interventions, non-drained areas, drainage networks, and soil sealing, helps identify areas requiring large-scale, technical, or nature-based solutions; and (3) regardless of city size, there is a concerning trend of increasing impervious surfaces replacing green areas, alongside urban sprawl altering land use in flood-prone regions, including mountainous, forested, and floodplain areas that should be protected. These findings illustrate that employing a structured project methodology alongside a comprehensive approach can significantly contribute to urban landscape planning, addressing the challenges of climate change while enhancing urban biodiversity through blue and green infrastructure. Full article
(This article belongs to the Special Issue Ecosystems and Landscape Ecology)
Show Figures

Figure 1

18 pages, 2779 KiB  
Article
Development and Optimization of Bentonite-Based Slurry Sealing Material
by Qingsong Zhang, Changyuan Xiao, Zhaoyang Su, Hui Zhuo and Tuo Qiang
Minerals 2025, 15(4), 385; https://doi.org/10.3390/min15040385 - 5 Apr 2025
Viewed by 381
Abstract
Gas extraction from coal seams can significantly mitigate gas accidents and improve resource utilization. The effectiveness of borehole sealing directly determines the concentration and efficiency of gas drainage. In recent years, liquid-phase sealing materials, represented by non-solidifying pastes, gel-based materials, and inorganic retarders, [...] Read more.
Gas extraction from coal seams can significantly mitigate gas accidents and improve resource utilization. The effectiveness of borehole sealing directly determines the concentration and efficiency of gas drainage. In recent years, liquid-phase sealing materials, represented by non-solidifying pastes, gel-based materials, and inorganic retarders, have gradually become a research hotspot. Compared to the traditional solid sealing materials such as cement-based or organic polymers, liquid-phase sealing materials can effectively seal secondary fractures caused by mining vibration through grout replenishment. However, the influence of each component in liquid-phase non-solidified materials on sealing properties such as fluidity, water retention, and permeability remains unclear. To address these issues, a novel liquid-phase non-solidified hole sealing material was developed using bentonite as the base material, sodium dodecyl benzene sulfonate as the dispersant, and sodium carboxymethyl cellulose as the thickener. Initially, single-factor experiments were applied to investigate the effects of material ratios on the fluidity, water retention, and permeability. Subsequently, orthogonal experimental design and response surface methodology were used to establish nonlinear quadratic regression models relating these properties to water–bentonite ratio, dispersant content, and thickener content. The results indicated that an optimal water–bentonite ratio enhances both fluidity and permeability, while dispersants improve water retention and permeability and thickeners primarily boost water retention. Finally, the optimized composition was determined as a water–bentonite ratio of 4.41:1, a dispersant content of 0.38%, and a thickener content of 0.108%. We believe that the developed slurry materials will maintain excellent sealing performance through the entire gas extraction period. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

26 pages, 20258 KiB  
Article
Toward Urban Micro-Renewal: Integrating “BMP-Plan” and “LID-Design” for Enhanced Stormwater Control—A Case Study
by Zhenxing Huang, Yiyuan Sun, Yanting Fan, Ruofei Guan, Hao Zhang, Lianhai Zhao and Bin Zhang
Water 2025, 17(7), 992; https://doi.org/10.3390/w17070992 - 28 Mar 2025
Viewed by 516
Abstract
This study addresses the growing inadequacies of traditional architectural concepts and techniques in stormwater management amid the increasing frequency of extreme weather events, particularly in densely built urban micro-spaces. To tackle these challenges, we propose an integrated theoretical and practical framework applied to [...] Read more.
This study addresses the growing inadequacies of traditional architectural concepts and techniques in stormwater management amid the increasing frequency of extreme weather events, particularly in densely built urban micro-spaces. To tackle these challenges, we propose an integrated theoretical and practical framework applied to a case study of a small-scale urban public space in Chang’an District, Shijiazhuang City, Hebei Province, covering an area of about 2.15 hectares in North China. The framework combines Best Management Practices Planning (BMP-P) with Low Impact Development Design (LID-D). The framework optimizes sub-catchment delineation, strategically locates drainage outlets, and configures network layouts to reduce runoff path lengths, thereby reducing total runoff volume, enhancing drainage capacity, and alleviating surface water accumulation, which, in turn, informs the parametric design of LID facilities. In the BMP-P phase, four source-control measures were developed based on runoff control and stormwater retention: adjusting terrain slopes, adding or removing curbs and facilities, redistributing infiltration areas, and adjusting drainage outlet and piping layouts. By shortening runoff paths and reducing potential waterlogging areas, these measures effectively reduced total runoff volume (Trv) by 31.5% to 35.7% and peak runoff volume (Prv) by 19.4% to 32.4%. Moreover, by remodeling the stormwater network with a different layout, larger pipe diameters, and substantially increased network capacity, the total discharge (Tdv) increased by 1.8% to 50.2%, and the peak discharge rate (Pdr) increased by 100% to 550%, thus minimizing surface flooding. In the LID-D phase, we developed a Grasshopper-based parametric design program for the layout and design of LID facilities. This approach significantly reduces interdisciplinary communication costs and enhances urban planning efficiency. By integrating BMP and LID strategies, the proposed framework offers a flexible, rapid, and efficient solution for achieving resilient stormwater management in the context of urban micro-renewal. Full article
(This article belongs to the Special Issue Urban Drainage Systems and Stormwater Management)
Show Figures

Figure 1

33 pages, 13386 KiB  
Article
Ground–Surface Water Assessment for Agricultural Land Prioritization in the Upper Kansai Basin, India: An Integrated SWAT-VIKOR Framework Approach
by Sudipto Halder, Santanu Banerjee, Youssef M. Youssef, Abhilash Chandel, Nassir Alarifi, Gupinath Bhandari and Mahmoud E. Abd-Elmaboud
Water 2025, 17(6), 880; https://doi.org/10.3390/w17060880 - 19 Mar 2025
Cited by 2 | Viewed by 1156
Abstract
Prioritizing agricultural land use is a significant challenge for sustainable development in the rapidly urbanizing, semi-arid riverine basins of South Asia, especially under climate variability and water scarcity. This study introduces a systematic framework combining remote sensing and geospatial data with the Soil [...] Read more.
Prioritizing agricultural land use is a significant challenge for sustainable development in the rapidly urbanizing, semi-arid riverine basins of South Asia, especially under climate variability and water scarcity. This study introduces a systematic framework combining remote sensing and geospatial data with the Soil and Water Assessment Tool (SWAT) model, morphometric analysis, and VIKOR-based Multi-Criteria Decision Analysis (MCDA) to effectively identify Agricultural Land Prioritization (AgLP) areas in the Upper Kansai Basin, India, while reducing the environmental impact, in line with Sustainable Development Goals (SDGs). The SWAT model simulation reveals varied hydrological patterns, with basin water yields from 965.9 to 1012.9 mm and a substantial baseflow (~64% of total flow), emphasizing essential groundwater–surface water interactions for sustainable agriculture. However, the discrepancy between percolation (47% of precipitation) and deep recharge (2% of precipitation) signals potential long-term groundwater challenges. VIKOR analysis offers a robust prioritization framework, ranking SW4 as the most suitable (Qi = 0.003) for balanced hydrological and morphometric features, in agreement with the SWAT outcomes. SW4 and SW5 display optimal agricultural conditions due to stable terrain, effective water retention, and favorable morphometric traits (drainage density 3.0–3.15 km/km2; ruggedness 0.3–0.4). Conversely, SW2, with high drainage density (5.33 km/km2) and ruggedness (2.0), shows low suitability, indicating risks of erosion and poor water retention. This integrated AgLP framework advances sustainable agricultural development and supports SDGs, including SDG 2 (Zero Hunger), SDG 6 (Clean Water), SDG 13 (Climate Action), and SDG 15 (Life on Land). Incorporating hydrological dynamics, land use, soil properties, and climate variables, this approach offers a precise assessment of agricultural suitability to address global sustainability challenges in vulnerable riverine basins of developing nations. Full article
Show Figures

Figure 1

26 pages, 5115 KiB  
Article
Facile Recovery of Polycationic Metals from Acid Mine Drainage and Their Subsequent Valorisation for the Treatment of Municipal Wastewater
by Khathutshelo Lilith Muedi, Job Tatenda Tendenedzai, Vhahangwele Masindi, Nils Hendrik Haneklaus and Hendrik Gideon Brink
Sustainability 2025, 17(6), 2701; https://doi.org/10.3390/su17062701 - 18 Mar 2025
Cited by 1 | Viewed by 540
Abstract
The presence of toxic and hazardous chemical species in municipal wastewater poses a significant environmental and public health challenge, necessitating innovative, sustainable, and cost-effective treatment solutions. This study pioneers the recovery and valorisation of polycationic metals from real acid mine drainage (AMD) for [...] Read more.
The presence of toxic and hazardous chemical species in municipal wastewater poses a significant environmental and public health challenge, necessitating innovative, sustainable, and cost-effective treatment solutions. This study pioneers the recovery and valorisation of polycationic metals from real acid mine drainage (AMD) for municipal wastewater treatment, demonstrating a novel approach that integrates resource recovery with wastewater remediation. A key strength of this study is the use of real municipal wastewater (authentic MWW) in the treatment phase, ensuring that the findings accurately reflect real-world conditions. Advanced analytical techniques were employed to characterise both aqueous and solid samples, and batch experiments were conducted to assess the removal efficiency of polycationic metals for key contaminants: ammonium (NH4+), sulphate (SO42−), phosphate (PO43−), and nitrate (NO3). The optimised conditions are 2 g of polycationic metals per 100 mL, 90 min of contact time, and 35 °C. The yielded exceptional removal efficiencies are PO43− (>99.9%), NH4+ (>99.7%), NO3 (>99%), and SO42− (>96%), achieving final concentrations of <0.5 mg/L for PO43− and NH4+, 2.1 mg/L for NO3, and 9.1 mg/L for SO42−. Adsorption kinetics followed a pseudo-first-order model, indicating physisorption, while the Two-Surface Langmuir model suggested a combination of homogeneous and heterogeneous adsorption mechanisms. FTIR, SEM-EDX mapping, and XRF analyses confirmed the retention of P, S, and N in the product sludge, validating the adsorption process. This study is the first of its kind to recover Al-rich Fe species from real AMD and activate them for municipal wastewater remediation using authentic MWW, bridging the gap between laboratory-scale research and real-world applications. By simultaneously addressing AMD pollution and municipal wastewater treatment, this research advances circular economy principles, promotes sustainable water management, and contributes to national and global efforts toward water security and environmental protection. Full article
Show Figures

Figure 1

Back to TopTop