sustainability-logo

Journal Browser

Journal Browser

Eco-Innovation for Sustainable Development: Harnessing Waste Beneficiation and Secondary Raw Materials

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Waste and Recycling".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 1088

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
Interests: bioreaction engineering; biorememdiation; adsorption dynamics; waste beneficiation; eco-innovation; sustainable development
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department for Knowledge and Communication Management, University for Continuing Education Krems, Krems, Austria
Interests: unconventional resources; phosphate rock; phosphogypsum; uranium; rare earth elments; critical raw materials; sustainable development; energy transition
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the pursuit of a sustainable future, eco-innovation has emerged as a critical driver in addressing environmental challenges. This Special Issue focuses on the beneficiation of waste materials and the utilization of secondary raw materials as key strategies to reduce resource consumption, promote sustainable development, and enhance environmental health.

The primary focus of this issue is on innovative solutions for transforming waste streams into valuable secondary raw materials. These efforts align with circular economy principles, supporting the shift from linear to circular production systems, reducing pollution, and conserving finite natural resources.

The scope of this Special Issue includes research and case studies on waste beneficiation technologies, recycling advancements, materials recovery, and the development of policies that enable more efficient use of waste as an industrial resource. Contributions will cover both technological advancements and policy frameworks, emphasizing their synergy in driving the global sustainability agenda.

The purpose of this Special Issue is to provide a platform for researchers, policymakers, and industry experts to present new methodologies and perspectives that push the boundaries of eco-innovation. It will highlight the potential of waste valorization as a means to enhance resource efficiency, reduce environmental impact, and foster the development of sustainable production and consumption systems.

While the existing literature has explored eco-innovation, this Special Issue narrows its focus to the specific contributions of waste beneficiation and secondary raw material utilization. It supplements existing research by offering updated insights into recent technological breakthroughs, and it addresses gaps in policy development by promoting interdisciplinary approaches. By linking eco-innovation directly to waste transformation, this issue advances the discourse on resource efficiency and sustainable development, making it a valuable addition to the broader field of environmental science and policy.

Dr. Hendrik Gideon Brink
Dr. Nils Haneklaus
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • eco-innovation
  • waste beneficiation
  • secondary raw materials
  • circular economy
  • sustainable development
  • environmental health
  • resource efficiency
  • waste valorization
  • green technologies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 1746 KiB  
Article
Evaluating the Potential of White Asparagus (Asparagus officinalis L.) Waste as a Fuel Source in Microbial Fuel Cells Across Different pH Levels
by Rojas-Flores Segundo, Cabanillas-Chirinos Luis, Nélida Milly Otiniano and Magaly De La Cruz-Noriega
Sustainability 2025, 17(10), 4486; https://doi.org/10.3390/su17104486 - 14 May 2025
Viewed by 303
Abstract
The intensification of agricultural production due to high global demand has led to uncontrolled waste production from this industry, creating an environmental imbalance due to inadequate waste management. In developing regions, the lack of access to electricity has become a critical problem, affecting [...] Read more.
The intensification of agricultural production due to high global demand has led to uncontrolled waste production from this industry, creating an environmental imbalance due to inadequate waste management. In developing regions, the lack of access to electricity has become a critical problem, affecting people’s health, education, and economy. To address this issue, alternative and sustainable ways of generating electricity have been explored. This research focuses on the potential of using asparagus waste in single-chamber microbial fuel cells (MFCs) at different pH levels (4, 4.7—target, 7, and 9) to achieve optimal performance. It has been demonstrated that using this substrate, the MFC at pH 7 obtained the best results on the seventh day, generating an electric current of 4.859 mA and a maximum voltage of 0.965 V. The substrate showed an oxidation-reduction potential of 312.821 mV, a chemical oxygen demand reduction of 76.47%, and an electrical conductivity of 254.854 mS/cm. Additionally, it managed to generate a power density of 2.149 mW/cm2 at a current density of 5.979 mA/cm2. MFCs at different pH levels (4, 4.7—target, 7, and 9) demonstrated their potential to generate electrical energy by powering an LED light when connected in series. This research holds promise in promoting sustainable energy solutions for the future. Full article
Show Figures

Figure 1

26 pages, 5115 KiB  
Article
Facile Recovery of Polycationic Metals from Acid Mine Drainage and Their Subsequent Valorisation for the Treatment of Municipal Wastewater
by Khathutshelo Lilith Muedi, Job Tatenda Tendenedzai, Vhahangwele Masindi, Nils Hendrik Haneklaus and Hendrik Gideon Brink
Sustainability 2025, 17(6), 2701; https://doi.org/10.3390/su17062701 - 18 Mar 2025
Viewed by 387
Abstract
The presence of toxic and hazardous chemical species in municipal wastewater poses a significant environmental and public health challenge, necessitating innovative, sustainable, and cost-effective treatment solutions. This study pioneers the recovery and valorisation of polycationic metals from real acid mine drainage (AMD) for [...] Read more.
The presence of toxic and hazardous chemical species in municipal wastewater poses a significant environmental and public health challenge, necessitating innovative, sustainable, and cost-effective treatment solutions. This study pioneers the recovery and valorisation of polycationic metals from real acid mine drainage (AMD) for municipal wastewater treatment, demonstrating a novel approach that integrates resource recovery with wastewater remediation. A key strength of this study is the use of real municipal wastewater (authentic MWW) in the treatment phase, ensuring that the findings accurately reflect real-world conditions. Advanced analytical techniques were employed to characterise both aqueous and solid samples, and batch experiments were conducted to assess the removal efficiency of polycationic metals for key contaminants: ammonium (NH4+), sulphate (SO42−), phosphate (PO43−), and nitrate (NO3). The optimised conditions are 2 g of polycationic metals per 100 mL, 90 min of contact time, and 35 °C. The yielded exceptional removal efficiencies are PO43− (>99.9%), NH4+ (>99.7%), NO3 (>99%), and SO42− (>96%), achieving final concentrations of <0.5 mg/L for PO43− and NH4+, 2.1 mg/L for NO3, and 9.1 mg/L for SO42−. Adsorption kinetics followed a pseudo-first-order model, indicating physisorption, while the Two-Surface Langmuir model suggested a combination of homogeneous and heterogeneous adsorption mechanisms. FTIR, SEM-EDX mapping, and XRF analyses confirmed the retention of P, S, and N in the product sludge, validating the adsorption process. This study is the first of its kind to recover Al-rich Fe species from real AMD and activate them for municipal wastewater remediation using authentic MWW, bridging the gap between laboratory-scale research and real-world applications. By simultaneously addressing AMD pollution and municipal wastewater treatment, this research advances circular economy principles, promotes sustainable water management, and contributes to national and global efforts toward water security and environmental protection. Full article
Show Figures

Figure 1

Back to TopTop