Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (484)

Search Parameters:
Keywords = water quality fluctuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3267 KiB  
Article
Monitoring and Analyzing Aquatic Vegetation Using Sentinel-2 Imagery Time Series: A Case Study in Chimaditida Shallow Lake in Greece
by Maria Kofidou and Vasilios Ampas
Limnol. Rev. 2025, 25(3), 35; https://doi.org/10.3390/limnolrev25030035 - 1 Aug 2025
Viewed by 103
Abstract
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field [...] Read more.
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field measurements. Data processing was performed using Google Earth Engine and QGIS. The study focuses on discriminating and mapping two classes of aquatic surface conditions: areas covered with Floating and Emergent Aquatic Vegetation and open water, covering all seasons from 1 March 2024, to 28 February 2025. Spectral bands such as B04 (red), B08 (near infrared), B03 (green), and B11 (shortwave infrared) were used, along with indices like the Modified Normalized Difference Water Index and Normalized Difference Vegetation Index. The classification was enhanced using Otsu’s thresholding technique to distinguish accurately between Floating and Emergent Aquatic Vegetation and open water. Seasonal fluctuations were observed, with significant peaks in vegetation growth during the summer and autumn months, including a peak coverage of 2.08 km2 on 9 September 2024 and a low of 0.00068 km2 on 28 December 2024. These variations correspond to the seasonal growth patterns of Floating and Emergent Aquatic Vegetation, driven by temperature and nutrient availability. The study achieved a high overall classification accuracy of 89.31%, with producer accuracy for Floating and Emergent Aquatic Vegetation at 97.42% and user accuracy at 95.38%. Validation with Unmanned Aerial Vehicle-based aerial surveys showed a strong correlation (R2 = 0.88) between satellite-derived and field data, underscoring the reliability of Sentinel-2 for aquatic vegetation monitoring. Findings highlight the potential of satellite-based remote sensing to monitor vegetation health and dynamics, offering valuable insights for the management and conservation of freshwater ecosystems. The results are particularly useful for governmental authorities and natural park administrations, enabling near-real-time monitoring to mitigate the impacts of overgrowth on water quality, biodiversity, and ecosystem services. This methodology provides a cost-effective alternative for long-term environmental monitoring, especially in regions where traditional methods are impractical or costly. Full article
Show Figures

Figure 1

20 pages, 6464 KiB  
Article
Bacterial Communities Respond to Spatiotemporal Fluctuation in Water Quality and Microcystins at Lake Taihu
by Aimin Hao, Dong Xia, Xingping Mou, Sohei Kobayashi, Tomokazu Haraguchi, Yasushi Iseri and Min Zhao
Water 2025, 17(15), 2222; https://doi.org/10.3390/w17152222 - 25 Jul 2025
Viewed by 302
Abstract
Microbial communities are crucial to maintaining the ecological health of lakes, but their response to water quality and eutrophication is poorly understood. This study analyzed seasonal variation in the effect of water quality parameters on microbial community structure and function at southern Lake [...] Read more.
Microbial communities are crucial to maintaining the ecological health of lakes, but their response to water quality and eutrophication is poorly understood. This study analyzed seasonal variation in the effect of water quality parameters on microbial community structure and function at southern Lake Taihu. We observed poor water quality in autumn (low dissolved oxygen concentration and water transparency) with severe eutrophication (high in nitrogen, phosphorus, and microcystins). Microcystins were a major indicator of water quality that affected total phosphorus and dissolved oxygen concentrations. Redundancy analysis revealed that total nitrogen, total phosphorus, nitrate, ammonium, and microcystins, temperature, and dissolved oxygen all significantly influenced the microbial community. Microbial co-occurrence networks revealed significant seasonal variations, with autumn and winter exhibiting a more complex structure than other seasons. Additionally, we identified microcystin-sensitive microbial species as eutrophication indicators; they are involved in bacterial community components and metabolic function and fluctuate under seasonal changes to water quality. In conclusion, our findings provide insight into the relationship between water quality and microbial communities, offering an empirical basis for improving the sustainable management of Lake Taihu. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

23 pages, 5120 KiB  
Article
Diagnosis of Performance and Obstacles of Integrated Management of Three-Water in Chaohu Lake Basin
by Jiangtao Kong, Yongchao Liu, Jialin Li and Hongbo Gong
Water 2025, 17(14), 2135; https://doi.org/10.3390/w17142135 - 17 Jul 2025
Viewed by 226
Abstract
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower [...] Read more.
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower reaches of the Yangtze River, undertaking such functions as agricultural irrigation, urban water supply, and flood control and storage. Studying the performance of “three-water” in the Chaohu Lake Basin will help to understand the pollution mechanism and governance dilemma in the lake basin. It also provides practical experience and policy references for the ecological protection and high-quality development of the Yangtze River Basin. We used the DPSIR-TOPSIS model to analyze the performance of the river–lake system in the Chaohu Lake Basin and employed an obstacle model to identify factors influencing “three-water.” The results indicated that overall governance and performance of the “three-water” in the Chaohu Lake Basin exhibited an upward trend from 2011 to 2022. Specifically, the obstacle degree of driving force decreased by 19.6%, suggesting that economic development enhanced governance efforts. Conversely, the obstacle degree of pressure increased by 34.4%, indicating continued environmental stress. The obstacle degree of state fluctuated, showing a decrease of 13.2% followed by an increase of 3.8%, demonstrating variability in the effectiveness of water resource, environmental, and ecological management. Additionally, the obstacle degree of impact declined by 12.8%, implying the reduced efficacy of governmental measures in later stages. Response barriers decreased by 5.8%. Variations in the obstacle degree of response reflected differences in response capacities. Spatially, counties and districts at the origins of major rivers and their lake outlets showed lower performance levels in “three-water” management compared to other regions in the basin. Notably, Wuwei City and Feidong County exhibited better governance performance, while Feixi County and Chaohu City showed lower performance levels. Despite significant progress in water resource management, environmental improvement, and ecological restoration, further policy support and targeted countermeasures remain necessary. Counties and districts should pursue coordinated development, leverage the radiative influence of high-performing areas, deepen regional collaboration, and optimize, governance strategies to promote sustainable development. Full article
Show Figures

Figure 1

26 pages, 692 KiB  
Review
Smart Biofloc Systems: Leveraging Artificial Intelligence (AI) and Internet of Things (IoT) for Sustainable Aquaculture Practices
by Mansoor Alghamdi and Yasmeen G. Haraz
Processes 2025, 13(7), 2204; https://doi.org/10.3390/pr13072204 - 10 Jul 2025
Viewed by 705
Abstract
The rising demand for sustainable aquaculture necessitates innovative solutions to environmental and operational challenges. Biofloc technology (BFT) has emerged as an effective method, leveraging microbial communities to enhance water quality, reduce feed costs, and improve fish health. However, traditional BFT systems are susceptible [...] Read more.
The rising demand for sustainable aquaculture necessitates innovative solutions to environmental and operational challenges. Biofloc technology (BFT) has emerged as an effective method, leveraging microbial communities to enhance water quality, reduce feed costs, and improve fish health. However, traditional BFT systems are susceptible to water quality fluctuations, demanding precise monitoring and control. This review explores the integration of Artificial Intelligence (AI) and Internet of Things (IoT) technologies in smart BFT systems, highlighting their capacity to automate processes, optimize resource utilization, and boost system performance. IoT devices facilitate real-time monitoring, while AI-driven analytics provide actionable insights for predictive management. We present a comparative analysis of AI models, such as LSTM, Random Forest, and SVM, for various aquaculture prediction tasks, emphasizing the importance of performance metrics like RMSE and MAE. Furthermore, we discuss the environmental and economic impacts, including quantitative case studies on cost reduction and productivity increases. This paper also addresses critical aspects of AI model reliability, interpretability (SHAP/LIME), uncertainty quantification, and failure mode analysis, advocating for robust testing protocols and human-in-the-loop systems. By addressing these challenges and exploring future opportunities, this article underscores the transformative potential of AI and IoT in advancing BFT for sustainable aquaculture practices, offering a pathway to more resilient and efficient food production. Full article
(This article belongs to the Special Issue Machine Learning Optimization of Chemical Processes)
Show Figures

Figure 1

27 pages, 18307 KiB  
Article
Analysis of Changes in Supply and Demand of Ecosystem Services in the Sanjiangyuan Region and the Main Driving Factors from 2000 to 2020
by Wenming Gao, Qian Song, Haoxiang Zhang, Shiru Wang and Jiarui Du
Land 2025, 14(7), 1427; https://doi.org/10.3390/land14071427 - 7 Jul 2025
Viewed by 310
Abstract
Research on the supply–demand relationships of ecosystem services (ESs) in alpine pastoral regions remains relatively scarce, yet it is crucial for regional ecological management and sustainable development. This study focuses on the Sanjiangyuan Region, a typical alpine pastoral area and significant ecological barrier, [...] Read more.
Research on the supply–demand relationships of ecosystem services (ESs) in alpine pastoral regions remains relatively scarce, yet it is crucial for regional ecological management and sustainable development. This study focuses on the Sanjiangyuan Region, a typical alpine pastoral area and significant ecological barrier, to quantitatively assess the supply–demand dynamics of key ESs and their spatial heterogeneity from 2000 to 2020. It further aims to elucidate the underlying driving mechanisms, thereby providing a scientific basis for optimizing regional ecological management. Four key ES indicators were selected: water yield (WY), grass yield (GY), soil conservation (SC), and habitat quality (HQ). ES supply and demand were quantified using an integrated approach incorporating the InVEST model, the Revised Universal Soil Loss Equation (RUSLE), and spatial analysis techniques. Building on this, the spatial patterns and temporal evolution characteristics of ES supply–demand relationships were analyzed. Subsequently, the Geographic Detector Model (GDM) and Geographically and Temporally Weighted Regression (GTWR) model were employed to identify key drivers influencing changes in the comprehensive ES supply–demand ratio. The results revealed the following: (1) Spatial Patterns: Overall ES supply capacity exhibited a spatial differentiation characterized by “higher values in the southeast and lower values in the northwest.” Areas of high ES demand were primarily concentrated in the densely populated eastern region. WY, SC, and HQ generally exhibited a surplus state, whereas GY showed supply falling short of demand in the densely populated eastern areas. (2) Temporal Dynamics: Between 2000 and 2020, the supply–demand ratios of WY and SC displayed a fluctuating downward trend. The HQ ratio remained relatively stable, while the GY ratio showed a significant and continuous upward trend, indicating positive outcomes from regional grass–livestock balance policies. (3) Driving Mechanisms: Climate and natural factors were the dominant drivers of changes in the ES supply–demand ratio. Analysis using the Geographical Detector’s q-statistic identified fractional vegetation cover (FVC, q = 0.72), annual precipitation (PR, q = 0.63), and human disturbance intensity (HD, q = 0.38) as the top three most influential factors. This study systematically reveals the spatial heterogeneity characteristics, dynamic evolution patterns, and core driving mechanisms of ES supply and demand in an alpine pastoral region, addressing a significant research gap. The findings not only provide a reference for ES supply–demand assessment in similar regions regarding indicator selection and methodology but also offer direct scientific support for precisely identifying priority areas for ecological conservation and restoration, optimizing grass–livestock balance management, and enhancing ecosystem sustainability within the Sanjiangyuan Region. Full article
(This article belongs to the Special Issue Water, Energy, Land, and Food (WELF) Nexus: An Ecosystems Perspective)
Show Figures

Figure 1

17 pages, 2905 KiB  
Article
Water Stress Is Differently Tolerated by Fusarium-Resistant and -Susceptible Chickpea Genotypes During Germination
by Ümmühan Kaşıkcı Şimşek, Murat Dikilitas, Talap Talapov and Canan Can
Life 2025, 15(7), 1050; https://doi.org/10.3390/life15071050 - 30 Jun 2025
Viewed by 272
Abstract
Chickpea is a legume that grows in most parts of the world. It is negatively affected by abiotic and biotic factors like drought and fungal diseases, respectively. One of the most important soil-borne pathogens affecting chickpeas is Fusarium oxysporum f.sp. ciceris (Foc [...] Read more.
Chickpea is a legume that grows in most parts of the world. It is negatively affected by abiotic and biotic factors like drought and fungal diseases, respectively. One of the most important soil-borne pathogens affecting chickpeas is Fusarium oxysporum f.sp. ciceris (Foc). Its population dynamics in the soil are affected by fluctuations in soil water content and host characteristics. For the last three decades, drought has been common in most areas of the world due to global warming. Drought stress decreases the quality and quantity of the chickpeas, particularly where soil-borne pathogens are the main stress factor for plants. The use of both drought-tolerant and disease-resistant cultivars may be the only option for cost-effective yield production. In this study, we screened the seeds of twelve chickpea genotypes WR-315, JG-62, C-104, JG-74, CPS-1, BG-212, ANNIGERI, CHAFFA, BG-215, UC-27, ILC-82, and K-850 for drought tolerance at increasing polyethylene glycol (PEG) concentrations (0-, 5-, 7.5-, 10-, 15-, 20-, 25-, 30- and 50%) to create drought stress conditions at different severities. The performances of genotypes that were previously tested in Foc resistance/susceptibility studies were assessed in terms of percentage of germination, radicle and hypocotyl length, germination energy, germination rate index, mean germination time, and vigor index in drought conditions. We determined the genotypes of C-104, CPS-1, and WR-315 as drought-susceptible, moderately drought-tolerant, and drought-tolerant, respectively. We then elucidated the stress levels of selected genotypes (20-day-old seedlings) at 0–15% PEG conditions via measuring proline and malondialdehyde (MDA) contents. Our findings showed that genotypes that were resistant to Foc also exhibited drought tolerance. The responses of chickpea genotypes infected with Foc under drought conditions are the next step to assess the combined stress on chickpea genotypes. Full article
(This article belongs to the Special Issue Physiological Responses of Plants Under Abiotic Stresses)
Show Figures

Figure 1

28 pages, 31155 KiB  
Article
Numerical Simulation of Treatment Capacity and Operating Limits of Alkali/Surfactant/Polymer (ASP) Flooding Produced Water Treatment Process in Oilfields
by Jiawei Zhu, Mingxin Wang, Keyu Jing, Jiajun Hong, Fanxi Bu and Zhihua Wang
Energies 2025, 18(13), 3420; https://doi.org/10.3390/en18133420 - 29 Jun 2025
Viewed by 339
Abstract
As an enhanced oil recovery (EOR) technique, alkali/surfactant/polymer (ASP) flooding effectively mitigates production decline in mature oilfields through chemical flooding mechanisms. The breakthrough of ASP chemical agents poses challenges to the green and efficient separation of oilfield produced water. In this paper, sedimentation [...] Read more.
As an enhanced oil recovery (EOR) technique, alkali/surfactant/polymer (ASP) flooding effectively mitigates production decline in mature oilfields through chemical flooding mechanisms. The breakthrough of ASP chemical agents poses challenges to the green and efficient separation of oilfield produced water. In this paper, sedimentation separation of produced water was simulated using the Eulerian method and the RNG k–ε model. In addition, the filtration process was simulated using a discrete phase model (DPM) and a porous media model. The distribution characteristics of oil/suspended solids obtained through simulation, along with the water quality parameters at each treatment node, were systematically extracted, and the influence of operating conditions on treatment capacity was analyzed. Simulations reveal that elevated treatment loads and produced water polymer concentrations synergistically impair ASP flooding produced water treatment efficiency. Fluctuations of operating conditions generate oil/suspended solids content in output water ranges spanning 13–78 mg/L and 19–92 mg/L, respectively. The interpolation method is adopted to determine the critical water quality parameters of each treatment node, ensuring that the treated produced water meets the treatment standards. The operating limits of the ASP flooding produced water treatment process are established. Full article
(This article belongs to the Special Issue Advances in Wastewater Treatment, 2nd Edition)
Show Figures

Figure 1

22 pages, 1525 KiB  
Article
Effects of Land Use and Water Level Fluctuations on Phytoplankton in Mediterranean Reservoirs in Cyprus
by Polina Polykarpou, Natassa Stefanidou, Matina Katsiapi, Maria Moustaka-Gouni, Savvas Genitsaris, Gerald Dörflinger, Athena Economou-Amilli and Dionysios E. Raitsos
Diversity 2025, 17(7), 457; https://doi.org/10.3390/d17070457 - 28 Jun 2025
Viewed by 388
Abstract
Land use composition, water level fluctuations (WLFs), and biogeographical factors are recognized as key drivers of phytoplankton dynamics in reservoir ecosystems. This two-year study presents the first assessment of the combined effects of catchment land use, WLFs, and geographical distance on phytoplankton biomass [...] Read more.
Land use composition, water level fluctuations (WLFs), and biogeographical factors are recognized as key drivers of phytoplankton dynamics in reservoir ecosystems. This two-year study presents the first assessment of the combined effects of catchment land use, WLFs, and geographical distance on phytoplankton biomass and community composition across twelve Mediterranean reservoirs in Cyprus, which serve primarily for drinking water supply and irrigation. The results show that higher phytoplankton biomass was recorded in reservoirs whose catchments had >30% coverage by developed land (urban and agricultural), suggesting that increased anthropogenic pressures may lead to nutrient enrichment and elevated productivity. However, despite elevated biomass, no consistent spatial patterns were observed in phytoplankton community composition. The geographical distance between reservoirs had only a minor effect on species distribution, implying that other factors—such as water residence time or hydrological variability—play a more prominent role in shaping community structure. Phytoplankton biomass maxima were most often recorded during periods of elevated water levels and were typically dominated by Chlorophyta, Dinoflagellata, Bacillariophyta, and Charophyta. The pronounced temporal variability in species composition across all reservoirs points to a highly dynamic system, where environmental fluctuations strongly influence community assembly. This study provides the first comprehensive data on phytoplankton in Cyprus reservoirs, highlighting the importance of land use and hydrological regulation for water quality management in similar settings. Importantly, this baseline dataset can support the implementation of the Water Framework Directive (WFD) by contributing to the definition of ecological status classes, establishing reference conditions, and guiding future monitoring and assessment efforts. Expanding such datasets through coordinated, basin-wide monitoring initiatives is essential to improve our understanding of phytoplankton dynamics and their role in ecosystem functioning under the pressures of climate change and intensified land use in this Mediterranean “hot spot”. Full article
(This article belongs to the Section Freshwater Biodiversity)
Show Figures

Figure 1

34 pages, 8503 KiB  
Article
Hydrogeochemical Characterization and Determination of Arsenic Sources in the Groundwater of the Alluvial Plain of the Lower Sakarya River Basin, Turkey
by Nisa Talay and İrfan Yolcubal
Water 2025, 17(13), 1931; https://doi.org/10.3390/w17131931 - 27 Jun 2025
Viewed by 459
Abstract
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in [...] Read more.
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in shallow and deep alluvial aquifers of the Lower Sakarya River Basin, which are crucial for drinking, domestic, and agricultural uses. Groundwater samples were collected from 34 wells—7 tapping the shallow aquifer (<60 m) and 27 tapping the deep aquifer (>60 m)—during wet and dry seasons for the hydrogeochemical characterization of groundwater. Environmental isotope analysis (δ18O, δ2H, 3H) was conducted to characterize origin and groundwater residence times, and the possible hydraulic connection between shallow and deep alluvial aquifers. Mineralogical and geochemical characterization of the sediment core samples were carried out using X-ray diffraction and acid digestion analyses to identify mineralogical sources of As and other metals. Pearson correlation coefficient analyses were also applied to the results of the chemical analyses to determine the origin of metal enrichments observed in the groundwater, as well as related geochemical processes. The results reveal that 33–41% of deep groundwater samples contain arsenic concentrations exceeding the WHO and Turkish drinking water standard of 10 µg/L, with maximum values reaching 373 µg/L. Manganese concentrations exceeded the 50 µg/L limit in up to 44% of deep aquifer samples, reaching 1230 µg/L. On the other hand, iron concentrations were consistently low, remaining below the detection limit in nearly all samples. The co-occurrence of As and Mn above their maximum contaminant levels was observed in 30–33% of the wells, exhibiting extremely low sulfate concentrations (0.2–2 mg/L), notably low dissolved oxygen concentration (1.45–3.3 mg/L) alongside high bicarbonate concentrations (450–1429 mg/L), indicating localized varying reducing conditions in the deep alluvial aquifer. The correlations between molybdenum and As (rdry = 0.46, rwet = 0.64) also indicate reducing conditions, where Mo typically mobilizes with As. Arsenic concentrations also showed significant correlations with bicarbonate (HCO3) (rdry = 0.66, rwet = 0.80), indicating that alkaline or reducing conditions are promoting arsenic mobilization from aquifer materials. All these correlations between elements indicate that coexistence of As with Mn above their MCLs in deep alluvial aquifer groundwater result from reductive dissolution of Mn/Fe(?) oxides, which are primary arsenic hosts, thereby releasing arsenic into groundwater under reducing conditions. In contrast, the shallow aquifer system—although affected by elevated nitrate, sulfate, and chloride levels from agricultural and domestic sources—exhibited consistently low arsenic concentrations below the maximum contaminant level. Seasonal redox fluctuations in the shallow zone influence manganese concentrations, but the aquifer’s more dynamic recharge regime and oxic conditions suppress widespread As mobilization. Mineralogical analysis identified that serpentinite, schist, and other ophiolitic/metamorphic detritus transported by river processes into basin sediments were identified as the main natural sources of arsenic and manganese in groundwater of deep alluvium aquifer. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

30 pages, 4072 KiB  
Article
Spatial-Temporal Coordination of Agricultural Quality and Water Carrying Capacity in Chengdu-Chongqing
by Bingchang Li, Xinlan Liang, Cuihua Bian, Fengxin Sun, Zichen Xia, Binghao Sun and Ying Cao
Agriculture 2025, 15(13), 1340; https://doi.org/10.3390/agriculture15131340 - 22 Jun 2025
Viewed by 388
Abstract
Amid accelerating urbanization and intensifying climate variability, the Chengdu–Chongqing region faces acute tensions between high-quality agricultural development and water resource sustainability. This study constructs a multidimensional evaluation framework to analyze the spatiotemporal interaction between the Agricultural Quality Index (AQI) and the Water Resource [...] Read more.
Amid accelerating urbanization and intensifying climate variability, the Chengdu–Chongqing region faces acute tensions between high-quality agricultural development and water resource sustainability. This study constructs a multidimensional evaluation framework to analyze the spatiotemporal interaction between the Agricultural Quality Index (AQI) and the Water Resource Carrying Capacity Index (WCI) from 2013 to 2022 across 16 municipalities. Employing the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) model, obstacle degree analysis, standard deviational ellipse, and grey prediction modeling, the study finds that AQI exhibits a sustained upward trend—doubling in over half of the region’s cities—while WCI shows fluctuating growth, constrained by climatic extremes and uneven water distribution. Spatial analysis reveals persistent heterogeneity: cities such as Ya’an maintain superior WCI due to natural endowments, whereas Ziyang and Zigong lag due to infrastructural and environmental limitations. From 2013–2016, disparities between AQI and WCI widened, with the spatial coefficient of variation (sCoV) peaking due to resource misallocation and industrial imbalance. However, targeted policies since 2016—e.g., integrated water infrastructure, model agricultural zones, and adaptive land-use planning—have significantly improved regional coordination and narrowed these disparities. The study forecasts AQI to reach 2.0 by 2026, with Chongqing potentially exceeding 3.0, driven by technological modernization and resource integration. Policy recommendations include: (1) cross-regional water reallocation; (2) specialty agricultural clusters anchored by core cities; and (3) climate-resilient cropping systems. This research provides a scalable governance framework for reconciling resource constraints and agricultural modernization, offering practical insights for inland economic zones globally. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

24 pages, 4005 KiB  
Article
Trade-Offs and Synergies of Ecosystem Services in Terminal Lake Basins of Arid Regions Under Environmental Change: A Case Study of the Ebinur Lake Basin
by Guoqing Lv, Yonghui Wang, Xiaofei Ma, Yonglong Han, Chun Luo, Wei Yu, Jian Liu and Zhiyang Du
Land 2025, 14(6), 1240; https://doi.org/10.3390/land14061240 - 9 Jun 2025
Viewed by 459
Abstract
As essential components of arid region ecosystems, terminal lakes play a critical role in enhancing the functions of ecosystem services (ESs) and improving ecological structure. Despite the increasing degradation of ESs and landscape stability due to climate and human pressures, comprehensive assessments of [...] Read more.
As essential components of arid region ecosystems, terminal lakes play a critical role in enhancing the functions of ecosystem services (ESs) and improving ecological structure. Despite the increasing degradation of ESs and landscape stability due to climate and human pressures, comprehensive assessments of water provision, carbon storage, soil conservation, and habitat integrity in arid terminal lake regions are still lacking. Focusing on the Ebinur Lake Basin (ELB), this study employed the InVEST model to quantify ES changes from 2000 to 2020, combined with univariate regression, Pearson, and Spearman correlation analyses to explore their dynamic evolution. Landscape pattern indices calculated via Fragstats 4.2 further revealed trends in fragmentation, boundary complexity, and diversity. Results show that most ESs exhibited synergistic relationships, particularly between carbon sequestration and habitat quality (r = 0.45), observed clear trade-offs, such as between water yield and carbon sequestration (r = −0.47), underscoring the complexity of ecosystem interactions. Enhanced ES functions were associated with increased patch number, density, and shape complexity, while landscape diversity fluctuated. NDVI growth improved ES performance and reduced fragmentation, though changes in landscape metrics were largely driven by climate variability and socio-economic pressures, exacerbating fragmentation and weakening ecological stability. Overall, understanding the trade-offs and synergies among ESs in the ELB is crucial for informing sustainable development strategies. Full article
Show Figures

Figure 1

23 pages, 2023 KiB  
Article
Integrating the Water Footprint and DPSIR Model to Evaluate Agricultural Water Sustainability in Arid Regions: A Case Study of the Turpan–Hami Basin
by Lingyun Zhang, Yang Yu, Zengkun Guo, Xiaoyun Ding, Lingxiao Sun, Jing He, Chunlan Li and Ruide Yu
Agronomy 2025, 15(6), 1393; https://doi.org/10.3390/agronomy15061393 - 5 Jun 2025
Viewed by 621
Abstract
Water resources are a key constraint on sustainable development in arid regions, especially for agricultural production where water use is intensive. To assess the sustainability of agricultural water use in such environments, this study utilizes 2010–2020 agricultural data from the Turpan–Hami Basin and [...] Read more.
Water resources are a key constraint on sustainable development in arid regions, especially for agricultural production where water use is intensive. To assess the sustainability of agricultural water use in such environments, this study utilizes 2010–2020 agricultural data from the Turpan–Hami Basin and is among the first to integrate the water footprint (WF) theory with the DPSIR (driver–pressure–state–impact–response) model into a comprehensive framework for evaluating water resource sustainability in arid agricultural systems. The agricultural blue, green, and grey WF in the Turpan–Hami Basin were quantified for 2010–2020, followed by a sustainability assessment under the DPSIR framework using a comprehensive weighting method. The results showed a continuous increase in the WF, dominated by the blue WF (>60%), largely due to crops like cotton and grapes, intensifying regional water stress. Turpan experienced prolonged resource overload, while Hami exhibited slightly higher sustainability. DPSIR analysis revealed stronger policy responses in Turpan and significant ecological investments in Hami. Key influencing factors included the crop yield, WF modulus, per capita WF, and water quality shortage index. Overall, sustainability in the basin fluctuated between “Basically Sustainable (Level III)” and “Insufficiently Sustainable (Level IV)”, with slight improvement in 2020. The findings highlight the need for region-specific agricultural optimization, strengthened ecological governance, and improved water-saving strategies to enhance water use efficiency and sustainability in arid regions. Full article
Show Figures

Figure 1

16 pages, 2426 KiB  
Article
Seasonal Distribution of Microbial Community and n-Alkane Functional Genes in Diesel-Contaminated Groundwater: Influence of Water Table Fluctuation
by Xuefeng Xia, Wenjuan Jia, Kai Wang and Aizhong Ding
Water 2025, 17(11), 1710; https://doi.org/10.3390/w17111710 - 4 Jun 2025
Viewed by 449
Abstract
Water table fluctuation alters environment properties and n-alkane transformation, leading to shifts in the groundwater microbial community and functions. A diesel-contaminated aquifer column experiment of seasonal water table fluctuation was designed to explore the mechanisms. Temporal changes in geochemical parameters, n-alkane concentration, bacterial [...] Read more.
Water table fluctuation alters environment properties and n-alkane transformation, leading to shifts in the groundwater microbial community and functions. A diesel-contaminated aquifer column experiment of seasonal water table fluctuation was designed to explore the mechanisms. Temporal changes in geochemical parameters, n-alkane concentration, bacterial community and functional gene composition were investigated. The results showed that water table fluctuation accelerated the depletion of the diesel n-alkane leakage point. Owing to the variations in the water table, the electron donors (dissolved organic carbon) and electron acceptors (dissolved oxygen, nitrate and sulfate) underwent regular changes, and the bacterial community structure was altered. Dissolved oxygen was the major parameter correlating with the abundance of aerobic functional genes (the sum of the alk_A, alk_R and alk_P) and was beneficial for enhancing the aerobic biodegradation function potential of n-alkanes. However, the static retention of the water table at the highest level inducing water saturation and hypoxia was the critical factor influencing the abundance of anaerobic functional genes (the sum of assA and mcrA) and was favorable for the anaerobic biodegradation function potential of n-alkane. Overall, this study links seasonal water table dynamics to n-alkane biodegradation function potential in aquifers, and suggests that the quality of recharge water, which impacts microbial community assembly and function, should be considered. Full article
(This article belongs to the Special Issue Application of Bioremediation in Groundwater and Soil Pollution)
Show Figures

Figure 1

17 pages, 5033 KiB  
Article
Dynamics of Nitrogen and Phosphorus Release from Submerged Soil–Plant Systems in the Three Gorges Reservoir
by Lei Hu, Liwei Xiao and Tao Wang
Water 2025, 17(11), 1701; https://doi.org/10.3390/w17111701 - 4 Jun 2025
Viewed by 623
Abstract
The water-level fluctuation zone (WLFZ) in the Three Gorges Reservoir (TGR) has attracted significant attention because of its pivotal role in shaping environmental processes. However, with the increasing water level, the effects of nitrogen and phosphorus release from submerged soil–plant systems in the [...] Read more.
The water-level fluctuation zone (WLFZ) in the Three Gorges Reservoir (TGR) has attracted significant attention because of its pivotal role in shaping environmental processes. However, with the increasing water level, the effects of nitrogen and phosphorus release from submerged soil–plant systems in the WLFZ on the deterioration in water quality remain poorly understood. In this study, a simulation experiment was conducted involving submerged undisturbed soil columns that was submerged once a year at different elevations (150, 160, and 170 m) before reservoir impoundment in the WLFZ within the TGR area. The results revealed that the concentrations of various forms of nitrogen and phosphorus in the overlying water released after system submergence first decreased, then rapidly increased after 30 days, and reached equilibrium after 120 days of flooding. Particulate N accounted for approximately 70% of the total nitrogen (TN) released, while particulate P accounted for more than 90% of the total phosphorus (TP) released by soil–plant systems after submergence for 200 days, which may be related to soil erosion and plant decomposition. The amounts of N and P released were significantly negatively correlated with the initial mass of the soil–plant system, indicating that nutrient release by the system is more susceptible to submerged soil than to submerged plants. During the flooding period of the WLFZ in the TGR, the release loads of soil–plant systems into reservoir water were 159.83 kg N ha−1 and 19.30 kg P ha−1. These results suggest that soil and plants in the WLFZ of the TGR could be at risk for water-induced deterioration. Therefore, additional vegetation management might be implemented to alleviate water eutrophication in the TGR caused by submerged soil and plants in the WLFZ. Full article
(This article belongs to the Special Issue Advanced Research in Non-Point Source Pollution of Watersheds)
Show Figures

Graphical abstract

22 pages, 2268 KiB  
Article
Evaluation of Water Quality in the Production of Rainbow Trout (Oncorhynchus mykiss) in a Recirculating Aquaculture System (RAS) in the Precordilleran Region of Northern Chile
by Renzo Pepe-Victoriano, Piera Pepe-Vargas, Anahí Pérez-Aravena, Héctor Aravena-Ambrosetti, Jordan I. Huanacuni, Felipe Méndez-Abarca, Germán Olivares-Cantillano, Olger Acosta-Angulo and Luis Espinoza-Ramos
Water 2025, 17(11), 1685; https://doi.org/10.3390/w17111685 - 2 Jun 2025
Viewed by 1485
Abstract
Water quality and the culture performance of juvenile rainbow trout (Oncorhynchus mykiss) were evaluated between 2014 and 2017 in a recirculating aquaculture system (RAS) in the Chilean Altiplano. Key parameters such as temperature, total ammonia nitrogen (TAN), nitrates, and dissolved oxygen [...] Read more.
Water quality and the culture performance of juvenile rainbow trout (Oncorhynchus mykiss) were evaluated between 2014 and 2017 in a recirculating aquaculture system (RAS) in the Chilean Altiplano. Key parameters such as temperature, total ammonia nitrogen (TAN), nitrates, and dissolved oxygen were monitored, with values ranging from 7 to 21 °C, <0.1 to 0.63 mg/L, 2.0 to 135 mg/L, and 1.8 to 7.5 mg/L, respectively. Additional parameters—including alkalinity, arsenic, chlorine, true color, conductivity, hardness, phosphorus, pH, potassium, suspended solids, and salinity—were also assessed, comparing different points within the system (head tank, culture tanks, and settling tanks). The results showed that water quality remained within acceptable ranges for aquaculture, although fluctuations in pH and low alkalinity levels caused stress in the fish. Despite these challenges, the specific growth rate (SGR) was 1.49, the feed conversion ratio (FCR) was 1.52, and weight gain reached 298.7%, with a survival rate of 96.2%. This study demonstrates that aquaculture in the Altiplano is feasible and can contribute to the sustainable development of aquaculture in the region. Furthermore, it highlights the importance of comprehensive water quality monitoring to optimize RAS performance in challenging environments. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

Back to TopTop