Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,992)

Search Parameters:
Keywords = water network efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2515 KiB  
Article
Solar Agro Savior: Smart Agricultural Monitoring Using Drones and Deep Learning Techniques
by Manu Mundappat Ramachandran, Bisni Fahad Mon, Mohammad Hayajneh, Najah Abu Ali and Elarbi Badidi
Agriculture 2025, 15(15), 1656; https://doi.org/10.3390/agriculture15151656 (registering DOI) - 1 Aug 2025
Abstract
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the [...] Read more.
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the plants’ health and optimization in water utilization, which enhances plant yield productivity. A significant feature of the system is the efficient monitoring system in a larger region through drones’ high-resolution cameras, which enables real-time, efficient response and alerting for environmental fluctuations to the authorities. The machine learning algorithm, particularly recurrent neural networks, which is a pioneer with agriculture and pest control, is incorporated for intelligent monitoring systems. The proposed system incorporates a specialized form of a recurrent neural network, Long Short-Term Memory (LSTM), which effectively addresses the vanishing gradient problem. It also utilizes an attention-based mechanism that enables the model to assign meaningful weights to the most important parts of the data sequence. This algorithm not only enhances water utilization efficiency but also boosts plant yield and strengthens pest control mechanisms. This system also provides sustainability through the re-utilization of water and the elimination of electric energy through solar panel systems for powering the inbuilt irrigation system. A comparative analysis of variant algorithms in the agriculture sector with a machine learning approach was also illustrated, and the proposed system yielded 99% yield accuracy, a 97.8% precision value, 98.4% recall, and a 98.4% F1 score value. By encompassing solar irrigation and artificial intelligence-driven analysis, the proposed algorithm, Solar Argo Savior, established a sustainable framework in the latest agricultural sectors and promoted sustainability to protect our environment and community. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 2547 KiB  
Article
Artificial Intelligence Optimization of Polyaluminum Chloride (PAC) Dosage in Drinking Water Treatment: A Hybrid Genetic Algorithm–Neural Network Approach
by Darío Fernando Guamán-Lozada, Lenin Santiago Orozco Cantos, Guido Patricio Santillán Lima and Fabian Arias Arias
Computation 2025, 13(8), 179; https://doi.org/10.3390/computation13080179 (registering DOI) - 1 Aug 2025
Abstract
The accurate dosing of polyaluminum chloride (PAC) is essential for achieving effective coagulation in drinking water treatment, yet conventional methods such as jar tests are limited in their responsiveness and operational efficiency. This study proposes a hybrid modeling framework that integrates artificial neural [...] Read more.
The accurate dosing of polyaluminum chloride (PAC) is essential for achieving effective coagulation in drinking water treatment, yet conventional methods such as jar tests are limited in their responsiveness and operational efficiency. This study proposes a hybrid modeling framework that integrates artificial neural networks (ANN) with genetic algorithms (GA) to optimize PAC dosage under variable raw water conditions. Operational data from 400 jar test experiments, collected between 2022 and 2024 at the Yanahurco water treatment plant (Ecuador), were used to train an ANN model capable of predicting six post-treatment water quality indicators, including turbidity, color, and pH. The ANN achieved excellent predictive accuracy (R2 > 0.95 for turbidity and color), supporting its use as a surrogate model within a GA-based optimization scheme. The genetic algorithm evaluated dosage strategies by minimizing treatment costs while enforcing compliance with national water quality standards. The results revealed a bimodal dosing pattern, favoring low PAC dosages (~4 ppm) during routine conditions and higher dosages (~12 ppm) when influent quality declined. Optimization yielded a 49% reduction in median chemical costs and improved color compliance from 52% to 63%, while maintaining pH compliance above 97%. Turbidity remained a challenge under some conditions, indicating the potential benefit of complementary coagulants. The proposed ANN–GA approach offers a scalable and adaptive solution for enhancing chemical dosing efficiency in water treatment operations. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

15 pages, 4556 KiB  
Article
Coordinated Regulation of Photosynthesis, Stomatal Traits, and Hormonal Dynamics in Camellia oleifera During Drought and Rehydration
by Linqing Cao, Chao Yan, Tieding He, Qiuping Zhong, Yaqi Yuan and Lixian Cao
Biology 2025, 14(8), 965; https://doi.org/10.3390/biology14080965 (registering DOI) - 1 Aug 2025
Abstract
Camellia oleifera, a woody oilseed species endemic to China, often experiences growth constraints due to seasonal drought. This study investigates the coordinated regulation of photosynthetic traits, stomatal behavior, and hormone responses during drought–rehydration cycles in two cultivars with contrasting drought resistance: ‘CL53’ [...] Read more.
Camellia oleifera, a woody oilseed species endemic to China, often experiences growth constraints due to seasonal drought. This study investigates the coordinated regulation of photosynthetic traits, stomatal behavior, and hormone responses during drought–rehydration cycles in two cultivars with contrasting drought resistance: ‘CL53’ (tolerant) and ‘CL40’ (sensitive). Photosynthetic inhibition resulted from both stomatal and non-stomatal limitations, with cultivar-specific differences. After 28 days of drought, the net photosynthetic rate (Pn) declined by 26.6% in CL53 and 32.6% in CL40. A stable intercellular CO2 concentration (Ci) in CL53 indicated superior mesophyll integrity and antioxidant capacity. CL53 showed rapid Pn recovery and photosynthetic compensation post-rehydration, in contrast to CL40. Drought triggered extensive stomatal closure; >98% reopened upon rehydration, though the total stomatal pore area remained reduced. Abscisic acid (ABA) accumulation was greater in CL40, contributing to stomatal closure and Pn suppression. CL53 exhibited faster ABA degradation and gibberellin (GA3) recovery, promoting photosynthetic restoration. ABA negatively correlated with Pn, transpiration rate (Tr), stomatal conductance (Gs), and Ci, but positively with stomatal limitation (Ls). Water use efficiency (WUE) displayed a parabolic response to ABA, differing by cultivar. This integrative analysis highlights a coordinated photosynthesis–stomata–hormone network underlying drought adaptation and informs selection strategies for drought-resilient cultivars and precision irrigation. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

17 pages, 1139 KiB  
Article
Ag/TA@CNC Reinforced Hydrogel Dressing with Enhanced Adhesion and Antibacterial Activity
by Jiahao Yu, Junhao Liu, Yicheng Liu, Siqi Liu, Zichuan Su and Daxin Liang
Gels 2025, 11(8), 591; https://doi.org/10.3390/gels11080591 (registering DOI) - 31 Jul 2025
Abstract
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) [...] Read more.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.4 kPa to pigskin, 122% improvement over pure system) through dynamic hydrogen bonding and coordination interactions. TA served as a green reducing agent for uniform AgNPs loading, with CNC negative charges preventing particle aggregation. Antibacterial studies revealed synergistic effects between TA-induced membrane disruption and Ag+-triggered reactive oxygen species generation, achieving >99.5% inhibition against Staphylococcus aureus and Escherichia coli. The TA@CNC-regulated porous structure balanced swelling performance and water vapor transmission, facilitating wound exudate management and moist healing. This composite hydrogel successfully integrates mechanical toughness, tissue adhesion, antibacterial activity, and biocompatibility, providing a novel strategy for advanced wound dressing development. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
38 pages, 1539 KiB  
Article
Research on the Characteristics and Influencing Factors of Virtual Water Trade Networks in Chinese Provinces
by Guangyao Deng, Siqian Hou and Keyu Di
Sustainability 2025, 17(15), 6972; https://doi.org/10.3390/su17156972 (registering DOI) - 31 Jul 2025
Abstract
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, [...] Read more.
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, and 2017, using total trade decomposition, social network analysis, and exponential random graph models. The key findings are as follows: (1) The total virtual water trade volume remains stable, with Xinjiang, Jiangsu, and Guangdong as the core regions, while remote areas such as Shaanxi and Gansu have lower trade volumes. The primary industry dominates, and it is driven by simple value chains. (2) Provinces such as Xinjiang, Heilongjiang, and Jiangsu form the network’s core. Network density and symmetry increased from 2012 to 2015 but declined slightly in 2017, with efficiency peaking and then dropping, and the clustering coefficient decreased annually. Four economic sectors exhibit distinct interactions: frequent two-way flows in Sector 1, significant inflows in Sector 2, prominent net spillovers in Sector 3, and key brokers in Sector 4. (3) The network evolved from a core-periphery structure with weak ties to a stable, heterogeneous, and resilient system. (4) Influencing factors, such asper capita water resources, economic development, and population, significantly impact trade. Similarities in economic levels, population, and water endowments promote trade, while spatial distance has a limited effect, with geographic proximity showing a significant negative impact on long-distance trade. Full article
23 pages, 1637 KiB  
Article
Evaluation of Baby Leaf Products Using Hyperspectral Imaging Techniques
by Antonietta Eliana Barrasso, Claudio Perone and Roberto Romaniello
Appl. Sci. 2025, 15(15), 8532; https://doi.org/10.3390/app15158532 (registering DOI) - 31 Jul 2025
Abstract
The transition to efficient production requires innovative water control techniques to maximize irrigation efficiency and minimize waste. Analyzing and optimizing irrigation practices is essential to improve water use and reduce environmental impact. The aim of the research was to identify a discrimination method [...] Read more.
The transition to efficient production requires innovative water control techniques to maximize irrigation efficiency and minimize waste. Analyzing and optimizing irrigation practices is essential to improve water use and reduce environmental impact. The aim of the research was to identify a discrimination method to analyze the different hydration levels in baby-leaf products. The species being researched was spinach, harvested at the baby leaf stage. Utilizing a large dataset of 261 wavelengths from the hyperspectral imaging system, the feature selection minimum redundancy maximum relevance (FS-MRMR) algorithm was applied, leading to the development of a neural network-based prediction model. Finally, a mathematical classification model K-NN (k-nearest neighbors type) was developed in order to identify a transfer function capable of discriminating the hyperspectral data based on a threshold value of absolute leaf humidity. Five significant wavelengths were identified for estimating the moisture content of baby leaves. The resulting model demonstrated a high generalization capability and excellent correlation between predicted and measured data, further confirmed by the successful training, validation, and testing of a K-NN-based statistical classifier. The construction phase of the statistical classifier involved the use of the experimental dataset and the critical humidity threshold value of 0.83 (83% of leaf humidity) was considered, below which the baby-leaf crop requires the irrigation intervention. High percentages of correct classification were achieved for data within two humidity classes. Specifically, the statistical classifier demonstrated excellent performance, with 81.3% correct classification for samples below the threshold and 99.4% for those above it. The application of advanced spectral analysis and artificial intelligence methods has led to significant progress in leaf moisture analysis and prediction, yielding substantial implications for both agriculture and biological research. Full article
(This article belongs to the Special Issue Advances in Automation and Controls of Agri-Food Systems)
21 pages, 1681 KiB  
Article
Cross-Modal Complementarity Learning for Fish Feeding Intensity Recognition via Audio–Visual Fusion
by Jian Li, Yanan Wei, Wenkai Ma and Tan Wang
Animals 2025, 15(15), 2245; https://doi.org/10.3390/ani15152245 (registering DOI) - 31 Jul 2025
Abstract
Accurate evaluation of fish feeding intensity is crucial for optimizing aquaculture efficiency and the healthy growth of fish. Previous methods mainly rely on single-modal approaches (e.g., audio or visual). However, the complex underwater environment makes single-modal monitoring methods face significant challenges: visual systems [...] Read more.
Accurate evaluation of fish feeding intensity is crucial for optimizing aquaculture efficiency and the healthy growth of fish. Previous methods mainly rely on single-modal approaches (e.g., audio or visual). However, the complex underwater environment makes single-modal monitoring methods face significant challenges: visual systems are severely affected by water turbidity, lighting conditions, and fish occlusion, while acoustic systems suffer from background noise. Although existing studies have attempted to combine acoustic and visual information, most adopt simple feature-level fusion strategies, which fail to fully explore the complementary advantages of the two modalities under different environmental conditions and lack dynamic evaluation mechanisms for modal reliability. To address these problems, we propose the Adaptive Cross-modal Attention Fusion Network (ACAF-Net), a cross-modal complementarity learning framework with a two-stage attention fusion mechanism: (1) a cross-modal enhancement stage that enriches individual representations through Low-rank Bilinear Pooling and learnable fusion weights; (2) an adaptive attention fusion stage that dynamically weights acoustic and visual features based on complementarity and environmental reliability. Our framework incorporates dimension alignment strategies and attention mechanisms to capture temporal–spatial complementarity between acoustic feeding signals and visual behavioral patterns. Extensive experiments demonstrate superior performance compared to single-modal and conventional fusion approaches, with 6.4% accuracy improvement. The results validate the effectiveness of exploiting cross-modal complementarity for underwater behavioral analysis and establish a foundation for intelligent aquaculture monitoring systems. Full article
Show Figures

Figure 1

21 pages, 4181 KiB  
Article
Addressing Volatility and Nonlinearity in Discharge Modeling: ARIMA-iGARCH for Short-Term Hydrological Time Series Simulation
by Mahshid Khazaeiathar and Britta Schmalz
Hydrology 2025, 12(8), 197; https://doi.org/10.3390/hydrology12080197 - 27 Jul 2025
Viewed by 283
Abstract
Selecting an appropriate model for discharge simulation remains a fundamental challenge in modeling. While artificial neural networks (ANNs) have been widely accepted due to detecting streamflow patterns, they require large datasets for efficient training. However, when short-term datasets are available, training ANNs becomes [...] Read more.
Selecting an appropriate model for discharge simulation remains a fundamental challenge in modeling. While artificial neural networks (ANNs) have been widely accepted due to detecting streamflow patterns, they require large datasets for efficient training. However, when short-term datasets are available, training ANNs becomes problematic. Autoregressive integrated moving average (ARIMA) models offer a promising alternative; however, severe volatility, nonlinearity, and trends in hydrological time series can still lead to significant errors. To address these challenges, this study introduces a new adaptive hybrid model, ARIMA-iGARCH, designed to account volatility, variance inconsistency, and nonlinear behavior in short-term hydrological datasets. We apply the model to four hourly discharge time series from the Schwarzbach River at the Nauheim gauge in Hesse, Germany, under the assumption of normally distributed residuals. The results demonstrate that the specialized parameter estimation method achieves lower complexity and higher accuracy. For the four events analyzed, R2 values reached 0.99, 0.96, 0.99, and 0.98; RMSE values were 0.031, 0.091, 0.023, and 0.052. By delivering accurate short-term discharge predictions, the ARIMA-iGARCH model provides a basis for enhancing water resource planning and flood risk management. Overall, the model significantly improves modeling long memory, nonlinear, nonstationary shifts in short-term hydrological datasets by effectively capturing fluctuations in variance. Full article
Show Figures

Figure 1

26 pages, 21628 KiB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Viewed by 206
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

21 pages, 5387 KiB  
Article
Emergency Resource Dispatch Scheme for Ice Disasters Based on Pre-Disaster Prediction and Dynamic Scheduling
by Runyi Pi, Yuxuan Liu, Nuoxi Huang, Jianyu Lian, Xin Chen and Chao Yang
Appl. Sci. 2025, 15(15), 8352; https://doi.org/10.3390/app15158352 - 27 Jul 2025
Viewed by 124
Abstract
To address the challenge of dispatching emergency resources for community residents under extreme ice disaster, this paper proposes an emergency resource dispatch strategy based on pre-disaster prediction and dynamic scheduling. First, the fast Newman algorithm is employed to cluster communities, optimizing the preprocessing [...] Read more.
To address the challenge of dispatching emergency resources for community residents under extreme ice disaster, this paper proposes an emergency resource dispatch strategy based on pre-disaster prediction and dynamic scheduling. First, the fast Newman algorithm is employed to cluster communities, optimizing the preprocessing of resource scheduling and reducing scheduling costs. Subsequently, mobile energy storage vehicles and mobile water storage vehicles are introduced based on the ice disaster trajectory prediction to enhance the efficiency and accuracy of post-disaster resource supply. A grouped scheduling strategy is adopted to reduce cross-regional resource flow, and the dispatch routes of mobile energy storage and water vehicles are dynamically adjusted based on real-time traffic network conditions. Simulations on the IEEE-33 node system validate the feasibility and advantages of the proposed strategies. The results demonstrate that the grouped dispatch and scheduling strategies increase user satisfaction by 24.73%, average state of charge (SOC) by 30.23%, and water storage by 31.88% compared to global scheduling. These improvements significantly reduce the cost of community energy self-sustainability, enhance the satisfaction of community residents, and ensure system stability across various disaster scenarios. Full article
Show Figures

Figure 1

30 pages, 21742 KiB  
Article
Drift Characteristics and Predictive Modeling of Life Rafts in Island and Reef Waters
by Zhengzhou Li, Xiangyu Tang, Chenzhuo Hu, Haiwen Tu and Lin Mu
J. Mar. Sci. Eng. 2025, 13(8), 1421; https://doi.org/10.3390/jmse13081421 - 25 Jul 2025
Viewed by 210
Abstract
Accurate prediction of drifting trajectories is essential for improving the operational efficiency of maritime search and rescue (SAR), particularly within the complex geomorphological settings of island and reef regions, such as those in the South China Sea. This study investigates the drift characteristics [...] Read more.
Accurate prediction of drifting trajectories is essential for improving the operational efficiency of maritime search and rescue (SAR), particularly within the complex geomorphological settings of island and reef regions, such as those in the South China Sea. This study investigates the drift characteristics of life rafts under varying loading conditions across both open-sea and island–reef regions. Comprehensive field experiments were conducted over 15 days in the waters around the Wanshan Archipelago, using advanced instruments to collect wind, current, and drift trajectory data. Based on these observations, two models—the AP98 leeway model and a BP neural network model—were developed and validated. The results show that the AP98 model performs better in open-sea conditions, whereas the BP neural network provides more accurate predictions in island and reef areas with complex environmental factors. A Monte Carlo simulation was also integrated to enhance the robustness of drift area predictions. These findings offer valuable insights into life raft drift behavior in complex marine environments and provide technical support for improving SAR operations in island–reef regions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 7623 KiB  
Article
ASHM-YOLOv9: A Detection Model for Strawberry in Greenhouses at Multiple Stages
by Yan Mo, Shaowei Bai and Wei Chen
Appl. Sci. 2025, 15(15), 8244; https://doi.org/10.3390/app15158244 - 24 Jul 2025
Viewed by 261
Abstract
Strawberry planting requires different amounts of soil water-holding capacity and fertilizer at different growth stages. Determining the stages of strawberry growth has important guiding significance for irrigation, fertilization, and picking. Quick and accurate identification of strawberry plants at different stages can provide important [...] Read more.
Strawberry planting requires different amounts of soil water-holding capacity and fertilizer at different growth stages. Determining the stages of strawberry growth has important guiding significance for irrigation, fertilization, and picking. Quick and accurate identification of strawberry plants at different stages can provide important information for automated strawberry planting management. We propose an improved multistage identification model for strawberry based on the YOLOv9 algorithm—the ASHM-YOLOv9 model. The original YOLOv9 showed limitations in detecting strawberries at different growth stages, particularly lower precision in identifying occluded fruits and immature stages. We enhanced the YOLOv9 model by introducing the Alterable Kernel Convolution (AKConv) to improve the recognition efficiency while ensuring precision. The squeeze-and-excitation (SE) network was added to increase the network’s capacity for characteristic derivation and its ability to fuse features. Haar wavelet downsampling (HWD) was applied to optimize the Adaptive Downsampling module (Adown) of the initial model, thereby increasing the precision of object detection. Finally, the CIoU function was replaced by the Minimum Point Distance based IoU (MPDIoU) loss function to effectively solve the problem of low precision in identifying bounding boxes. The experimental results demonstrate that, under identical conditions, the improved model achieves a precision of 97.7%, a recall of 97.2%, mAP50 of 99.1%, and mAP50-95 of 90.7%, which are 0.6%, 3.0%, 0.7%, and 7.4% greater than those of the original model, respectively. The parameters, model size, and floating-point calculations were reduced by 3.7%, 5.6% and 3.8%, respectively, which significantly boosted the performance of the original model and outperformed that of the other models. Experiments revealed that the model could provide technical support for the multistage identification of strawberry planting. Full article
Show Figures

Figure 1

23 pages, 3301 KiB  
Article
An Image-Based Water Turbidity Classification Scheme Using a Convolutional Neural Network
by Itzel Luviano Soto, Yajaira Concha-Sánchez and Alfredo Raya
Computation 2025, 13(8), 178; https://doi.org/10.3390/computation13080178 - 23 Jul 2025
Viewed by 200
Abstract
Given the importance of turbidity as a key indicator of water quality, this study investigates the use of a convolutional neural network (CNN) to classify water samples into five turbidity-based categories. These classes were defined using ranges inspired by Mexican environmental regulations and [...] Read more.
Given the importance of turbidity as a key indicator of water quality, this study investigates the use of a convolutional neural network (CNN) to classify water samples into five turbidity-based categories. These classes were defined using ranges inspired by Mexican environmental regulations and generated from 33 laboratory-prepared mixtures with varying concentrations of suspended clay particles. Red, green, and blue (RGB) images of each sample were captured under controlled optical conditions, and turbidity was measured using a calibrated turbidimeter. A transfer learning (TL) approach was applied using EfficientNet-B0, a deep yet computationally efficient CNN architecture. The model achieved an average accuracy of 99% across ten independent training runs, with minimal misclassifications. The use of a lightweight deep learning model, combined with a standardized image acquisition protocol, represents a novel and scalable alternative for rapid, low-cost water quality assessment in future environmental monitoring systems. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

30 pages, 13059 KiB  
Article
Verifying the Effects of the Grey Level Co-Occurrence Matrix and Topographic–Hydrologic Features on Automatic Gully Extraction in Dexiang Town, Bayan County, China
by Zhuo Chen and Tao Liu
Remote Sens. 2025, 17(15), 2563; https://doi.org/10.3390/rs17152563 - 23 Jul 2025
Viewed by 266
Abstract
Erosion gullies can reduce arable land area and decrease agricultural machinery efficiency; therefore, automatic gully extraction on a regional scale should be one of the preconditions of gully control and land management. The purpose of this study is to compare the effects of [...] Read more.
Erosion gullies can reduce arable land area and decrease agricultural machinery efficiency; therefore, automatic gully extraction on a regional scale should be one of the preconditions of gully control and land management. The purpose of this study is to compare the effects of the grey level co-occurrence matrix (GLCM) and topographic–hydrologic features on automatic gully extraction and guide future practices in adjacent regions. To accomplish this, GaoFen-2 (GF-2) satellite imagery and high-resolution digital elevation model (DEM) data were first collected. The GLCM and topographic–hydrologic features were generated, and then, a gully label dataset was built via visual interpretation. Second, the study area was divided into training, testing, and validation areas, and four practices using different feature combinations were conducted. The DeepLabV3+ and ResNet50 architectures were applied to train five models in each practice. Thirdly, the trainset gully intersection over union (IOU), test set gully IOU, receiver operating characteristic curve (ROC), area under the curve (AUC), user’s accuracy, producer’s accuracy, Kappa coefficient, and gully IOU in the validation area were used to assess the performance of the models in each practice. The results show that the validated gully IOU was 0.4299 (±0.0082) when only the red (R), green (G), blue (B), and near-infrared (NIR) bands were applied, and solely combining the topographic–hydrologic features with the RGB and NIR bands significantly improved the performance of the models, which boosted the validated gully IOU to 0.4796 (±0.0146). Nevertheless, solely combining GLCM features with RGB and NIR bands decreased the accuracy, which resulted in the lowest validated gully IOU of 0.3755 (±0.0229). Finally, by employing the full set of RGB and NIR bands, the GLCM and topographic–hydrologic features obtained a validated gully IOU of 0.4762 (±0.0163) and tended to show an equivalent improvement with the combination of topographic–hydrologic features and RGB and NIR bands. A preliminary explanation is that the GLCM captures the local textures of gullies and their backgrounds, and thus introduces ambiguity and noise into the convolutional neural network (CNN). Therefore, the GLCM tends to provide no benefit to automatic gully extraction with CNN-type algorithms, while topographic–hydrologic features, which are also original drivers of gullies, help determine the possible presence of water-origin gullies when optical bands fail to tell the difference between a gully and its confusing background. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 292
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

Back to TopTop