Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = water mint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1471 KiB  
Article
Microclimate Modification, Evapotranspiration, Growth and Essential Oil Yield of Six Medicinal Plants Cultivated Beneath a Dynamic Agrivoltaic System in Southern Italy
by Grazia Disciglio, Antonio Stasi, Annalisa Tarantino and Laura Frabboni
Plants 2025, 14(15), 2428; https://doi.org/10.3390/plants14152428 - 5 Aug 2025
Abstract
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus [...] Read more.
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus (Pers.) Schreb. ar. ‘Aureus’), common thyme (Thymus vulgaris L.), rosemary (Salvia rosmarinus Spenn. ‘Severn seas’), mint (Mentha spicata L. ‘Moroccan’), and sage (Salvia officinalis L. subsp. Officinalis). Due to the rotating solar panels, two distinct ground zones were identified: a consistently shaded area under the panels (UP), and a partially shaded area between the panels (BP). These were compared to an adjacent full-sun control area (T). Microclimate parameters, including solar radiation, air and leaf infrared temperature, and soil temperature, were recorded throughout the cultivation season. Reference evapotranspiration (ETO) was calculated using Turc’s method, and crop evapotranspiration (ETC) was estimated with species-specific crop coefficients (KC). Results showed significantly lower microclimatic values in the UP plot compared to both BP and especially T, resulting in ETC reductions of 81.1% in UP and 13.1% in BP relative to T, an advantage in water-scarce environments. Growth and yield responses varied among species and treatment plots. Except for mint, all species showed a significant reduction in fresh biomass (40.1% to 48.8%) under the high shading of UP compared to T. However, no biomass reductions were observed in BP. Notably, essential oil yields were higher in both UP and BP plots (0.60–2.63%) compared to the T plot (0.51–1.90%). These findings demonstrate that dynamic AV systems can enhance water use efficiency and essential oil yield, offering promising opportunities for sustainable, high-quality medicinal crop production in arid and semi-arid regions. Full article
Show Figures

Figure 1

19 pages, 591 KiB  
Article
Development of a Guava Jelly Drink with Potential Antioxidant, Anti-Inflammation, Neurotransmitter, and Gut Microbiota Benefits
by Hai-Ha Nguyen, Jintanaporn Wattanathorn, Wipawee Thukham-Mee, Supaporn Muchimapura and Pongsatorn Paholpak
Foods 2025, 14(13), 2401; https://doi.org/10.3390/foods14132401 - 7 Jul 2025
Viewed by 433
Abstract
Due to the roles of oxidative stress, inflammation, and neurotransmitter imbalances in cognitive and mental dysfunction, we aimed to develop a functional drink with antioxidant and anti-inflammatory properties as well as the potential to support neurotransmitter balance for improved cognition and mental health. [...] Read more.
Due to the roles of oxidative stress, inflammation, and neurotransmitter imbalances in cognitive and mental dysfunction, we aimed to develop a functional drink with antioxidant and anti-inflammatory properties as well as the potential to support neurotransmitter balance for improved cognition and mental health. The Teng Mo, Fen Hong Mee, and Hong Chon Su guava varieties were screened for their polyphenol and flavonoid contents, antioxidant and anti-inflammatory effects, and suppressive effects on acetylcholinesterase (AChE), monoamine oxidase (MAO), GABA transaminase (GABA-T), and glutamate decarboxylase (GAD). Juice from the cultivar with the highest potential was selected and mixed with mint and honey syrups, pomelo-derived dietary fiber, ascorbic acid, agar, water, and fruit puree (pear/apple/orange) to create three guava jelly drink formulations. The formulation with pear puree showed the highest biological potential and was selected as the final product. It is rich in vitamin C, gallic acid, and dietary fiber, and provides approximately 37 Kcal/100 g. It also promotes the growth of lactic acid-producing bacteria in the culture. Thus, our drink shows the potential to reduce oxidative stress and inflammation, improve neurotransmitter regulation, and stimulate the gut–brain axis, thereby promoting cognition and mental wellness. However, clinical research is essential to confirm these potential benefits. Full article
Show Figures

Figure 1

14 pages, 1141 KiB  
Article
A Novel Biostimulant–Biochar Strategy for Improving Soil Quality and Salinity Tolerance in Medicinal Mint (Mentha longifolia L.)
by Mamdouh A. Eissa, Modhi O. Alotaibi, Mashael M. Alotibi, Alya Aljuaid, Taghreed Hamad Aldayel and Adel M. Ghoneim
Soil Syst. 2025, 9(2), 58; https://doi.org/10.3390/soilsystems9020058 - 2 Jun 2025
Viewed by 593
Abstract
This study evaluated the combined application of biochar (BC) and Spirulina platensis (SP) as a sustainable strategy to improve soil quality and salinity tolerance in mint (Mentha longifolia L.) cultivated in sandy soils. A pot experiment was conducted using saline irrigation water [...] Read more.
This study evaluated the combined application of biochar (BC) and Spirulina platensis (SP) as a sustainable strategy to improve soil quality and salinity tolerance in mint (Mentha longifolia L.) cultivated in sandy soils. A pot experiment was conducted using saline irrigation water (5 dS m−1) with four treatments: control, BC alone, SP alone, and BC + SP applied at 1% (w/w), arranged in a randomized complete block design with three replicates. Salt stress reduced plant height and biomass yield by 16% and 27%, respectively, and increased sodium (Na+) in shoots by 74%, causing ionic imbalance and decreased soil microbial biomass carbon by 19%. The combined BC + SP treatment significantly improved soil microbial biomass carbon (SMBC) by 100%, reduced soil Na⁺ by 41%, and enhanced K+/Na+ and Ca2+/Na+ ratios by 138% and 133%, respectively. Under salinity, BC + SP increased nutrient concentrations in mint shoots, including N (120%), P (106%), K (88%), Ca (67%), Fe (70%), Mn (50%), Zn (44%), and Cu (70%), and improved leaf chlorophyll content. These results demonstrate that BC and SP synergistically mitigate salinity stress by improving soil properties, nutrient uptake, and ionic balance, making BC + SP a promising sustainable amendment for saline sandy soils. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

23 pages, 16269 KiB  
Article
Development of Eco-Friendly Date Palm Biomass-Based Hydrogels for Enhanced Water Retention in Soil
by Faisal S. Alsubaie, Mouyed Srdar, Osama Fayraa, Faris M. Alsulami, Feras Omran and Khalid A. Alamry
Gels 2025, 11(5), 349; https://doi.org/10.3390/gels11050349 - 8 May 2025
Viewed by 1064
Abstract
The growth of plants highly depends on the soil’s water availability and properties. Hydrogels (HGs) have been used for decades to enhance soil water retention, whereas developing eco-friendly and sustainable HGs for agricultural applications is still necessary to ensure water and food security. [...] Read more.
The growth of plants highly depends on the soil’s water availability and properties. Hydrogels (HGs) have been used for decades to enhance soil water retention, whereas developing eco-friendly and sustainable HGs for agricultural applications is still necessary to ensure water and food security. In this study, renewable and cost-effective HGs were prepared from all-lignocellulose fibers of date palm biomass after carboxymethylation followed by citric acid (CA) crosslinking. HGs showed high equilibrium swelling capacity (EWC%), even in salty media, whereas purified HGs showed about 700–400 EWC% in deionized water. Further, HGs’ effect on germination was studied on Chico III tomato, mint, Basilico red, and chia seeds. The results revealed that HGs enhanced the soil properties, with taller and healthier plants observed in HG-amended soil. FTIR, thermal analysis, and microscope imaging were utilized to evaluate HGs’ and raw materials’ characteristics. The findings in this study support the idea that all-lignocellulose could be used for HG production without separation. Full article
Show Figures

Graphical abstract

17 pages, 3258 KiB  
Article
A Novel Method to Investigate Environmental Risk in Wastewater Toxicity
by Isha Shakoor, Amina Sultan, Kamran Shaukat, Talha Mahboob Alam and Aisha Nazir
Agronomy 2025, 15(4), 841; https://doi.org/10.3390/agronomy15040841 - 28 Mar 2025
Viewed by 2404
Abstract
This is a pioneering study on the main drainage system in Gujranwala District, where untreated mixed wastewater is discharged and subsequently used for vegetable irrigation, leading to potential health and environmental risks. This study seeks to develop the spatial pattern of toxic metal [...] Read more.
This is a pioneering study on the main drainage system in Gujranwala District, where untreated mixed wastewater is discharged and subsequently used for vegetable irrigation, leading to potential health and environmental risks. This study seeks to develop the spatial pattern of toxic metal accumulation in soil across an 11 km stretch of land used for vegetable cultivation. By using 90 samples of mixed wastewater and sludge, as well as 10 quadruplicate samples of rhizospheric soils and crops from ten vegetable fields, it was observed that the concentrations of Cr, Cu, Cd, Zn, Fe, Pb, Mg, and Ni in cauliflower (Brassica oleracea var. botrytis L.), coriander (Coriandrum sativum L.), radish (Raphanus sativus L.), mustard (Brassica juncea L.), spinach (Spinacia oleracea L.), meadow clover (Trifolium sp. L.), sorghum (Sorghum bicolour L.), garlic (Allium sativum L.), brinjal (Solanum melongena L.), and mint (Mentha L.) were beyond the permissible limits set by the FAO/WHO, 2001. The declining trend of the toxic metal concentrations in the effluent was Mg > Cr > Ni > Zn > Pb > Cd > Cu > Fe, and in sludge, soil, and plants, it varied in the order of Mg > Fe > Cr > Ni > Zn > Pb > Cd > Cu. Radish, mint, and brinjal had the highest quantities of toxic metals. The spatial pattern of toxic metals was determined by using proximity interpolation, Inverse Distance Weighted (IDW), the fine tuning of the interpolation characteristics, and the kriging of selected sample variograms. Toxic metals were found in the following order: plants > soil > sludge > effluents. The most prevalent cause of metal pollution was soil irrigation with polluted water. This study provides crucial information about the extent of contamination, which could help in the identification of public health risk, the assessment of environmental impacts, and also sustainable water management. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

32 pages, 3405 KiB  
Article
Antioxidant, Phytochemical, and Pharmacological Properties of Algerian Mentha aquatica Extracts
by Radhia Aitfella Lahlou, Ana Carolina Gonçalves, Mustapha Bounechada, Ana R. Nunes, Pedro Soeiro, Gilberto Alves, Diego A. Moreno, Cristina Garcia-Viguera, Cesar Raposo, Samuel Silvestre, Jesus M. Rodilla, Maria Isabel Ismael and Luís R. Silva
Antioxidants 2024, 13(12), 1512; https://doi.org/10.3390/antiox13121512 - 11 Dec 2024
Cited by 4 | Viewed by 2253
Abstract
Water mint (Mentha aquatica) is used in many formulations worldwide as a functional food and natural remedy to treat gastrointestinal disorders, lung diseases, and certain mental disorders such as epilepsy and depression. This study assessed the bioactivity of its infusion extract [...] Read more.
Water mint (Mentha aquatica) is used in many formulations worldwide as a functional food and natural remedy to treat gastrointestinal disorders, lung diseases, and certain mental disorders such as epilepsy and depression. This study assessed the bioactivity of its infusion extract (INF) and hydroethanolic extract (HE) to highlight its health benefits. These extracts were analyzed for their chemical composition by HPLC-DAD-ESI-MSn, their antioxidant and antidiabetic properties, and their capacities to protect human erythrocytes against induced hemoglobin oxidation and lipid peroxidation. The effect on normal human dermal fibroblast (NHDF) cells and on the N27 rat dopaminergic neuron cell line was also assessed. The chromatographic analysis identified 57 compounds belonging to hydroxycinnamic acids, flavanones, flavone, and isoflavonoids. In respect to the biological potential, the Mentha aquatica extracts revealed a notable capacity for 2,2-diphenyl-1-picrylhydrazyl, nitric oxide, and superoxide radicals, as well as for the inhibition of α-glucosidase action and the protection of human erythrocytes against oxidative damage. Quantification revealed noteworthy phenolic content in both extracts. Additionally, the extracts demonstrated less cytotoxic effects regarding the NHDF and N27 cell lines. Overall, Mentha aquatica presents promising antioxidant activity and a spectrum of potential biological activities, underscoring its significance as a novel antioxidant candidate for applications in animal nutrition, human medicine, and natural product research in the pharmaceutical and nutraceutical industries. Full article
(This article belongs to the Special Issue Phenolic Antioxidants)
Show Figures

Figure 1

22 pages, 1826 KiB  
Article
Determination of Drying Characteristics and Physicochemical Properties of Mint (Mentha spicata L.) Leaves Dried in Refractance Window
by Mohammad Kaveh, Shahin Zomorodi, Szymanek Mariusz and Agata Dziwulska-Hunek
Foods 2024, 13(18), 2867; https://doi.org/10.3390/foods13182867 - 10 Sep 2024
Cited by 11 | Viewed by 2137
Abstract
Drying is one of the most common and effective techniques for preserving the quantitative and qualitative characteristics of medicinal plants in the post-harvest phase. Therefore, in this research, the effect of the new refractance window (RW) technology on the kinetics, thermodynamics, greenhouse gasses, [...] Read more.
Drying is one of the most common and effective techniques for preserving the quantitative and qualitative characteristics of medicinal plants in the post-harvest phase. Therefore, in this research, the effect of the new refractance window (RW) technology on the kinetics, thermodynamics, greenhouse gasses, color indices, bioactive properties, and percentage of mint leaf essential oil was investigated in five different water temperatures in the form of a completely randomized design. This process was modeled by the methods of mathematical models and artificial neural networks (ANNs) with inputs (drying time and water temperature) and an output (moisture ratio). The results showed that with the increase in temperature, the rate of moisture removal from the samples increased and as a result, the drying time, specific energy consumption, CO2, NOx, enthalpy, and entropy decreased significantly (p < 0.05). In addition, the drying water temperature had a significant effect on the rehydration ratio, color indices, bioactive properties, and essential oil percentage of the samples (p < 0.05). The highest value of rehydration ratio was obtained at 80 °C. By increasing temperature, the main color indices such as b*, a*, L*, and Chroma decreased significantly compared to the control (p < 0.05). However, with the increase in temperature, the overall color changes (ΔE) and L* first had a decreasing trend and then an increasing trend, and this trend was the opposite for the rest of the indicators. The application of drying water temperature from 50 to 70 °C increased antioxidant, phenol content, and flavonoid content, and higher drying temperatures led to a significant decrease in these parameters (p < 0.05). On the other hand, the efficiency of the essential oil of the samples was in the range of 0.82 to 2.01%, and the highest value was obtained at the water temperature of 80 °C. Based on the analysis performed on the modeled data, a perceptron artificial neural network with 2-15-14-1 structure with explanation coefficient (0.9999) and mean square error (8.77 × 10−7) performs better than the mathematical methods for predicting the moisture ratio of mint leaves. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

15 pages, 1389 KiB  
Article
Impact of Harvesting Stages and Postharvest Treatments on the Quality and Storability of Tomato Fruits (Solanum lycopersicum L.) cv. Sangaw
by Bzhwean Anwar Mouhamed and Sidiq Aziz Sidiq Kasnazany
Coatings 2024, 14(9), 1143; https://doi.org/10.3390/coatings14091143 - 5 Sep 2024
Cited by 1 | Viewed by 2617
Abstract
The objective of this study was to evaluate the impact of harvesting stages (turning-color fruit and light red color) and postharvest treatments (distilled water, hot water at 35 °C, 10% Aloe vera, 2% CaCl2, 5% Mint, and 5% Catnip) for [...] Read more.
The objective of this study was to evaluate the impact of harvesting stages (turning-color fruit and light red color) and postharvest treatments (distilled water, hot water at 35 °C, 10% Aloe vera, 2% CaCl2, 5% Mint, and 5% Catnip) for 5 min on the quality and storability of tomato fruits cv. Sangaw stored at 10 ± 1 °C and a relative humidity of 90%–95% for 20 days. Fruit harvested at the turning-color fruit stage presented significantly lower weight loss, greater firmness, and higher amounts of vitamin C, total phenol, and calcium (3.22%, 1118.31 g mm/s, 15.83 mg 100 g−1, 95.49 mg 100 mL−1 FW, and 0.14%, respectively). However, the tomatoes harvested from the light red color fruit stage presented the highest contents of total soluble sugars, total sugars, and lycopene (4.36%, 3.99%, and 41.49 mg kg−1, respectively). Notably, the postharvest treatment of tomato fruits with 2% CaCl2 significantly decreased weight loss and resulted in greater firmness, pH, total sugar, total phenol, and calcium contents (3.90%, 1212.39 g mm/s, 4.83, 3.85%, 95.60 mg 100 mL−1 FW, and 0.18%, respectively) than the control. Hence, coating with 10% Aloe vera resulted in the highest amount of total soluble solids and the highest amount of vitamin C. Tomato picked at the turning-color fruit stage and immersed in 5% Mint significantly lowered the loss of fruit weight, increased the total titratable acidity, and had the lowest content of lycopene. Additionally, the fruits harvested at the same stage and immersed in 2% CaCl2 retained greater firmness, total phenol content, and calcium content. On the other hand, fruits harvested in the light red stage and dipped in 5% Mint presented the highest total soluble sugars and total sugar contents. Finally, the harvested tomato fruits coated with 10% Aloe vera retained a relatively high level of vitamin C, indicating the storage life and quality of the tomato fruits. Full article
(This article belongs to the Special Issue Advanced Coatings and Films for Food Packing and Storage, 2nd Edition)
Show Figures

Figure 1

15 pages, 1549 KiB  
Article
Antimicrobial Activity against Cronobacter of Plant Extracts and Essential Oils in a Matrix of Bacterial Cellulose
by Lidia Stasiak-Różańska, Anna Berthold-Pluta, Tamara Aleksandrzak-Piekarczyk, Anna Koryszewska-Bagińska and Monika Garbowska
Polymers 2024, 16(16), 2316; https://doi.org/10.3390/polym16162316 - 16 Aug 2024
Cited by 2 | Viewed by 1704
Abstract
Bacterial cellulose (BC) is a biodegradable polymer resembling paper after being dried. It finds a growing number of applications in many branches of industry and in medicine. In the present study, BC was produced after Gluconacetobacter hansenii ATCC 23769 strain culture and used [...] Read more.
Bacterial cellulose (BC) is a biodegradable polymer resembling paper after being dried. It finds a growing number of applications in many branches of industry and in medicine. In the present study, BC was produced after Gluconacetobacter hansenii ATCC 23769 strain culture and used as a matrix for plant extracts (tulsi, brahmi, lemon, blackberry, nettle root, and nettle leave) and essential oils (cinnamon, sage, clove, mint, thyme, lemongrass, rosemary, lemon, anise, tea tree, lime, grapefruit, and tangerine), and the antimicrobial properties of these biomaterials was determined. The growth-inhibiting effects of plant extracts and essential oils combined with BC were analyzed against five Cronobacter species isolated from food matrix and two reference strains from the ATCC (513229 and 29544). Additional analyses were conducted for BC water activity and for its capability to absorb biologically active plant compounds. The cellulose matrix with a 50% extract from brahmi was found to effectively inhibit the growth of the selected Cronobacter strains. The other plant water extracts did not show any antimicrobial activity against the tested strains. It was demonstrated that BC soaked with thyme essential oil was characterized with the strongest antimicrobial activity in comparison to the other tested EOs. These study results indicate the feasibility of deploying BC impregnated with natural plant components as an active and environmentally-friendly packaging material. Full article
(This article belongs to the Special Issue Polymers in Food Technology and Food Packaging)
Show Figures

Figure 1

17 pages, 1040 KiB  
Article
The Impact of Plant Essential Oils on the Growth of the Pathogens Botrytis cinerea, Fusarium solani, and Phytophthora pseudocryptogea
by Petya K. Christova, Ana M. Dobreva, Anatoli G. Dzhurmanski, Ivayla N. Dincheva, Stela D. Dimkova and Nadejda G. Zapryanova
Life 2024, 14(7), 817; https://doi.org/10.3390/life14070817 - 27 Jun 2024
Cited by 5 | Viewed by 1535
Abstract
Essential oils (EOs) extracted from aromatic and medicinal plants have the potential to inhibit the growth of various pathogens and, thus, be useful in the control of dangerous diseases. The application of environmentally friendly approaches to protect agricultural and forestry ecosystems from invasive [...] Read more.
Essential oils (EOs) extracted from aromatic and medicinal plants have the potential to inhibit the growth of various pathogens and, thus, be useful in the control of dangerous diseases. The application of environmentally friendly approaches to protect agricultural and forestry ecosystems from invasive and hazardous species has become more significant in last decades. Therefore, the identification and characterization of essential oils with a strong inhibitory activity against aggressive and widespread pathogens are of key importance in plant protection research. The main purpose of our study is to evaluate the impact of essential oils originating from different genotypes of bee balm, mint, and marigold on Botrytis cinerea, Fusarium solani, and Phytophthora pseudocryptogea. Twelve essential oils, including five EOs originating from Monarda fistulosa, one oil each from Monarda russeliana, Mentha longifolia, Mentha piperita, Tagetes patula, and Tagetes erecta, and two EOs from Tagetes tenuifolia were derived by steam or water distillation. The chemical composition of the tested EOs was determined by GS-MS analyses and their corresponding chemotypes were identified. The most effective against all three pathogens were determined to be the EOs originating from M. fistulosa and M. russeliana. B. cinerea, and P. pseudocryptogea were also significantly affected by the M. piperita essential oil. The most efficient EOs involved in this investigation and their potential to control plant pathogens are discussed. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

13 pages, 592 KiB  
Article
The Use of Macrophytes for the Removal of Chlorpyrifos from the Aquatic Environment
by Elżbieta Sobiecka, Milena Mroczkowska, Tomasz P. Olejnik and Agnieszka Nowak
Water 2024, 16(7), 1071; https://doi.org/10.3390/w16071071 - 8 Apr 2024
Cited by 2 | Viewed by 1904
Abstract
Phytoremediation is one of the effective technologies for removing pollutants from the aquatic environment. Toxic compounds such as chlorpyrifos can affect the physiological processes of aquatic plants, causing secondary oxidative stress in plant tissues. Macrophytes, like other organisms inhabiting the contaminated ecosystem, have [...] Read more.
Phytoremediation is one of the effective technologies for removing pollutants from the aquatic environment. Toxic compounds such as chlorpyrifos can affect the physiological processes of aquatic plants, causing secondary oxidative stress in plant tissues. Macrophytes, like other organisms inhabiting the contaminated ecosystem, have developed a system of defense mechanisms, thanks to which plants can still exist in their natural ecosystem. Our research is a summary of the previously presented results of the effectiveness of purifying contaminated water with chlorpyrifos in the phytoremediation process and the second type of phytoremediation supported by microorganisms, which intensify the process of removing contaminants from the environment. This research concerned changes in nonenzymatic and enzymatic antioxidants in Canadian seaweed, needle spikerush and water mint caused by chlorpyrifos. The research determines changes in the total concentration of polyphenols, flavonoids and dyes (chlorophyll A, chlorophyll B, anthocyanins and carotenoids) as well as differences in the activity of guaiacol peroxidase and glutathione S-transferase. The analysis of the results showed an increase in the content of polyphenols and flavonoids. The reverse trend was observed in the case of the pigment content. The appearance of chlorpyrifos in the environment caused an increase in the activity of the examined enzymes. The process involving microorganisms that were obtained from places contaminated with pesticide proved to be more effective. This shows the cooperation of species living in an investigated ecosystem. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Graphical abstract

22 pages, 2812 KiB  
Article
Green Solvent Extraction of Antioxidants from Herbs and Agro-Food Wastes: Optimization and Capacity Determination
by Malo Hamieau, Patrick Loulergue and Aleksandra Szydłowska-Czerniak
Appl. Sci. 2024, 14(7), 2936; https://doi.org/10.3390/app14072936 - 30 Mar 2024
Cited by 12 | Viewed by 1891
Abstract
Herbs and agro-food wastes are rich sources of bioactive compounds vital for organisms and valuable for many fields of industry. Therefore, in this study, green deep eutectic solvents (DESs) such as choline chloride/citric acid (ChCl:CitA), glucose/citric acid (Gu:CitA), glucose/urea (Gu:U), betaine/citric acid (B:CitA), [...] Read more.
Herbs and agro-food wastes are rich sources of bioactive compounds vital for organisms and valuable for many fields of industry. Therefore, in this study, green deep eutectic solvents (DESs) such as choline chloride/citric acid (ChCl:CitA), glucose/citric acid (Gu:CitA), glucose/urea (Gu:U), betaine/citric acid (B:CitA), and betaine/urea (B:U) at a molar ratio of 1:1 for ultrasound-assisted extraction (UAE) of antioxidants from four herbs (chamomile—Cha, lemon balm—LB, mint—M, and nettle—N) and two agro-food wastes (buckwheat husk—BH and chokeberry pomace—ChoP) were proposed. The antioxidant capacity (AC) of the obtained extracts was evaluated utilizing three antioxidant assays: cupric reducing antioxidant capacity (CUPRAC = 0.0–429.9 μmol of Trolox (TE)/g); 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS = 0.0–146.5 μmol TE/g); and 2,2-diphenyl-1-picrylhydrazyl (DPPH = 11.9–170.3 μmol TE/g). The LB extracts revealed the highest CUPRAC (59.3–429.9 μmol TE/g), ABTS (30.7–144.3 μmol TE/g), and DPPH (32.6–170.3 μmol TE/g) values. Due to the lowest antioxidant potential of LB extracts prepared using ChCl:CitA (AC = 30.7–59.3 μmol TE/g) and the highest AC demonstrated by extracts based on B:U (AC = 144.3–429.9 μmol TE/g), the UAE conditions using a new DES consisting of ChCl and U were optimized by the Box–Behnken design (BBD). Effects of three independent variables, molar ratios of the ChCl and U (mol/mol), water content (%), and sonication time (t) on the AC of LB extracts were studied by response surface methodology (RSM). The results of principal component analysis (PCA) and hierarchical cluster analysis (HCA) demonstrated that different DESs had great differences in the extraction of antioxidant compounds from herbs and agro-food residues. Full article
Show Figures

Figure 1

31 pages, 4239 KiB  
Article
LC-MS/MS and GC-MS Identification of Metabolites from the Selected Herbs and Spices, Their Antioxidant, Anti-Diabetic Potential, and Chemometric Analysis
by Hafiza Sehrish Kiani, Baber Ali, Mohammad Khalid Al-Sadoon, Hamad S. Al-Otaibi and Akhtar Ali
Processes 2023, 11(9), 2721; https://doi.org/10.3390/pr11092721 - 12 Sep 2023
Cited by 21 | Viewed by 5444
Abstract
Culinary herbs and spices are widely used in daily diets. Pakistan’s flora is enriched with phytochemicals due to a diverse range of land. Phytochemicals, including volatile and non-volatile compounds, have captured much interest due to their numerous health advantages and significance in daily [...] Read more.
Culinary herbs and spices are widely used in daily diets. Pakistan’s flora is enriched with phytochemicals due to a diverse range of land. Phytochemicals, including volatile and non-volatile compounds, have captured much interest due to their numerous health advantages and significance in daily diet. The present study aimed to conduct in-depth metabolomic profiling of Pakistani-grown fenugreek leaves (Trigonella foenum-graecum), fennel seeds (Foeniculum vulgare), mint leaves (Mentha royleana), coriander seeds (Coriandrum sativum) and basil leaves (Ocimum basilicum) by using liquid chromatography–mass spectrometry (LC-MS/MS) and gas chromatography–mass spectrometry (GC-MS). The first study was conducted to optimize extraction using different solvents (methanol, ethanol, chloroform, acetone, and water). Total phenolic content (TPC), total flavonoid content (TFC), and total condensed tannins (TCT) were quantified along with the antioxidant and anti-diabetic activities. The highest TPC (125.42 ± 10.89 mg GAE/g) and the highest antioxidant and anti-diabetic potential were quantified in mint. Seventy-one phytochemical metabolites were identified using LC-MS/MS, while forty-nine volatile constituents were identified using GC-MS. A positive correlation was identified between phenolic contents and their biological activities. Furthermore, molecular docking helped to find drug molecules with more excellent anti-diabetic activity based on their binding affinities. This study suggests that selected herbs and spices from Pakistan have significant nutraceutical and phytopharmaceutical potential. This study could further help in drug discovery. Full article
Show Figures

Graphical abstract

16 pages, 1754 KiB  
Article
Biostimulant Application Alleviates the Negative Effects of Deficit Irrigation and Improves Growth Performance, Essential Oil Yield and Water-Use Efficiency of Mint Crop
by Christina Chaski, Kyriakos D. Giannoulis, Alexios A. Alexopoulos and Spyridon A. Petropoulos
Agronomy 2023, 13(8), 2182; https://doi.org/10.3390/agronomy13082182 - 21 Aug 2023
Cited by 4 | Viewed by 2336
Abstract
The scarcity of water is limiting crop production and is one of the most important stressors that severely affects crop yield, and it may also decrease the quality of the final products. Most of the medicinal and aromatic plants are considered resilient to [...] Read more.
The scarcity of water is limiting crop production and is one of the most important stressors that severely affects crop yield, and it may also decrease the quality of the final products. Most of the medicinal and aromatic plants are considered resilient to water stress and constitute a sustainable choice for crop production in arid and semiarid conditions. In the present study, we examined the effect of scheduled deficit irrigation (e.g., I1: 40% of field capacity); I2: 70% of field capacity; and I3: 100% of field capacity) combined with biostimulant application (four different products that consisted of nitrogenous compounds and carboxylic acids (M1); nitrogenous compounds and seaweed extracts (M2); humic and fulvic acids and seaweed extracts (M3); and CaO, SiO2, calcium mobilization and translocation factor and microminerals (M4)) on crop performance and essential oil production of mint plants (Mentha arvensis L.). Our aim was to define an irrigation regime that increases water-use efficiency and the biostimulant products that alleviate water stress effects. Our results indicate that moderate deficit irrigation (I2 treatment) and biostimulants that contained seaweed extracts and nitrogenous compounds and humic and fulvic acids (M2 and M3 treatments, respectively) significantly improved yield parameters in terms of fresh and dry herb yield and essential oil production. Moreover, the same biostimulant treatments significantly increased water-use efficiency of mint crops based on the various yield parameters tested in this study. In conclusion, our results indicate that selection of proper biostimulatory products may allow to apply deficit irrigation regimes in mint cultivation without compromising the crop performance in terms of both biomass production and essential oil yield. Therefore, the combination of these agronomic tools could facilitate water saving strategies in arid and semiarid regions and contribute to the sustainable management of water resources. Full article
(This article belongs to the Special Issue Sustainable Agronomical Practices for Saving Water Supply)
Show Figures

Figure 1

21 pages, 2709 KiB  
Article
Chemical Analysis of Various Tea Samples Concerning Volatile Compounds, Fatty Acids, Minerals and Assessment of Their Thermal Behavior
by Thomas Dippong, Oana Cadar, Melinda Haydee Kovacs, Monica Dan and Lacrimioara Senila
Foods 2023, 12(16), 3063; https://doi.org/10.3390/foods12163063 - 15 Aug 2023
Cited by 14 | Viewed by 3077
Abstract
Tea is the most consumed drink worldwide due to its pleasant taste and various beneficial effects on human health. This paper assesses the physicochemical analysis of different varieties of tea (leaves, flowers, and instant) after prior drying and fine grinding. The thermal decomposition [...] Read more.
Tea is the most consumed drink worldwide due to its pleasant taste and various beneficial effects on human health. This paper assesses the physicochemical analysis of different varieties of tea (leaves, flowers, and instant) after prior drying and fine grinding. The thermal decomposition behavior of the tea components shows that the tea has three stages of decomposition, depending on temperature. The first stage was attributed to the volatilization of water, while the second stage involved the degradation of volatiles, polyphenols, and fatty acids. The degradation of cellulose, hemicellulose, and lignin content occurs at the highest temperature of 400 °C in the third stage. A total of 66 volatile compounds, divided into eight classes, were identified in the tea samples. The volatile compounds were classified into nine odor classes: floral, fruity, green, sweet, chemical, woody, citrus, roasted, and alcohol. In all flower and leaf tea samples, monounsaturated (MUFAs), polyunsaturated (PUFAs), and saturated fatty acids (SFAs) were identified. A high content of omega-6 was quantified in acacia, Saint John’s Wort, rose, and yarrow, while omega-3 was found in mint, Saint John’s Wort, green, blueberry, and lavender samples. The flower and leaf tea samples studied could be a good dietary source of polyphenolic compounds, essential elements. In instant tea samples, a low quantity of polyphenols and major elements were identified. The physicochemical analysis demonstrated that both flower and leaf teas have high-quality properties when compared to instant tea. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

Back to TopTop