The Use of Macrophytes for the Removal of Chlorpyrifos from the Aquatic Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Water Plants
2.1.2. Microorganisms
2.1.3. Chlorpyrifos
2.2. Experiments
2.2.1. Isolation of Microorganisms
2.2.2. Phytoremediation Process
2.3. Determination of Chlorpyrifos
2.4. Determination of Enzymatic Antioxidants
2.5. Determination of Nonenzymatic Antioxidants
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rani, K.; Dhania, G. Bioremediation and biodegradation of pesticide from contaminated soil and water—A noval approach. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 23–33. [Google Scholar]
- Meng, X.; Guo, Y.; Wang, Y.; Fan, S.; Wang, K.; Han, W. A systematic review of photolysis and hydrolysis degradation modes, degradation mechanisms, and identification methods of pesticides. J. Chem. 2022, 2022, 9552466. [Google Scholar] [CrossRef]
- Sobiecka, E.; Kołaciński, Z.; Rincón, J.M.; Szymański, Ł.; Olejnik, T.P. Coloured sintered glass-ceramics from hospital incineration fly ash. Mat. Lett. 2019, 252, 34–37. [Google Scholar] [CrossRef]
- Susarla, S.; Medina, V.F.; McCutcheon, S.C. Phytoremediation: An ecological solution to organic chemical contamination. Ecol. Eng. 2002, 18, 647–658. [Google Scholar] [CrossRef]
- Seridou, P.; Fyntrilakis, K.; Syranidou, E.; Kalogerakis, N. Hydroponic phytoremediation of antimony by Tamarix smyrnensis and Nerium oleander. J. Chem. Technol. Biotechnol. 2023, 98, 2214–2223. [Google Scholar] [CrossRef]
- Futughe, A.E.; Purchase, D.; Jones, H. Phytoremediation using Native Plants. In Phytoremediation: In-Situ Applications, 1st ed.; Shmaefsky, B., Ed.; Concepts and Strategies in Plant Sciences; Springer Nature: Cham, Switzerland, 2020; pp. 285–327. [Google Scholar]
- Shilev, S.; Babrikova, I.; Babrikov, T. Consortium of plant growth-promoting bacteria improves spinach (Spinacea oleracea L.) growth under heavy metal stress conditions. J. Chem. Technol. Biotechnol. 2020, 95, 932–939. [Google Scholar] [CrossRef]
- Arora, N.K.; Fatima, T.; Mishra, J.; Mishra, I.; Verma, S.; Verma, R.; Verma, M.; Bhattacharya, A.; Verma, P.; Mishra, P. Ha-lo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J. Adv. Res. 2020, 26, 69–82. [Google Scholar] [CrossRef]
- Tchuisseu Tchakounté, G.V.; Berger, B.; Patz, S.; Becker, M.; Turecková, V.; Novák, O.; Tarkowská, D.; Fankem, H.; Silke, R. The response of maize to inoculation with Arthrobacter sp. and Bacillus sp. in phosphorus-deficient, salinity-affected soil. Microorganisms 2020, 8, 1005. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.M.; Seibert, D.; Quesada, H.B.; de Jesus Bassetti, F.; Fagundes-Klen, M.R.; Bergamasco, R. Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Saf. Environ. Prot. 2020, 135, 22–37. [Google Scholar] [CrossRef]
- Rumschlag, S.L.; Mahon, M.B.; Hoverman, J.T.; Raffel, T.R.; Carrick, H.J.; Hudson, P.J.; Rohr, J.R. Consistent effects of pesticides on community structure and ecosystem function in freshwater systems. Nat. Commun. 2020, 11, 6333. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Navarro, O.; Ponce-LaRosa, C.; Bustos-Obregón, E. Organophosphorous Pesticides: Their Effects on Biosentinel Species and Humans. Control and Application in Chile. Int. J. Morphol. 2017, 35, 1069–1074. [Google Scholar] [CrossRef]
- Bertrand, L.; Marinob, D.J.; Monferránc, M.V.; Améa, M.V. Can a low concentration of an organophosphate insecticide cause negative effects on an aquatic macrophyte? Exposure of Potamogeton pusillus at environmentally relevant chlorpyrifos concentrations. Environ. Exp. Bot. 2017, 198, 139–147. [Google Scholar] [CrossRef]
- Pehkonen, S.O.; Zhang, Q. The degradation of organophosphorus pesticides in natural waters: A critical review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 17–72. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, X.; Xiong, T.; Wang, H.; Jiang, L. Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chem. Eng. J. 2020, 398, 125657. [Google Scholar] [CrossRef]
- Elerŝek, T.; Filipič, M. Chapter 12: Organophosphorus Pesticides—Mechanism of Their Toxicity. In The Impacts of Pesticide Exposure; Stoytcheva, M., Ed.; IntechOpen Limited: London, UK, 2011; pp. 243–260. [Google Scholar]
- Singh, A.; Kumar, A.; Yadav, S.; Singh, I.K. Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene 2019, 18, 100173. [Google Scholar] [CrossRef]
- Anee, T.I.; Nahar, K.; Rahman, A.; Mahmud, J.A.; Bhuiyan, T.F.; Alam, M.U.; Fujita, M.; Hasanuzzaman, M. Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants 2019, 8, 196. [Google Scholar] [CrossRef]
- Nianiou-Obeidat, I.; Madesis, P.; Kissoudis, C.; Voulgari, G.; Chronopoulou, E.; Tsaftaris, A.; Labrou, N.E. Plant glutathione transferase-mediated stress tolerance: Functions and biotechnological applications. Plant Cell Rep. 2017, 36, 791–805. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, N.; Vahdati, K.; Hassani, D.; Kholdebarin, B.; Amiri, R. Peroxidase, guaiacol peroxidase and ascorbate peroxidase activity accumulation in leaves and roots of walnut trees in response to drought stress. Acta Hortic. 2010, 861, 309–316. [Google Scholar] [CrossRef]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Kawano, T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 2003, 21, 829–837. [Google Scholar] [CrossRef]
- Bela, K.; Horváth, E.; Gallé, Á.; Szabados, L.; Tari, I.; Csiszár, J. Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses. J. Plant Physiol. 2015, 176, 192–201. [Google Scholar] [CrossRef]
- Hemeda, H.M.; Klein, B.P. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J. Food Sci. 1990, 55, 184–185. [Google Scholar] [CrossRef]
- Varga, B.; Janda, T.; László, E.; Veisz, O. Influence of abiotic stresses on the antioxidant enzyme activity of cereals. Acta Physiol. Plant. 2012, 34, 849–858. [Google Scholar] [CrossRef]
- Edwards, R.; Dixon, D.D. Metabolism of Natural and Xenobiotics Substrates by the Plant Glutathione S-Transferase Superfamily. In Ecological Studies, Molecular Ecotoxicology of Plants; Sandermann, H., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2004; Volume 170, pp. 17–50. [Google Scholar]
- Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Fujita, M. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants 2017, 23, 249–268. [Google Scholar] [CrossRef]
- Uarrota, V.G.; Moresco, R.; Schmidt, E.C.; Bouzon, Z.L.; da Costa Nunes, E.; de Oliveira Neubert, E.; Peruch, L.A.M.; Rocha, M.; Maraschin, M. The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration. Food Chem. 2016, 197, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.R. Toxic Effect of Chlorpyrifos and Dimethoate on Protein and Chlorophyll-a Content of Spirulina platensis. Int. J. Eng. Sci. Adv. Res. 2015, 1, 24–26. [Google Scholar]
- Dvořáková Březinová, T.; Vymazal, J. Phenolic compounds in wetland macrophytes. Sci. Agric. Bohem. 2018, 49, 1–8. [Google Scholar]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: Role and biological activity in plants and humans. J. Med. Plants Res. 2011, 5, 6697–6703. [Google Scholar]
- Belščak-Cvitanović, A.; Durgo, K.; Huđek, A.; Bačun-Družina, V.; Komes, D. Overview of Polyphenols and Their Properties. In Polyphenols: Properties, Recovery, and Applications; Woodhead Publishing: New York, NY, USA, 2018; pp. 3–44. [Google Scholar]
- Solovchenko, A.; Yahia, E.M.; Chen, C. Pigments. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Woodhead Publishing (Elsevier): Duxford, UK, 2019; pp. 225–252. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Sobiecka, E.; Mroczkowska, M.; Olejnik, T.P. The Influence of Chlorpyrifos on the Nonenzymatic Antioxidants Content in Macrophytes Leaves. Antioxidants 2022, 11, 684. [Google Scholar] [CrossRef] [PubMed]
- Sobiecka, E.; Mroczkowska, M.; Olejnik, T.P. The Enzymatic Antioxidants Activities Changes in Water Plants Tissues Exposed to Chlorpyrifos Stress. Antioxidants 2022, 11, 2104. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, S.; Kumar, V.; Kanwar, M.K.; Kesavan, A.K.; Thukral, A.K.; Bhardwaj, R.; Alam, P.; Ahmad, P. Presowing Seed Treatment with 24-Epibrassinolide Ameliorates Pesticide Stress in Brassica juncea L. through the Modulation of Stress Markers. Front. Plant Sci. 2016, 7, 1569. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Yuan, H.; Kanwar, M.K.; Bhardwaj, R.; Thukral, A.K.; Zheng, B. Jasmonic Acid Seed Treatment Stimulates Insecticide Detoxification in Brassica juncea L. Front. Plant Sci. 2018, 9, 1609. [Google Scholar] [CrossRef] [PubMed]
- Shixiang, G.A.O.; Huiyun, P.; Xiaolu, L.I.; Xiaohua, X.U. Phytotoxicity of four herbicides on Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii. J. Environ. Sci. 2009, 21, 307–312. [Google Scholar]
- Komives, T.; Gullner, G. Phase I Xenobiotic Metabolic Systems in Plants. Z. Nat. 2005, 60, 179–185. [Google Scholar]
- Tlidjen, S.; Meksem Amara, L.; Bouchlaghem, S.; Sbartai, H.; Djebar, M.R. Oxidative stress in Elodea canadensis and Lemna minor exposed to Calliofop 36EC. Glob. J. Biodivers. Sci. Manag. 2012, 2, 29–37. [Google Scholar]
- Vighi, I.; Benitez, L.; Amaral, M.; Moraes, G.; Auler, P.; Rodrigues, G.; Deuner, S.; Maia, L.; Braga, E. Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress. Biol. Plant. 2017, 61, 540–550. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, L.A.; Corpas, F.J.; Sandalio, L.M.; Palma, J.M.; Gomez, M.; Barroso, J.B. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot. 2002, 372, 1255–1272. [Google Scholar] [CrossRef]
- Lv, T.; Carvalho, P.N.; Zhang, L.; Zhang, Y.; Button, M.; Arias, C.A.; Weber, K.P.; Brix, H. Functionality of microbial communities in constructed wetlands used for pesticide remediation: Influence of system design and sampling strategy. Water Res. 2017, 110, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Shukla, A.K.; Srivastva, N.; Upadhyay, S.N.; Dubey, S.K. Utilization of microbial community potential for removal of chlorpyrifos: A review. Crit. Rev. Biotechnol. 2016, 36, 727–742. [Google Scholar] [CrossRef] [PubMed]
Chemical Formula | C9H11Cl3NO3PS |
---|---|
Molar mass | 350.57 g/mol |
Melting point | 42–43.5 °C |
Density | 1.398 g/cm3 in 43.5 °C |
Solubility in water | 2 mg/dm3 |
Vapor pressure | 1.87 × 10−5 mmHg at 25 °C |
Octanol–Water Partition Coefficient (Kow) | 4.70 |
Henry’s constant | 4.2 × 10−6 atm·m3/mol at 25 °C |
Soil Sorption Coefficient (Koc) | 360 to 31 000 depending on soil type and environmental conditions |
Identified Strain [Accession Number in GenBank] | Reference Strain in GenBank [Accession Number] | Similarity | Taxonomy |
---|---|---|---|
Bacillus cereus A2 [PP473786] | Bacillus cereus strain CBC-4 [MK285635] | 100% | Domain Bacteria, Phylum Bacillota, Class Bacilli, Order Caryophanales, Family Bacillaceae, Genus Bacillus |
Bacillus licheniformis B2 [PP473787] | Bacillus licheniformis strain HO-A7 [MT495615] | 99.9% | Domain Bacteria, Phylum Bacillota, Class Bacilli, Order Caryophanales, Family Bacillaceae, Genus Bacillus |
Oerskovia paurometabola D1 [PP473788] | Oerskovia paurometabola strain CSE_1 [KX027337] | 99.9% | Domain Bacteria, Phylum Actinomycetota, Order Micrococcales, Family Promicromonosporaceae, Genus Oerskovia |
Nonenzymatic Antioxidants | Phytoremediation | Plant | Chlorpyrifos Concentration [µg/dm3] | |||
---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | |||
Polyphenols [mg CEA/g f.m.] | F1 | A | 3.66 ± 0.02 | 8.80 ± 0.01 | 10.46 ± 0.01 | 18.57 ± 0.02 |
B | 4.45 ± 0.01 | 11.85 ± 0.03 | 14.61 ± 0.02 | 15.89 ± 0.02 | ||
C | 5.60 ± 0.02 | 14.59 ± 0.02 | 16.64 ± 0.01 | 19.51 ± 0.02 | ||
F2 | A | 6.60 ± 0.03 | 13.86 ± 0.01 | 19.81 ± 0.02 | 23.73 ± 0.02 | |
B | 6.85 ± 0.02 | 15.83 ± 0.03 | 19.59 ± 0.02 | 23.09 ± 0.01 | ||
C | 6.82 ± 0.02 | 14.52 ± 0.01 | 18.85 ± 0.01 | 24.10 ± 0.02 | ||
Flavonoids [mg QE/g f.m.] | F1 | A | 4.56 ± 0.03 | 7.24 ± 0.01 | 9.30 ± 0.02 | 13.29 ± 0.02 |
B | 3.81 ± 0.02 | 7.66 ± 0.01 | 10.56 ± 0.03 | 14.67 ± 0.01 | ||
C | 5.22 ± 0.01 | 6.28 ± 0.02 | 10.64 ± 0.01 | 16.82 ± 0.01 | ||
F2 | A | 3.99 ± 0.02 | 8.22 ± 0.03 | 10.88 ± 0.01 | 15.06 ± 0.01 | |
B | 4.50 ± 0.01 | 8.56 ± 0.01 | 12.79 ± 0.03 | 16.38 ± 0.01 | ||
C | 5.19 ± 0.02 | 7.85 ± 0.02 | 11.53 ± 0.02 | 19.21 ± 0.01 |
Nonenzymatic Antioxidant [mg/g f.m.] | Phytoremediation | Plant | Chlorpyrifos Concentration [µg/dm3] | |||
---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | |||
Chlorophyll a | F1 | A | 12.15 ± 0.02 | 10.28 ± 0.02 | 7.25 ± 0.03 | 2.36 ± 0.01 |
B | 13.02 ± 0.02 | 12.18 ± 0.03 | 7.38 ± 0.03 | 5.12 ± 0.02 | ||
C | 13.71 ± 0.01 | 12.27 ± 0.01 | 8.12 ± 0.02 | 6.08 ± 0.01 | ||
F2 | A | 12.10 ± 0.02 | 11.12 ± 0.03 | 7.97 ± 0.01 | 3.62 ± 0.03 | |
B | 15.32 ± 0.03 | 13.78 ± 0.01 | 8.02 ± 0.01 | 5.42 ± 0.02 | ||
C | 13.08 ± 0.02 | 12.24 ± 0.03 | 7.35 ± 0.03 | 6.71 ± 0.03 | ||
Chlorophyll b | F1 | A | 13.52 ± 0.03 | 10.00 ± 0.02 | 7.24 ± 0.02 | 3.14 ± 0.03 |
B | 13.01 ± 0.02 | 12.15 ± 0.02 | 8.18 ± 0.03 | 7.02 ± 0.03 | ||
C | 12.97 ± 0.02 | 11.71 ± 0.03 | 7.93 ± 0.01 | 3.14 ± 0.02 | ||
F2 | A | 12.05 ± 0.03 | 10.27 ± 0.02 | 8.19 ± 0.03 | 3.28 ± 0.02 | |
B | 14.12 ± 0.02 | 12.32 ± 0.01 | 8.27 ± 0.02 | 5.64 ± 0.03 | ||
C | 13.09 ± 0.03 | 11.02 ± 0.01 | 7.37 ± 0.03 | 6.27 ± 0.03 | ||
Anthocyanins | F1 | A | 29.52 ± 0.03 | 26.36 ± 0.01 | 23.09 ± 0.03 | 18.38 ± 0.03 |
B | 35.12 ± 0.02 | 31.51 ± 0.02 | 27.11 ± 0.01 | 20.32 ± 0.03 | ||
C | 33.41 ± 0.01 | 31.81 ± 0.01 | 23.72 ± 0.03 | 17.42 ± 0.02 | ||
F2 | A | 30.21 ± 0.01 | 27.21 ± 0.02 | 23.34 ± 0.01 | 18.34 ± 0.01 | |
B | 35.32 ± 0.02 | 31.37 ± 0.01 | 27.81 ± 0.02 | 20.18 ± 0.01 | ||
C | 32.41 ± 0.01 | 29.46 ± 0.02 | 23.47 ± 0.03 | 17.24 ± 0.02 | ||
Carotenoids | F1 | A | 25.18 ± 0.03 | 19.21 ± 0.03 | 15.32 ± 0.01 | 8.71 ± 0.01 |
B | 24.28 ± 0.02 | 22.08 ± 0.02 | 14.54 ± 0.03 | 5.21 ± 0.02 | ||
C | 23.58 ± 0.01 | 20.36 ± 0.02 | 13.37 ± 0.01 | 7.83 ± 0.03 | ||
F2 | A | 25.04 ± 0.01 | 18.54 ± 0.01 | 16.23 ± 0.01 | 9.14 ± 0.01 | |
B | 24.52 ± 0.02 | 23.21 ± 0.01 | 14.75 ± 0.02 | 8.35 ± 0.01 | ||
C | 23.24 ± 0.01 | 21.87 ± 0.03 | 14.41 ± 0.01 | 7.08 ± 0.03 |
Enzymatic Antioxidant | Phytoremediation | Plant | Chlorpyrifos Concentration [µg/dm3] | |||
---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | |||
GST in leaves [nmol CDNB/g f.m.] | F1 | A | 4.40 ± 0.01 | 9.67 ± 0.02 | 12.68 ± 0.02 | 16.89 ± 0.01 |
B | 4.82 ± 0.01 | 10.61 ± 0.01 | 12.93 ± 0.01 | 20.24 ± 0.03 | ||
C | 5.88 ± 0.02 | 9.22 ± 0.03 | 14.44 ± 0.01 | 19.77 ± 0.01 | ||
GST in leaves [nmol CDNB/g f.m.] | F2 | A | 5.93 ± 0.03 | 12.62 ± 0.02 | 20.07 ± 0.03 | 22.18 ± 0.01 |
B | 6.73 ± 0.01 | 11.71 ± 0.02 | 18.83 ± 0.01 | 23.14 ± 0.03 | ||
C | 6.60 ± 0.03 | 11.99 ± 0.01 | 19.97 ± 0.03 | 20.07 ± 0.01 | ||
GST in roots [nmol CDNB/g f.m.] | F1 | A | 2.93 ± 0.03 | 5.29 ± 0.02 | 9.87 ± 0.01 | 12.34 ± 0.03 |
B | 2.33 ± 0.01 | 6.84 ± 0.03 | 11.33 ± 0.03 | 15.23 ± 0.01 | ||
C | 6.36 ± 0.02 | 12.38 ± 0.02 | 19.51 ± 0.01 | 22.61 ± 0.01 | ||
GST in roots [nmol CDNB/g f.m.] | F2 | A | 1.98 ± 0.01 | 3.24 ± 0.01 | 9.86 ± 0.02 | 13.19 ± 0.01 |
B | 2.67 ± 0.01 | 7.33 ± 0.02 | 14.80 ± 0.01 | 17.79 ± 0.02 | ||
C | 6.14 ± 0.03 | 12.59 ± 0.01 | 20.16 ± 0.03 | 23.29 ± 0.01 | ||
GPX in leaves [mmol TG/g f.m.] | F1 | A | 3.66 ± 0.02 | 8.80 ± 0.01 | 10.46 ± 0.03 | 18.57 ± 0.03 |
B | 4.45 ± 0.01 | 11.85 ± 0.01 | 14.61 ± 0.03 | 15.89 ± 0.01 | ||
C | 5.60 ± 0.01 | 14.59 ± 0.02 | 16.64 ± 0.01 | 19.51 ± 0.03 | ||
GPX in leaves [mmol TG/g f.m.] | F2 | A | 6.60 ± 0.01 | 13.86 ± 0.01 | 19.81 ± 0.03 | 23.75 ± 0.01 |
B | 6.86 ± 0.02 | 15.80 ± 0.01 | 19.60 ± 0.01 | 23.09 ± 0.03 | ||
C | 6.92 ± 0.03 | 14.53 ± 0.01 | 18.85 ± 0.03 | 24.11 ± 0.02 | ||
GPX in roots [mmol TG/g f.m.] | F1 | A | 4.18 ± 0.01 | 6.78 ± 0.03 | 9.83 ± 0.02 | 14.27 ± 0.03 |
B | 4.34 ± 0.03 | 12.70 ± 0.01 | 16.41 ± 0.03 | 16.10 ± 0.03 | ||
C | 6.36 ± 0.03 | 12.38 ± 0.03 | 19.51 ± 0.01 | 22.61 ± 0.01 | ||
GPX in roots [mmol TG/g f.m.] | F2 | A | 2.27 ± 0.03 | 9.18 ± 0.01 | 12.47 ± 0.02 | 17.36 ± 0.03 |
B | 5.09 ± 0.01 | 16.74 ± 0.01 | 18.64 ± 0.03 | 21.45 ± 0.01 | ||
C | 6.14 ± 0.03 | 12.59 ± 0.02 | 20.16 ± 0.01 | 23.29 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobiecka, E.; Mroczkowska, M.; Olejnik, T.P.; Nowak, A. The Use of Macrophytes for the Removal of Chlorpyrifos from the Aquatic Environment. Water 2024, 16, 1071. https://doi.org/10.3390/w16071071
Sobiecka E, Mroczkowska M, Olejnik TP, Nowak A. The Use of Macrophytes for the Removal of Chlorpyrifos from the Aquatic Environment. Water. 2024; 16(7):1071. https://doi.org/10.3390/w16071071
Chicago/Turabian StyleSobiecka, Elżbieta, Milena Mroczkowska, Tomasz P. Olejnik, and Agnieszka Nowak. 2024. "The Use of Macrophytes for the Removal of Chlorpyrifos from the Aquatic Environment" Water 16, no. 7: 1071. https://doi.org/10.3390/w16071071
APA StyleSobiecka, E., Mroczkowska, M., Olejnik, T. P., & Nowak, A. (2024). The Use of Macrophytes for the Removal of Chlorpyrifos from the Aquatic Environment. Water, 16(7), 1071. https://doi.org/10.3390/w16071071