Biostimulant Application Alleviates the Negative Effects of Deficit Irrigation and Improves Growth Performance, Essential Oil Yield and Water-Use Efficiency of Mint Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Biostimulant Treatments and Experimental Design
2.2. Irrigation Treatments
2.3. Assessment of Crop Performance and Essential Yield
2.4. Statistical Analysis
3. Results
3.1. Growth Parameters—Fresh and Dry Yield
3.2. Essential Oil Yield
3.3. Water-Use Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Croteau, R.B.; Davis, E.M.; Ringer, K.L.; Wildung, M.R. (-)-Menthol biosynthesis and molecular genetics. Naturwissenschaften 2005, 92, 562–577. [Google Scholar] [CrossRef]
- Grigoleit, H.G.; Grigoleit, P. Pharmacology and preclinical pharmacokinetics of peppermint oil. Phytomedicine 2005, 12, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Elansary, H.O.; Mahmoud, E.A.; Shokralla, S.; Yessoufou, K. Diversity of plants, traditional knowledge, and practices in local cosmetics: A case study from Alexandria, Egypt. Econ. Bot. 2015, 69, 114–126. [Google Scholar] [CrossRef]
- Ribeiro, B.; Shapira, P. Anticipating governance challenges in synthetic biology: Insights from biosynthetic menthol. Technol. Forecast. Soc. Chang. 2019, 139, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.K.; Bahl, J.R.; Verma, R.S.; Padalia, R.C.; Chauhan, A.; Patra, D.D. New source of planting material for quality cultivation of menthol-mint (Mentha arvensis L.). Ind. Crops Prod. 2014, 59, 184–188. [Google Scholar] [CrossRef]
- Shasany, A.K.; Gupta, S.; Gupta, M.K.; Naqvi, A.A.; Bahl, J.R.; Khanuja, S.P.S. Assessment of menthol mint collection for genetic variability and monoterpene biosynthetic potential. Flavour Fragr. J. 2010, 25, 41–47. [Google Scholar] [CrossRef]
- Elansary, H.O.; Mahmoud, E.A.; El-Ansary, D.O.; Mattar, M.A. Effects of water stress and modern biostimulants on growth and quality characteristics of mint. Agronomy 2020, 10, 6. [Google Scholar] [CrossRef]
- Anwar, F.; Abbas, A.; Mehmood, T.; Gilani, A.H.; Rehman, N.-U. Mentha: A genus rich in vital nutra-pharmaceuticals—A review. Phyther. Res. 2019, 33, 2548–2570. [Google Scholar] [CrossRef]
- Singh, P.P.; Pandey, P.; Singh, D.; Singh, S.; Khan, M.S.; Semwal, M. ‘Mentha Mitra’—An android app based advisory digital tool for menthol mint farmers. Ind. Crops Prod. 2020, 144, 112047. [Google Scholar] [CrossRef]
- Wogiatzi, E.; Giannoulis, K.D.; Tsachtanis, A.; Kamvoukou, C.A.; Demiri, E.; Gougoulias, N. The effect of organic fertilizers and biostimulants on oregano (Origanum vulgare) yield and essential oil. CEUR Workshop Proc. 2020, 2761, 560–565. [Google Scholar]
- Bayram, S.E. Effects of prolonged water stress on biomass yield and nutrient uptake by aerial parts of mint (Mentha × piperita L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 1–17. [Google Scholar] [CrossRef]
- Zheljazkov, V.; Margina, A. Effect of increasing doses of fertilizer application on quantitative and qualitative characters of mint. Acta Hortic. 1996, 426, 579–592. [Google Scholar] [CrossRef]
- Kumar, R.; Upadhyay, R.K.; Venkatesha, K.T.; Padalia, R.C.; Tiwari, A.K.; Singh, S. Performance of Different Parts of Planting Materials and Plant Geometry on Oil yield and Suckers Production of Menthol-mint (Mentha arvensis L.) during Winter Season. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1261–1266. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, R.; Singh, A.K.; Verma, K.; Singh, K.P.; Fer, N.; Kumar, A.; Kaur, P.; Singh, A.; Pandey, J.; et al. Influence of Planting Methods on Production of Suckers (Rhizome or Propagative Material), Essential Oil Yield, and Quality of Menthol Mint (Mentha arvensis L.). Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3675–3689. [Google Scholar] [CrossRef]
- Ram, M.; Ram, D.; Singh, S. Irrigation and nitrogen requirements of Bergamot mint on a sandy loam soil under sub-tropical conditions. Agric. Water Manag. 1995, 27, 45–54. [Google Scholar] [CrossRef]
- Singh, V.P.; Kothari, S.K.; Singh, D.V.; Singh, K. Effect of irrigation and nitrogen on herbage and oil yields of japanese mint (Mentha arvensis). J. Agric. Sci. 1989, 113, 277–279. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, S.; Ramesh, S. Herbage, oil yield and oil quality of patchouli [Pogostemon cablin (Blanco) Benth.] influenced by irrigation, organic mulch and nitrogen application in semi-arid tropical climate. Ind. Crops Prod. 2002, 16, 101–107. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Shahnazari, A. The Effect of Deficit Irrigation Strategies on the Efficiency from Plant to Essential Oil Production in Peppermint (Mentha piperita L.). Front. Water 2021, 3, 682640. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Ouda, S.; Zohry, A.E.H.; Noreldin, T. Deficit Irrigation: A Remedy for Water Scarcity; Springer: Cham, Switzerland, 2020; ISBN 9783030355869. [Google Scholar]
- Ram, M.; Kumar, S. Yield and resource use optimization in late transplanted mint (Mentha arvensis) under subtropical conditions. J. Agron. Soil Sci. 1998, 180, 109–112. [Google Scholar] [CrossRef]
- Saxena, A.; Singh, J.N. Effect of Irrigation, Mulch and Nitrogen on Yield and Composition of Japanese Mint (Mentha arvensis L. subsp. haplocalyx var. piperascens). Oil. J. Agron. Crop Sci. 1995, 175, 183–188. [Google Scholar] [CrossRef]
- Fischer, R.A.; Byerlee, D.; Edmeades, G.O. Can technology deliver on the yield challenge to 2050? In Proceedings of the FAO Expert Meeting on How to Feed the World in 2050, Rome, Italy, 24–26 June 2009; Volume 2050, pp. 1–48. [Google Scholar]
- Ahuja, M.; Mohan, S. Genetic Diversity and Erosion in Plants-Case Histories Volume 2; Ahuja, M.R., Jain, S.M., Eds.; Springer International Publishing: Basel, Switzerland, 2016; Volume 2, ISBN 9783319259543. [Google Scholar]
- Flowers, T.J. Improving crop salt tolerance. J. Exp. Bot. 2004, 55, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Schubert, S.; Neubert, A.; Schierholt, A.; Sümer, A.; Zörb, C. Development of salt-resistant maize hybrids: The combination of physiological strategies using conventional breeding methods. Plant Sci. 2009, 177, 196–202. [Google Scholar] [CrossRef]
- Bhupenchandra, I.; Chongtham, S.K.; Devi, E.L.; Ramesh, R.; Choudhary, A.K.; Salam, M.D.; Sahoo, M.R.; Bhutia, T.L.; Devi, S.H.; Thounaojam, A.S. Role of biostimulants in mitigating the effects of climate change on crop performance. Front. Plant Sci. 2022, 13, 1–19. [Google Scholar] [CrossRef]
- Ramawat, N.; Bhardwaj, V. Biostimulants: Exploring Sources and Applications; Springer: Singapore, 2022; ISBN 978-981-16-7079-4. [Google Scholar]
- Jirovetz, L.; Buchbauer, G.; Shafi, M.P.; Kaniampady, M.M. Chemotaxonomical analysis of the essential oil aroma compounds of four different Ocimum species from southern India. Eur. Food Res. Technol. 2003, 217, 120–124. [Google Scholar] [CrossRef]
- Rendina, N.; Nuzzaci, M.; Scopa, A.; Cuypers, A.; Sofo, A. Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants. J. Plant Physiol. 2019, 234–235, 9–17. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as eustressor for enhancing quality of vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Pharm. Sci. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Elansary, H.O.; Skalicka-Woźniak, K.; King, I.W. Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments. Plant Physiol. Biochem. 2016, 105, 310–320. [Google Scholar] [CrossRef]
- Dhargalkar, V.K.; Pereira, N. Seaweed: Promising plant of the millenium. Sci. Cult. 2005, 71, 60–66. [Google Scholar] [CrossRef]
- Hong, D.D.; Hien, H.M.; Son, P.N. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J. Appl. Phycol. 2007, 19, 817–826. [Google Scholar] [CrossRef]
- Zodape, S.T.; Mukhopadhyay, S.; Eswaran, K.; Reddy, M.P.; Chikara, J. Enhanced yield and nutritional quality in green gram (Phaseolus radiata L) treated with seaweed (Kappaphycus alvarezii) extract. J. Sci. Ind. Res. 2010, 69, 468–471. [Google Scholar]
- Anastyuk, S.D.; Shevchenko, N.M.; Nazarenko, E.L.; Dmitrenok, P.S.; Zvyagintseva, T.N. Structural analysis of a fucoidan from the brown alga Fucus evanescens by MALDI-TOF and tandem ESI mass spectrometry. Carbohydr. Res. 2009, 344, 779–787. [Google Scholar] [CrossRef]
- Stengel, D.B.; Connan, S.; Popper, Z.A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnol. Adv. 2011, 29, 483–501. [Google Scholar] [CrossRef]
- Vera, J.; Castro, J.; Contreras, R.A.; González, A.; Moenne, A. Oligo-carrageenans induce a long-term and broad-range protection against pathogens in tobacco plants (var. Xanthi). Physiol. Mol. Plant Pathol. 2012, 79, 31–39. [Google Scholar] [CrossRef]
- Ding, L.; Kinnucan, H.W. This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. Help ensure our sustainability. J. Gender Agric. Food Secur. 2011, 1, 1–22. [Google Scholar]
- Chouliaras, V.; Tasioula, M.; Chatzissavvidis, C.; Therios, I.; Tsabolatidou, E. The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar Koroneiki. J. Sci. Food Agric. 2009, 89, 984–988. [Google Scholar] [CrossRef]
- Steveni, C.M.; Norrington-Davies, J.; Hankins, S.D. Effect of seaweed concentrate on hydroponically grown spring barley. J. Appl. Phycol. 1992, 4, 173–180. [Google Scholar] [CrossRef]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J. Hortic. Sci. Biotechnol. 2009, 84, 131–137. [Google Scholar] [CrossRef]
- Khan, A.; Jaskani, M.; Ullah Malik, A. Foliar Application of Mixture of Amino Acids and Seaweed (Ascophylum nodosum) Extract Improve Growth and Physico-chemical Properties of Grapes. Int. J. Agric. Biol. 2012, 14, 384–388. [Google Scholar]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fact. 2014, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mota, I.; Sánchez-Sánchez, J.; Pedro, L.G.; Sousa, M.J. Composition variation of the essential oil from Ocimum basilicum L. cv. Genovese Gigante in response to Glomus intraradices and mild water stress at different stages of growth. Biochem. Syst. Ecol. 2020, 90, 104021. [Google Scholar] [CrossRef]
- Ghilavizadeh, A.; Masouleh, H.; Zakerin, H.R.; Ali, S.; Valadabadi, R.; Sayfzadeh, S.; Yousefi, M. Influence of Salicylic Acid on Growth, Yield and Macro-elements Absorption of Fennel (Foeniculum vulgare Mill.) under Water Stress. J. Med. Plants By-Products 2019, 1, 67–75. [Google Scholar]
- Rezaei-Chiyaneh, E.; Mahdavikia, H.; Alipour, H.; Dolatabadian, A.; Battaglia, M.L.; Maitra, S.; Harrison, M.T. Biostimulants alleviate water deficit stress and enhance essential oil productivity: A case study with savory. Sci. Rep. 2023, 13, 720. [Google Scholar] [CrossRef] [PubMed]
- Faraloni, C.; Giordano, C.; Arcidiaco, L.; Benelli, C.; Di Lonardo, S.; Anichini, M.; Stefani, F.; Petruccelli, R. Effective Microorganisms and Olive Mill Wastewater Used as Biostimulants to Improve the Performance of Tanacetum balsamita L., a Medicinal Plant. Appl. Sci. 2023, 13, 722. [Google Scholar] [CrossRef]
- Elansary, H.O.; Yessoufou, K.; Shokralla, S.; Mahmoud, E.A.; Skalicka-Woźniak, K. Enhancing mint and basil oil composition and antibacterial activity using seaweed extracts. Ind. Crops Prod. 2016, 92, 50–56. [Google Scholar] [CrossRef]
- Laribi, B.; Annabi, H.A.; Bettaieb, T. Effects of Ulva intestinalis (Linnaeus) seaweed liquid extract on plant growth, photosynthetic performance and water status of two hydroponically grown Lamiaceae species: Pepepermint (Menta x piperita L.) and purple basil (Ocimum basilicum var. purpurascens Benth.). S. Afr. J. Bot. 2023, 158, 63–72. [Google Scholar] [CrossRef]
- Chaski, C.; Petropoulos, S.A. The Effects of Biostimulant Application on Growth Parameters of Lettuce Plants Grown under Deficit Irrigation Conditions. Horticulturae 2022, 16, 4. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, R.; Singh, A.K.; Verma, K.; Singh, K.P.; Nilofer; Kumar, A.; Singh, V.; Kaur, P.; Singh, A.; et al. A novel and economically viable agro-technique for enhancing productivity and resource use efficiency in menthol mint (Mentha arvensis L.). Ind. Crops Prod. 2021, 162, 113233. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Cantrell, C.L.; Astatkie, T.; Hristov, A. Yield, content, and composition of peppermint and spearmints as a function of harvesting time and drying. J. Agric. Food Chem. 2010, 58, 11400–11407. [Google Scholar] [CrossRef]
- Hanafy, M.S.; Ashour, H.A.; Sedek, F.M. Effect of some Bio-stimulants and Micronutrients on Growth, Yield and Essential Oil Production of Majorana hortensis plants. Int. J. Environ. 2018, 7, 37–52. [Google Scholar]
- Eggert, M.; Schiemann, J.; Thiele, K. Yield performance of Russian dandelion transplants (Taraxacum koksaghyz L. Rodin) in flat bed and ridge cultivation with different planting densities. Eur. J. Agron. 2018, 93, 126–134. [Google Scholar] [CrossRef]
- Ghamarnia, H.; Mousabeygi, F.; Arji, I. Lemon Balm (Melissa officinalis L.) Water Requirement, Crop Coefficients Determination and SIMDualKc Model Implementing. Eur. J. Med. Plants 2014, 5, 281–296. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Evangelopoulos, V.; Gougoulias, N.; Wogiatzi, E. Could bio-stimulators affect flower, essential oil yield, and its composition in organic lavender (Lavandula angustifolia) cultivation? Ind. Crops Prod. 2020, 154, 112611. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Skoufogianni, E.; Bartzialis, D.; Solomou, A.D.; Danalatos, N.G. Growth and productivity of Salvia officinalis L. under Mediterranean climatic conditions depends on biofertilizer, nitrogen fertilization, and sowing density. Ind. Crops Prod. 2021, 160, 113136. [Google Scholar] [CrossRef]
- Sotiropoulou, D.E.; Karamanos, A.J. Field studies of nitrogen application on growth and yield of Greek oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart). Ind. Crops Prod. 2010, 32, 450–457. [Google Scholar] [CrossRef]
- Santos, V.M.C.S.; Pinto, M.A.S.; Bizzo, H.; Deschamps, C. Seasonal Variation of Vegetative Growth, Essential Oil Yield and Composition of Menthol Mint Genotypes At Southern Brazil. Biosci. J. 2012, 28, 790–798. [Google Scholar]
- Akbarzadeh, S.; Morshedloo, M.R.; Behtash, F.; Mumivand, H.; Maggi, F. Exogenous β-Aminobutyric Acid (BABA) Improves the Growth, Essential Oil Content, and Composition of Grapefruit Mint (Mentha suaveolens × piperita) under Water Deficit Stress Conditions. Horticulturae 2023, 9, 354. [Google Scholar] [CrossRef]
- Vinoth, S.; Gurusaravanan, P.; Sivakumar, S.; Jayabalan, N. Influence of seaweed extracts and plant growth regulators on in vitro regeneration of Lycopersicon esculentum from leaf explant. J. Appl. Phycol. 2019, 31, 2039–2052. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef] [PubMed]
- Heydari, M.; Zanfardino, A.; Taleei, A.; Bushehri, A.A.S.; Hadian, J.; Maresca, V.; Sorbo, S.; Di Napoli, M.; Varcamonti, M.; Basile, A.; et al. Effect of heat stress on yield, monoterpene content and antibacterial activity of essential oils of Mentha x piperita var. Mitcham and Mentha arvensis var. piperascens. Molecules 2018, 23, 1903. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, K.; Singh, V. Effect of planting date on growth, development, aerial biomass partitioning and essential oil productivity of wild marigold (Tagetes minuta) in mid hills of Indian western Himalaya. Ind. Crops Prod. 2008, 27, 380–384. [Google Scholar] [CrossRef]
- Okwany, R.O.; Peters, T.R.; Ringer, K.L.; Walsh, D.B.; Rubio, M. Impact of sustained deficit irrigation on spearmint (Mentha spicata L.) biomass production, oil yield, and oil quality. Irrig. Sci. 2012, 30, 213–219. [Google Scholar] [CrossRef]
- Chauhan, R.K.; Anwar, M.; Chand, S.; Patra, D.D. Influence of different dates of planting on growth, herb, oil yield and quality of essential oil of menthol mint (Mentha arvensis) in the North Indian Plain. Arch. Agron. Soil Sci. 2012, 58, 223–232. [Google Scholar] [CrossRef]
- Détár, E.; Németh, É.Z.; Gosztola, B.; Demján, I.; Pluhár, Z. Effects of variety and growth year on the essential oil properties of lavender (Lavandula angustifolia Mill.) and lavandin (Lavandula x intermedia Emeric ex Loisel.). Biochem. Syst. Ecol. 2020, 90, 104020. [Google Scholar] [CrossRef]
- Shahabivand, S.; Padash, A.; Aghaee, A.; Nasiri, Y.; Rezaei, P.F. Plant biostimulants (Funneliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Iran. J. Plant Physiol. 2018, 8, 2333–2344. [Google Scholar]
- Pourhadi, M.; Badi, H.N.; Mehrafarin, A.; Omidi, H.; Hajiaghaee, R. Phytochemical and growth responses of Mentha piperita to foliar application of biostimulants under greenhouse and field conditions. Herba Pol. 2018, 64, 1–12. [Google Scholar] [CrossRef]
- Ampong, K.; Thilakaranthna, M.S.; Gorim, L.Y. Understanding the Role of Humic Acids on Crop Performance and Soil Health. Front. Agron. 2022, 4, 848621. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- O’Connell, E. Towards Adaptation of Water Resource Systems to Climatic and Socio-Economic Change. Water Resour. Manag. 2017, 31, 2965–2984. [Google Scholar] [CrossRef]
Treatment | Application Method | Composition of Formulation | Application Rate (L/ha) | Number of Applications (Each Growing Season) |
---|---|---|---|---|
M1 | Foliar | 9.4% free amino acids; 20.6% short chain peptides; 17.1% proteins; 0.7% carboxylic acids | 3.5 | 8 |
M2 | Foliar | 2.2% free amino acids; 4.8% short-chain peptides; 4% proteins; seaweed extracts of Laminaria digitata (Huds.) Lamouroux (60% of total volume); seaweed extract of Ascophyllum nodosum (L.) (20% of total volume) | 2 | 8 |
M3 | Fertigation | Humic and fulvic acids (50% of total volume); seaweed extracts of Laminaria digitata (33% of total volume); seaweed extract of Ascophyllum nodosum (L.) (17% of total volume) | 24 | 8 |
M4 | Fertigation | 27% (w/v) CaO + 27% (w/v) SiO2; calcium mobilization and translocation factor (9.2% of total volume); 0.14 (w/v) Mo + 2.04% (w/v) B + 4.1% (w/v) Zn | 11 | 8 |
M5 | Foliar | Water | - | 8 |
Irrigation Water (m3 per ha) | ||||
---|---|---|---|---|
1st Growing Period | 2nd Growing Period | |||
Treatment * | May–July 2021 | July–September 2021 | April–May 2022 | June–September 2022 |
I1 | 288.2 | 206.0 | 97 | 159.4 |
I2 | 288.2 | 362.0 | 97 | 279.0 |
I3 | 288.2 | 517.2 | 97 | 398.6 |
Fresh Weight (kg/ha) | Dry Weight (kg/ha) | |||||||
---|---|---|---|---|---|---|---|---|
Treatments | 1st Harvest 2021 | 2nd Harvest 2022 | 3rd Harvest 2022 | Total Fresh Weight | 1st Harvest 2021 | 2nd Harvest 2022 | 3rd Harvest 2022 | Total Dry Weight |
I1 | 11,137 ± 237 | 17,761 ± 588 | 4486 ± 364 | 33,384 ± 365 | 3364 ± 278 | 4685 ± 631 | 1354 ± 124 | 9403 ± 432 |
I2 | 12,730 ± 320 | 20,087 ± 785 | 7042 ± 521 | 39,858 ± 846 | 3665 ± 984 | 5175 ± 564 | 1957 ± 523 | 10,798 ± 777 |
I3 | 14,652 ± 435 | 20,312 ± 256 | 7271 ± 444 | 42,235 ± 784 | 3832 ± 652 | 5195 ± 788 | 1950 ± 435 | 10,977 ± 656 |
LSD0.05 | 698 | 1445 | 868 | 1810 | 198 | 381 | 228 | 486 |
M1 | 13,344 ± 253 | 19,562 ± 489 | 6644 ± 555 | 39,550 ± 897 | 3722 ± 384 | 5077 ± 478 | 1879 ± 111 | 10,678 ± 471 |
M2 | 14,393 ± 563 | 20,844 ± 564 | 6964 ± 476 | 42,201 ± 974 | 4168 ± 531 | 5495 ± 541 | 1951 ± 89 | 11,614 ± 521 |
M3 | 13,953 ± 355 | 20,308 ± 893 | 6811 ± 610 | 41,072 ± 1042 | 3965 ± 218 | 5233 ± 263 | 1910 ± 186 | 11,109 ± 431 |
M4 | 11,612 ± 654 | 18,709 ± 745 | 5691 ± 784 | 36,011 ± 845 | 3157 ± 428 | 4885 ± 401 | 1661 ± 221 | 9704 ± 347 |
M5 | 10,896 ± 463 | 17,511 ± 531 | 5221 ± 563 | 33,629 ± 931 | 3090 ± 285 | 4401 ± 360 | 1366 ± 106 | 8857 ± 287 |
LSD0.05 | 901 | 1865 | 1121 | 2337 | 256 | 492 | 294 | 627 |
I1M1 | 11,786 ± 214 | 17,848 ± 187 | 4814 ± 225 | 34,448 ± 555 | 3537 ± 231 | 4722 ± 325 | 1518 ± 45 | 9778 ± 103 |
I1M2 | 13,348 ± 345 | 18,841 ± 321 | 5166 ± 198 | 37,354 ± 641 | 4035 ± 198 | 5151 ± 468 | 1552 ± 87 | 10,738 ± 341 |
I1M3 | 13,067 ± 361 | 18,401 ± 784 | 5089 ± 321 | 36,557 ± 274 | 3985 ± 235 | 4813 ± 169 | 1535 ± 145 | 10,333 ± 241 |
I1M4 | 9315 ± 254 | 17,121 ± 564 | 3750 ± 210 | 30,186 ± 329 | 2621 ± 145 | 4611 ± 340 | 1191 ± 69 | 8423 ± 355 |
I1M5 | 8171 ± 431 | 16,595 ± 764 | 3610 ± 121 | 28,377 ± 421 | 2640 ± 89 | 4129 ± 214 | 972 ± 54 | 7741 ± 108 |
I2M1 | 13,243 ± 777 | 20,092 ± 587 | 7553 ± 224 | 40,888 ± 354 | 3758 ± 364 | 5271 ± 265 | 2084 ± 156 | 11,113 ± 402 |
I2M2 | 14,147 ± 864 | 21,977 ± 941 | 7811 ± 451 | 43,935 ± 220 | 4230 ± 410 | 5672 ± 312 | 2172 ± 201 | 12,074 ± 288 |
I2M3 | 13,673 ± 745 | 21,389 ± 871 | 7604 ± 365 | 42,666 ± 631 | 3918 ± 214 | 5448 ± 178 | 2110 ± 174 | 11,476 ± 322 |
I2M4 | 11,581 ± 358 | 19,186 ± 469 | 6359 ± 258 | 37,125 ± 521 | 3276 ± 361 | 4985 ± 145 | 1879 ± 101 | 10,140 ± 198 |
I2M5 | 11,005 ± 364 | 17,789 ± 658 | 5882 ± 369 | 34,677 ± 451 | 3145 ± 215 | 4497 ± 356 | 1542 ± 98 | 9185 ± 235 |
I3M1 | 15,003 ± 555 | 20,746 ± 547 | 7565 ± 410 | 43,314 ± 874 | 3871 ± 315 | 5236 ± 298 | 2035 ± 57 | 11,142 ± 241 |
I3M2 | 15,686 ± 456 | 21,713 ± 654 | 7916 ± 187 | 45,314 ± 687 | 4239 ± 548 | 5662 ± 187 | 2130 ± 187 | 12,031 ± 196 |
I3M3 | 15,118 ± 871 | 21,134 ± 784 | 7741 ± 291 | 43,993 ± 631 | 3992 ± 367 | 5438 ± 437 | 2086 ± 141 | 11,516 ± 158 |
I3M4 | 13,939 ± 654 | 19,820 ± 361 | 6965 ± 271 | 40,723 ± 541 | 3575 ± 421 | 5060 ± 451 | 1912 ± 99 | 10,548 ± 214 |
I3M5 | 13,513 ± 543 | 18,150 ± 521 | 6170 ± 243 | 37,832 ± 465 | 3484 ± 257 | 4577 ± 324 | 1585 ± 87 | 9646 ± 166 |
LSD0.05 | ns | ns | ns | ns | ns | ns | ns | ns |
CV (%) | 7.3 | 10 | 18.5 | 6.3 | 7.3 | 10.2 | 17.4 | 6.2 |
Essential Oil Content (%) | Essential Oil Yield (L/ha) | ||||||
---|---|---|---|---|---|---|---|
1st Harvest 2021 | 2nd Harvest 2022 | 3rd Harvest 2022 | 1st Harvest 2021 | 2nd Harvest 2022 | 3rd Harvest 2022 | Total Essential Oil Yield (L/ha) | |
I1 | 0.854 ± 0.055 | 1.160 ± 0.101 | 0.877 ± 0.089 | 29.39 ± 1.24 | 54.4 ± 6.66 | 11.8 ± 1.25 | 95.6 ± 7.03 |
I2 | 0.927 ± 0.087 | 1.583 ± 0.093 | 0.768 ± 0.048 | 34.20 ± 2.18 | 81.5 ± 4.56 | 14.95 ± 2.71 | 130.7 ± 10.69 |
I3 | 0.843 ± 0.061 | 1.114 ± 0.071 | 0.783 ± 0.035 | 32.39 ± 3.15 | 58.0 ± 2.89 | 15.21 ± 3.01 | 105.6 ± 5.45 |
LSD0.05 | 0.059 | 0.121 | ns | 2.51 | 8.4 | 2.69 | 9.9 |
M1 | 0.852 ± 0.091 | 1.152 ± 0.091 | 0.756 ± 0.141 | 31.68 ± 2.34 | 58.4 ± 2.96 | 14.17 ± 1.20 | 104.3 ± 4.8 |
M2 | 1.020 ± 0.058 | 1.413 ± 0.087 | 0.824 ± 0.086 | 42.49 ± 3.31 | 78 ± 4.12 | 16.03 ± 2.04 | 136.6 ± 5.6 |
M3 | 0.891 ± 0.074 | 1.257 ± 0.063 | 0.800 ± 0.108 | 35.33 ± 1.98 | 65.8 ± 3.65 | 15.11 ± 1.86 | 116.2 ± 2.9 |
M4 | 0.874 ± 0.033 | 1.209 ± 0.048 | 0.776 ± 0.159 | 27.50 ± 2.20 | 59.3 ± 3.44 | 12.67 ± 0.89 | 99.5 ± 4.1 |
M5 | 0.737 ± 0.047 | 1.398 ± 0.055 | 0.891 ± 0.097 | 22.96 ± 1.31 | 61.7 ± 4.12 | 11.95 ± 1.69 | 96.6 ± 3.2 |
LSD0.05 | 0.078 | 0.156 | ns | 3.24 | 10.8 | ns | 12.8 |
I1M1 | 0.822 ± 0.044 | 1.128 ± 0.076 | 0.817 ± 0.056 | 29.08 ± 1.31 | 53.6 ± 2.31 | 12.37 ± 0.85 | 95.1 ± 1.36 |
I1M2 | 1.078 ± 0.063 | 1.194 ± 0.061 | 0.889 ± 0.038 | 43.47 ± 0.98 | 61.5 ± 1.69 | 13.93 ± 0.69 | 118.8 ± 2.54 |
I1M3 | 0.878 ± 0.078 | 1.150 ± 0.058 | 0.878 ± 0.047 | 35.10 ± 2.31 | 55.3 ± 3.20 | 13.40 ± 1.11 | 103.8 ± 2.65 |
I1M4 | 0.867 ± 0.055 | 1.100 ± 0.079 | 0.833 ± 0.059 | 22.72 ± 1.58 | 50.9 ± 1.54 | 10.03 ± 0.93 | 83.6 ± 1.69 |
I1M5 | 0.628 ± 0.067 | 1.228 ± 0.097 | 0.967 ± 0.088 | 16.60 ± 1.47 | 50.7 ± 1.63 | 9.28 ± 0.68 | 76.6 ± 1.37 |
I2M1 | 0.911 ± 0.088 | 1.300 ± 0.104 | 0.706 ± 0.067 | 34.22 ± 1.03 | 67.8 ± 1.47 | 14.94 ± 0.54 | 117.0 ± 4.56 |
I2M2 | 1.033 ± 0.091 | 1.689 ± 0.89 | 0.778 ± 0.084 | 43.71 ± 2.30 | 95.9 ± 3.24 | 17.07 ± 0.74 | 156.7 ± 5.55 |
I2M3 | 0.956 ± 0.081 | 1.594 ± 0.131 | 0.739 ± 0.039 | 37.45 ± 3.01 | 86.3 ± 2.56 | 15.62 ± 0.93 | 139.3 ± 5.16 |
I2M4 | 0.928 ± 0.069 | 1.506 ± 0.097 | 0.722 ± 0.041 | 30.31 ± 1.25 | 75.4 ± 4.31 | 13.45 ± 0.71 | 119.1 ± 3.69 |
I2M5 | 0.806 ± 0.077 | 1.828 ± 0.124 | 0.894 ± 0.053 | 25.31 ± 1.47 | 82.3 ± 2.68 | 13.69 ± 0.58 | 121.3 ± 3.54 |
I3M1 | 0.822 ± 0.048 | 1.028 ± 0.058 | 0.744 ± 0.039 | 31.74 ± 2.61 | 53.9 ± 1.54 | 15.20 ± 0.35 | 100.8 ± 4.21 |
I3M2 | 0.950 ± 0.092 | 1.356 ± 0.108 | 0.806 ± 0.071 | 40.29 ± 1.88 | 76.8 ± 2.36 | 17.10 ± 1.02 | 134.2 ± 3.25 |
I3M3 | 0.839 ± 0.063 | 1.028 ± 0.055 | 0.783 ± 0.049 | 33.45 ± 1.45 | 55.8 ± 2.54 | 16.32 ± 0.57 | 105.5 ± 2.25 |
I3M4 | 0.828 ± 0.077 | 1.022 ± 0.076 | 0.772 ± 0.039 | 29.48 ± 1.06 | 51.7 ± 3.24 | 14.55 ± 0.69 | 95.7 ± 1.89 |
I3M5 | 0.778 ± 0.083 | 1.139 ± 0.093 | 0.811 ± 0.048 | 26.96 ± 1.55 | 52.1 ± 4.57 | 12.88 ± 0.73 | 91.9 ± 2.22 |
LSD0.05 | ns | ns | ns | ns | ns | ns | ns |
CV (%) | 9.1 | 12.6 | 20.5 | 10.5 | 17.3 | 25.7 | 11.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaski, C.; Giannoulis, K.D.; Alexopoulos, A.A.; Petropoulos, S.A. Biostimulant Application Alleviates the Negative Effects of Deficit Irrigation and Improves Growth Performance, Essential Oil Yield and Water-Use Efficiency of Mint Crop. Agronomy 2023, 13, 2182. https://doi.org/10.3390/agronomy13082182
Chaski C, Giannoulis KD, Alexopoulos AA, Petropoulos SA. Biostimulant Application Alleviates the Negative Effects of Deficit Irrigation and Improves Growth Performance, Essential Oil Yield and Water-Use Efficiency of Mint Crop. Agronomy. 2023; 13(8):2182. https://doi.org/10.3390/agronomy13082182
Chicago/Turabian StyleChaski, Christina, Kyriakos D. Giannoulis, Alexios A. Alexopoulos, and Spyridon A. Petropoulos. 2023. "Biostimulant Application Alleviates the Negative Effects of Deficit Irrigation and Improves Growth Performance, Essential Oil Yield and Water-Use Efficiency of Mint Crop" Agronomy 13, no. 8: 2182. https://doi.org/10.3390/agronomy13082182
APA StyleChaski, C., Giannoulis, K. D., Alexopoulos, A. A., & Petropoulos, S. A. (2023). Biostimulant Application Alleviates the Negative Effects of Deficit Irrigation and Improves Growth Performance, Essential Oil Yield and Water-Use Efficiency of Mint Crop. Agronomy, 13(8), 2182. https://doi.org/10.3390/agronomy13082182