Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,347)

Search Parameters:
Keywords = water excess

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1656 KiB  
Article
Evaluating Zeolites of Different Origin for Eutrophication Control of Freshwater Bodies
by Irene Biliani, Eirini Papadopoulou and Ierotheos Zacharias
Sustainability 2025, 17(15), 7120; https://doi.org/10.3390/su17157120 - 6 Aug 2025
Abstract
Eutrophication has become the primary water quality issue for most of the freshwater and coastal marine ecosystems in the world. Caused by excessive nitrogen (N) and phosphorus (P) inputs, it has a significant impact on aquatic ecosystems, resulting in algal blooms, oxygen depletion, [...] Read more.
Eutrophication has become the primary water quality issue for most of the freshwater and coastal marine ecosystems in the world. Caused by excessive nitrogen (N) and phosphorus (P) inputs, it has a significant impact on aquatic ecosystems, resulting in algal blooms, oxygen depletion, and biodiversity loss. Zeolites have been identified as effective adsorbents for removal of these pollutants, improving water quality and ecosystem health. Kinetic and isotherm adsorption experiments were conducted to examine the adsorption efficiency of four zeolites of various origins (Greek, Slovakian, Turkish, and Bulgarian) and a specific modification (ZeoPhos) to determine the most effective material for N and P removal. The aim of the study is to discover the best zeolite for chemical adsorption in eutrophic waters by comparing their adsorption capacities and pollutant removal efficiencies along with SEM, TEM, and X-RD spectrographs. Slovakian ZeoPhos has been identified as the best-performing material for long-term and efficient water treatment systems for eutrophication management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

21 pages, 3832 KiB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

17 pages, 5565 KiB  
Article
Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete
by Shunquan Zhang and Yifan Zhang
Materials 2025, 18(15), 3673; https://doi.org/10.3390/ma18153673 - 5 Aug 2025
Abstract
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on [...] Read more.
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on the resultant concrete properties require careful consideration. This investigation systematically evaluates the effects of varying concentrations of dilute acetic acid solutions, commonly used in RCA treatment protocols, through a multi-methodological approach that includes comprehensive physical characterization, stylus and 3D optical profilometry, scanning electron microscopy (SEM), and nanoindentation analysis. The results show that even dilute acid solutions have an upper concentration limit, as excessive acid concentration, specifically 0.4 M, induces significant textural dislocations on NCA surfaces, creating millimeter-scale erosion pits that increase aggregate water absorption by 18.5%. These morphological changes significantly impair concrete workability and reduce compressive strength performance. Furthermore, microstructural analysis reveals a 45.24% expansion in interfacial transition zone (ITZ) thickness, accompanied by notable reductions in elastic modulus and microhardness characteristics. In practical RCA treatment applications, for RCA containing limestone-based NCA, it is recommended to use acetic acid concentrations between 0.1 and 0.3 M to avoid substantial physical and microstructural degradation of aggregates and concrete. Full article
Show Figures

Graphical abstract

13 pages, 2036 KiB  
Article
Aluminum Extractions by the Alkali Method Directly from Alkali-Acid (NaOH-HCl) Chemical Deashing of Coals
by Lijun Zhao
Materials 2025, 18(15), 3661; https://doi.org/10.3390/ma18153661 - 4 Aug 2025
Abstract
An advanced alkali-acid (NaOH-HCl) chemical method was used to deash aluminum-rich coals (ARCs) with a high ash content of 27.47 wt% to achieve a low ash content of 0.46 wt%. In the deashing process, aluminum in the coal ashes was dissolved in both [...] Read more.
An advanced alkali-acid (NaOH-HCl) chemical method was used to deash aluminum-rich coals (ARCs) with a high ash content of 27.47 wt% to achieve a low ash content of 0.46 wt%. In the deashing process, aluminum in the coal ashes was dissolved in both alkali solutions and acid solutions. The deashing alkali solutions with dissolved coal ashes were regenerated by adding CaO, and the resulting precipitates were added with sodium bicarbonate for aluminum extraction. High temperatures increased aluminum extraction, and excessive sodium bicarbonate addition decreased aluminum extraction. The deashing acid solutions were concentrated by evaporation, and silica gels formed during the process. The obtained mixtures were calcinated at 350 °C for the decomposition of aluminum chlorides, and soaked with water at 60 °C to remove the soluble chlorides. For the insoluble oxides after soaking, diluted alkali solutions were used to extract the aluminum at 90 °C, and aluminum extraction failed due to the formation of albite in the presence of sodium, aluminum and silicon elements as proved by XRD and SEM/EDS. When silica gels were separated by pressure filtering, aluminum extraction greatly increased. Aluminum extractions were accordingly made in the form of sodium aluminate from the deashing solutions of coals, which could be advantageous for sandy alumina production. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

16 pages, 1961 KiB  
Article
A Novel Glycosylated Ferulic Acid Conjugate: Synthesis, Antioxidative Neuroprotection Activities In Vitro, and Alleviation of Cerebral Ischemia–Reperfusion Injury (CIRI) In Vivo
by Jian Chen, Yongjun Yuan, Litao Tong, Manyou Yu, Yongqing Zhu, Qingqing Liu, Junling Deng, Fengzhang Wang, Zhuoya Xiang and Chen Xia
Antioxidants 2025, 14(8), 953; https://doi.org/10.3390/antiox14080953 (registering DOI) - 3 Aug 2025
Viewed by 176
Abstract
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between [...] Read more.
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between glucose at the C6 position and FA at the C4 position, was designed and synthesized. The hydrophilicity and chemical stability of FA-Glu were tested. FA-Glu’s protection against DNA oxidative cleavage was tested using pBR322 plasmid DNA under the Fenton reaction. The cytotoxicity of FA-Glu was examined via the PC12 cell and bEnd.3 cell tests. Antioxidative neuroprotection was evaluated, in vitro, via a H2O2-induced PC12 cell test, measuring cell viability and ROS levels. Antioxidative alleviation of cerebral ischemia–reperfusion injury (CIRI), in vivo, was evaluated using a rat middle cerebral artery occlusion (MCAO) model. The results indicated that FA-Glu was water-soluble (LogP −1.16 ± 0.01) and chemically stable. FA-Glu prevented pBR322 plasmid DNA cleavage induced via •OH radicals (SC% 88.00%). It was a non-toxic agent based on PC12 cell and bEnd.3 cell tests results. FA-Glu significantly protected against H2O2-induced oxidative damage in the PC12 cell (cell viability 88.12%, 100 μM) and inhibited excessive cell ROS generation (45.67% at 100 μM). FA-Glu significantly reduced the infarcted brain areas measured using TTC stain observation, quantification (FA-Glu 21.79%, FA 28.49%, I/R model 43.42%), and H&E stain histological observation. It sharply reduced the MDA level (3.26 nmol/mg protein) and significantly increased the GSH level (139.6 nmol/mg protein) and SOD level (265.19 U/mg protein). With superior performance to FA, FA-Glu is a safe agent with effective antioxidative DNA and neuronal protective actions and an ability to alleviate CIRI, which should help in the prevention of IS. Full article
Show Figures

Graphical abstract

24 pages, 3631 KiB  
Article
Mineral–Soil–Plant–Nutrient Synergism: Carbonate Rock Leachate Irrigation Enhances Soil Nutrient Availability, Improving Crop Yield and Quality
by Yifei Du, Xiao Ge, Yimei Du, Hongrui Ding and Anhuai Lu
Minerals 2025, 15(8), 825; https://doi.org/10.3390/min15080825 - 2 Aug 2025
Viewed by 244
Abstract
In the rock–soil–biology–water ecosystem, rock weathering provides essential plant nutrients. However, its supply is insufficient for rising crop demands under population growth and climate change, while excessive fertilizer causes soil degradation and pollution. This study innovatively irrigated with carbonate rock leachates to enhance [...] Read more.
In the rock–soil–biology–water ecosystem, rock weathering provides essential plant nutrients. However, its supply is insufficient for rising crop demands under population growth and climate change, while excessive fertilizer causes soil degradation and pollution. This study innovatively irrigated with carbonate rock leachates to enhance soil nutrient availability. A pot experiment with lettuce showed that irrigation significantly increased soil NO3-N (+102.20%), available K (+16.45%), available P (+17.95%), Ca (+6.04%), Mg (+11.65%), and Fe (+11.60%), and elevated the relative abundance of Firmicutes. Lettuce biomass per plant rose by 23.78%, with higher leaf minerals (P, K, Ca, and Mg) and antioxidants (carotenoids and ascorbic acid). A field experiment further confirmed improvement of soil nutrient availability and peanut yield. This carbonate rock leachate irrigation technique effectively enhances soil quality and crop productivity/quality, offering a sustainable approach for green agriculture. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

19 pages, 5404 KiB  
Article
Combined Effects of Flood Disturbances and Nutrient Enrichment Prompt Aquatic Vegetation Expansion: Sediment Evidence from a Floodplain Lake
by Zhuoxuan Gu, Yan Li, Jingxiang Li, Zixin Liu, Yingying Chen, Yajing Wang, Erik Jeppesen and Xuhui Dong
Plants 2025, 14(15), 2381; https://doi.org/10.3390/plants14152381 - 2 Aug 2025
Viewed by 271
Abstract
Aquatic macrophytes are a vital component of lake ecosystems, profoundly influencing ecosystem structure and function. Under future scenarios of more frequent extreme floods and intensified lake eutrophication, aquatic macrophytes will face increasing challenges. Therefore, understanding aquatic macrophyte responses to flood disturbances and nutrient [...] Read more.
Aquatic macrophytes are a vital component of lake ecosystems, profoundly influencing ecosystem structure and function. Under future scenarios of more frequent extreme floods and intensified lake eutrophication, aquatic macrophytes will face increasing challenges. Therefore, understanding aquatic macrophyte responses to flood disturbances and nutrient enrichment is crucial for predicting future vegetation dynamics in lake ecosystems. This study focuses on Huangmaotan Lake, a Yangtze River floodplain lake, where we reconstructed 200-year successional trajectories of macrophyte communities and their driving mechanisms. With a multiproxy approach we analyzed a well-dated sediment core incorporating plant macrofossils, grain size, nutrient elements, heavy metals, and historical flood records from the watershed. The results demonstrate a significant shift in the macrophyte community, from species that existed before 1914 to species that existed by 2020. Unlike the widespread macrophyte degradation seen in most regional lakes, this lake has maintained clear-water plant dominance and experienced continuous vegetation expansion over the past 50 years. We attribute this to the interrelated effects of floods and the enrichment of ecosystems with nutrients. Specifically, our findings suggest that nutrient enrichment can mitigate the stress effects of floods on aquatic macrophytes, while flood disturbances help reduce excess nutrient concentrations in the water column. These findings offer applicable insights for aquatic vegetation restoration in the Yangtze River floodplain and other comparable lake systems worldwide. Full article
(This article belongs to the Special Issue Aquatic Plants and Wetland)
Show Figures

Figure 1

17 pages, 5839 KiB  
Article
Hydrogen Bond-Regulated Rapid Prototyping and Performance Optimization of Polyvinyl Alcohol–Tannic Acid Hydrogels
by Xiangyu Zou and Jun Huang
Gels 2025, 11(8), 602; https://doi.org/10.3390/gels11080602 - 1 Aug 2025
Viewed by 223
Abstract
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by [...] Read more.
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by the evaporation of ethanol. Rheological testing and analysis of the liquid-solid transformation process of the hydrogel were performed. The gelation onset time (GOT) could be tuned from 10 s to over 100 s by adjusting the ethanol content and temperature. The addition of polyhydroxyl components (e.g., glycerol) significantly enhances the hydrogel’s water retention capacity (by 858%) and tensile strain rate (by 723%), while concurrently increasing the gelation time. Further studies have shown that the addition of alkaline substances (such as sodium hydroxide) promotes the entanglement of PVA molecular chains, increasing the tensile strength by 23% and the fracture strain by 41.8%. The experimental results indicate that the optimized PVA-TA hydrogels exhibit a high tensile strength (>2 MPa) and excellent tensile properties (~600%). Moreover, the addition of an excess of weakly alkaline substances (such as sodium acetate) reduces the degree of hydrolysis of PVA, enabling the system to form a hydrogel with extrudable characteristics before the ethanol has completely evaporated. This property allows for patterned printing and thus demonstrates the potential of the hydrogel in 3D printing. Overall, this study provides new insights for the application of PVA-TA based hydrogels in the fields of rapid prototyping and strength optimization. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (3rd Edition))
Show Figures

Graphical abstract

20 pages, 2360 KiB  
Article
Enhanced Ammonium Removal from Wastewater Using FAU-Type and BEA-Type Zeolites and Potential Application on Seedling Growth: Towards Closing the Waste-to-Resource Cycle
by Matiara S. C. Amaral, Marcella A. da Silva, Giovanna da S. Cidade, Diêgo N. Faria, Daniel F. Cipriano, Jair C. C. Freitas, Fabiana Soares dos Santos, Mendelssolm K. Pietre and André M. dos Santos
Processes 2025, 13(8), 2426; https://doi.org/10.3390/pr13082426 - 31 Jul 2025
Viewed by 327
Abstract
This work focuses on the effectiveness of removing ammonium from real municipal wastewater using synthetic faujasite (FAU-type) and β (BEA-type) zeolites and a commercial β (BEA-type) sample. The results demonstrated that synthetic samples presented enhanced performance on ammonium removal in comparison with commercial [...] Read more.
This work focuses on the effectiveness of removing ammonium from real municipal wastewater using synthetic faujasite (FAU-type) and β (BEA-type) zeolites and a commercial β (BEA-type) sample. The results demonstrated that synthetic samples presented enhanced performance on ammonium removal in comparison with commercial zeolite due to higher Al content and larger specific surface area, promoting better accessibility to active adsorption sites of the adsorbents. Synthetic FAU-type and BEA-type zeolites achieved a maximum adsorption capacity of 28.87 and 12.62 mg·g−1, respectively, outperforming commercial BEA-type zeolite (6.50 mg·g−1). Adsorption assays, associated with kinetic studies and adsorption isotherms, were better fitted using the pseudo-second order model and the Langmuir model, respectively, suggesting that chemisorption, involving ion exchange, and monolayer formation at the zeolite surface, was the main mechanism involved in the NH4+ adsorption process. After ammonium adsorption, the NH4+-loaded zeolite samples were used to stimulate the growth of tomato seedlings; the results revealed a change in the biomass production for seedlings grown in vitro, especially when the BEA_C_NH4 sample was employed, leading to a 15% increase in the fresh mass in comparison with the control sample. In contrast, the excess of ammonium adsorbed over the BEA_S_NH4 and FAU_NH4 samples probably caused a toxic effect on seedling growth. The elemental analysis results supported the hypothesis that the presence of NH4+-loaded zeolite into the culture medium was important for the release of nitrogen. The obtained results show then that the investigated zeolites are promising both as efficient adsorbents to mitigate the environmental impact of ammonium-contaminated water bodies and as nitrogen-rich fertilizers. Full article
(This article belongs to the Special Issue Novel Applications of Zeolites in Adsorption Processes)
Show Figures

Figure 1

30 pages, 4804 KiB  
Article
Deep Storage Irrigation Enhances Grain Yield of Winter Wheat by Improving Plant Growth and Grain-Filling Process in Northwest China
by Xiaodong Fan, Dianyu Chen, Haitao Che, Yakun Wang, Yadan Du and Xiaotao Hu
Agronomy 2025, 15(8), 1852; https://doi.org/10.3390/agronomy15081852 - 31 Jul 2025
Viewed by 237
Abstract
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects [...] Read more.
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects of irrigation amounts on agricultural yield and the mechanisms under deep storage irrigation. A three-year field experiment (2020–2023) was conducted in the Guanzhong Plain, according to five soil wetting layer depths (RF: 0 cm; W1: control, 120 cm; W2: 140 cm; W3: 160 cm; W4: 180 cm) with soil saturation water content as the irrigation upper limit. Results exhibited that, compared to W1, the W2, W3, and W4 treatments led to the increased plant height, leaf area index, and dry matter accumulation. Meanwhile, the W2, W3, and W4 treatments improved kernel weight increment achieving maximum grain-filling rate (Wmax), maximum grain-filling rate (Gmax), and average grain-filling rate (Gave), thereby enhancing the effective spikes (ES) and grain number per spike (GS), and thus increased wheat grain yield (GY). In relative to W1, the W2, W3, and W4 treatments increased the ES, GS, and GY by 11.89–19.81%, 8.61–14.36%, and 8.17–13.62% across the three years. Notably, no significant difference was observed in GS and GY between W3 and W4 treatments, but W4 treatment displayed significant decreases in ES by 3.04%, 3.06%, and 2.98% in the respective years. The application of a structural equation modeling (SEM) revealed that deep storage irrigation improved ES and GS by positively regulating Wmax, Gmax, and Gave, thus significantly increasing GY. Overall, this study identified the optimal threshold (W3 treatment) to maximize wheat yields by optimizing both the vegetative growth and grain-filling dynamics. This study provides essential support for the feasibility assessment of deep storage irrigation before flood seasons, which is vital for the balance and coordination of food security and water security. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

15 pages, 2232 KiB  
Article
A Multi-Objective Approach for Improving Ecosystem Services and Mitigating Environmental Externalities in Paddy Fields and Its Emergy Analysis
by Naven Ramdat, Hongshuo Zou, Shiwen Sheng, Min Fu, Yingying Huang, Yaonan Cui, Yiru Wang, Rui Ding, Ping Xu and Xuechu Chen
Water 2025, 17(15), 2244; https://doi.org/10.3390/w17152244 - 29 Jul 2025
Viewed by 298
Abstract
Traditional intensive agricultural system impedes ecological functions, such as nutrient cycling and biodiversity conservation, resulting in excessive nitrogen discharge, CH4 emission, and ecosystem service losses. To enhance critical ecosystem services and mitigate environmental externalities in paddy fields, we developed a multi-objective agricultural [...] Read more.
Traditional intensive agricultural system impedes ecological functions, such as nutrient cycling and biodiversity conservation, resulting in excessive nitrogen discharge, CH4 emission, and ecosystem service losses. To enhance critical ecosystem services and mitigate environmental externalities in paddy fields, we developed a multi-objective agricultural system (MIA system), which combines two eco-functional units: paddy wetlands and Beitang (irrigation water collection pond). Pilot study results demonstrated that the MIA system enhanced biodiversity and inhibited pest outbreak, with only a marginal reduction in rice production compared with the control. Additionally, the paddy wetland effectively removed nitrogen, with removal rates of total nitrogen and dissolved inorganic nitrogen ranging from 0.06 to 0.65 g N m−2 d−1 and from 0.02 to 0.22 g N m−2 d−1, respectively. Continuous water flow in the paddy wetland reduced the CH4 emission by 84.4% compared with the static water conditions. Furthermore, a simulation experiment indicated that tide flow was more effective in mitigating CH4 emission, with a 68.3% reduction compared with the drying–wetting cycle treatment. The emergy evaluation demonstrated that the MIA system outperformed the ordinary paddy field when considering both critical ecosystem services and environmental externalities. The MIA system exhibited higher emergy self-sufficiency ratio, emergy yield ratio, and emergy sustainable index, along with a lower environmental load ratio. Additionally, the system required minimal transformation, thus a modest investment. By presenting the case of the MIA system, we provide a theoretical foundation for comprehensive management and assessment of agricultural ecosystems, highlighting its significant potential for widespread application. Full article
Show Figures

Figure 1

13 pages, 609 KiB  
Article
Leaching of Potentially Toxic Elements from Paper and Plastic Cups in Hot Water and Their Health Risk Assessment
by Mahmoud Mohery, Kholoud Ahmed Hamam, Sheldon Landsberger, Israa J. Hakeem and Mohamed Soliman
Toxics 2025, 13(8), 626; https://doi.org/10.3390/toxics13080626 - 26 Jul 2025
Viewed by 375
Abstract
This study aims to investigate the release of potentially toxic elements from disposable paper and plastic cups when exposed to hot water, simulating the scenario of their use in hot beverage consumption, and to assess the associated health risks. By using ICP-MS, twelve [...] Read more.
This study aims to investigate the release of potentially toxic elements from disposable paper and plastic cups when exposed to hot water, simulating the scenario of their use in hot beverage consumption, and to assess the associated health risks. By using ICP-MS, twelve potentially toxic elements, namely As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Pb, Sb, V, and Zn, were determined in leachates, revealing significant variability in mass fractions between paper and plastic cups, with plastic cups demonstrating greater leaching potential. Health risk assessments, including hazard quotient (HQ) and excess lifetime cancer risk (ELCR), indicated minimal non-carcinogenic and carcinogenic risks for most elements, except Pb, which posed elevated non-carcinogenic risk, especially in plastic cups. Children showed higher relative exposure levels compared to adults due to their lower body weights (the HQ in children is two times greater than in adults). Overall, the findings of the current study underscore the need for stricter monitoring and regulation of materials used in disposable cups, especially plastic ones, to mitigate potential health risks. Future investigations should assess the leaching behavior of potentially toxic elements under conditions that accurately mimic real-world usage. Such investigations ought to incorporate a systematic evaluation of diverse temperature regimes, varying exposure durations, and different beverage types. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

16 pages, 764 KiB  
Review
Biotin Supplementation—The Cause of Hypersensitivity and Significant Interference in Allergy Diagnostics
by Kinga Lis
Nutrients 2025, 17(15), 2423; https://doi.org/10.3390/nu17152423 - 24 Jul 2025
Viewed by 401
Abstract
Biotin (vitamin B7) is a common, naturally occurring water-soluble vitamin. It belongs to the broad group of B vitamins. It is a common ingredient in dietary supplements, cosmetics, medicines, and parapharmaceutical preparations administered orally or applied topically (to the skin, hair, nails). The [...] Read more.
Biotin (vitamin B7) is a common, naturally occurring water-soluble vitamin. It belongs to the broad group of B vitamins. It is a common ingredient in dietary supplements, cosmetics, medicines, and parapharmaceutical preparations administered orally or applied topically (to the skin, hair, nails). The problem of the relationship between vitamin B supplementation and sensitivity seems to be multi-threaded. There is little literature data that would confirm that oral vitamin B supplementation or local exposure to biotin is a significant sensitizing factor. Moreover, it seems that allergy to vitamin B7 is very rare. It is possible, however, that the relationship between biotin and hypersensitivity is not limited to its direct action, but results from its essential metabolic function. Vitamin B7, as a cofactor of five carboxylases, affects the main pathways of cellular metabolism. Both deficiency and excess of biotin can result in metabolic disorders, which can have a significant impact on the homeostasis of the entire organism, including the efficient functioning of the immune system. Dysregulation of immune systems leads to its dysfunctional functioning, which can also lead to sensitization to various environmental antigens (allergens). Biotin is also used as an element of some methodological models in immunochemical tests (in vitro diagnostics), including methods used to measure the concentration of immunoglobulin E (IgE), both total (tIgE) and allergen-specific (sIgE). For this reason, vitamin B7 supplementation can be a significant interfering factor in some immunochemical tests, which can lead to false laboratory test results, both false positive and false negative, depending on the test format. This situation can have a direct impact on the quality and effectiveness of diagnostics in various clinical situations, including allergy diagnostics. This review focuses on the role of biotin in allergic reactions, both as a causative factor (allergen/hapten), a factor predisposing to the development of sensitization to various allergens, and an interfering factor in immunochemical methods used in laboratory diagnosis of hypersensitivity reactions and how it can be prevented. Full article
Show Figures

Figure 1

18 pages, 7903 KiB  
Article
Study on the Mechanical Response of FSP-IV Steel Sheet Pile Cofferdam and the Collaborative Mechanism of Sediment Control Technology in the Nenjiang Water Intake Project
by Ziguang Zhang, Liang Wu, Rui Luo, Lin Wei and Feifei Chen
Buildings 2025, 15(15), 2610; https://doi.org/10.3390/buildings15152610 - 23 Jul 2025
Viewed by 294
Abstract
In response to the dual challenges of the mechanical behavior of steel sheet pile cofferdam and sediment control in urban water intake projects, a multi-method integrated study was conducted based on the Nenjiang Project. The results show that the peak stress of FSP-IV [...] Read more.
In response to the dual challenges of the mechanical behavior of steel sheet pile cofferdam and sediment control in urban water intake projects, a multi-method integrated study was conducted based on the Nenjiang Project. The results show that the peak stress of FSP-IV steel sheet piles (64.3 MPa) is located at a depth of 5.5–8.0 m in the center of the foundation pit, and that the maximum horizontal displacement (6.96 mm) occurs at the middle of the side span of the F pile. The internal support stress increases with depth, reaching 87.2 MPa at the bottom, with significant stress concentration at the connection of the surrounding girder. The lack of support or excessively large spacing leads to insufficient stiffness at the side span (5.3 mm displacement at the F point) and right-angle area (B/H point). The simultaneously developed sediment control integrated system, through double-line water intake, layered placement of the geotextile filter, and the collaborative construction of the water intake hole–filter layer system, achieves a 75% reduction in sediment content and a decrease in standard deviation. This approach ensures stable water quality and continuous water supply, ultimately forming a systematic solution for water intake in high-sediment rivers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 9458 KiB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 328
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

Back to TopTop