Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (289)

Search Parameters:
Keywords = water droplet impact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1835 KiB  
Article
Stress Development in Droplet Impact Analysis of Rain Erosion Damage on Wind Turbine Blades: A Review of Liquid-to-Solid Contact Conditions
by Quentin Laplace Oddo, Quaiyum M. Ansari, Fernando Sánchez, Leon Mishnaevsky and Trevor M. Young
Appl. Sci. 2025, 15(15), 8682; https://doi.org/10.3390/app15158682 - 6 Aug 2025
Abstract
The wind energy sector is experiencing substantial growth, with global wind turbine capacity increasing and projected to expand further in the coming years. However, rain erosion on the leading edges of turbine blades remains a significant challenge, affecting both aerodynamic efficiency and structural [...] Read more.
The wind energy sector is experiencing substantial growth, with global wind turbine capacity increasing and projected to expand further in the coming years. However, rain erosion on the leading edges of turbine blades remains a significant challenge, affecting both aerodynamic efficiency and structural longevity. The associated degradation reduces annual energy production and leads to high maintenance costs due to frequent inspections and repairs. To address this issue, researchers have developed numerical models to predict blade erosion caused by water droplet impacts. This study presents a finite element analysis model in Abaqus to simulate the interaction between a single water droplet and wind turbine blade material. The novelty of this model lies in evaluating the influence of several parameters on von Mises and S33 peak stresses in the leading-edge protection, such as friction coefficient, type of contact, impact velocity, and droplet diameter. The findings provide insights into optimising LEP numerical models to simulate rain erosion as closely as possible to real-world scenarios. Full article
Show Figures

Figure 1

16 pages, 1865 KiB  
Article
pH-Controlled Yeast Protein Precipitation from Saccharomyces cerevisiae: Acid-Induced Denaturation for Improved Emulsion Stability
by Laura Riedel, Nico Leister and Ulrike S. van der Schaaf
Foods 2025, 14(15), 2643; https://doi.org/10.3390/foods14152643 - 28 Jul 2025
Viewed by 243
Abstract
In the search for alternative protein sources, single cell proteins have gained increasing attention in recent years. Among them, proteins derived from yeast represent a promising but still underexplored option. To enable their application in food product design, their techno-functional properties must be [...] Read more.
In the search for alternative protein sources, single cell proteins have gained increasing attention in recent years. Among them, proteins derived from yeast represent a promising but still underexplored option. To enable their application in food product design, their techno-functional properties must be understood. In order to investigate the impact of precipitation pH on their emulsion-stabilizing properties, yeast proteins from Saccharomyces cerevisiae were isolated via precipitation at different pH (pH 3.5 to 5) after cell disruption in the high-pressure homogenizer. Emulsions containing 5 wt% oil and ~1 wt% protein were analyzed for stability based on their droplet size distribution. Proteins precipitated at pH 3.5 stabilized the smallest oil droplets and prevented partitioning of the emulsion, outperforming proteins precipitated at higher pH values. It is hypothesized that precipitation under acidic conditions induces protein denaturation and thereby exposes hydrophobic regions that enhance adsorption at the oil–water interface and the stabilization of the dispersed oil phase. To investigate the stabilization mechanism, the molecular weight of the proteins was determined using SDS-PAGE, their solubility using Bradford assay, and their aggregation behavior using static laser scattering. Proteins precipitated at pH 3.5 possessed larger molecular weights, lower solubility, and a strong tendency to aggregate. Overall, the findings highlight the potential of yeast-derived proteins as bio-surfactants and suggest that pH-controlled precipitation can tailor their functionality in food formulations. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

18 pages, 9314 KiB  
Article
Damage Mechanism and Modeling of CFRP Laminates Impacted by Single Waterjets: Effect of the Impact Direction
by Naidan Hou, Yulong Li and Ping Liu
Materials 2025, 18(15), 3495; https://doi.org/10.3390/ma18153495 - 25 Jul 2025
Viewed by 257
Abstract
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid [...] Read more.
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid impact tests on a unidirectional carbon fiber-reinforced polymer (CFRP) laminate, with special focus on the effects of the impingement angle and the fiber orientation. Finite-element simulation is employed to help reveal the failure mechanism of oblique impacts. The results show that, in most cases, the damage caused by a 15° oblique impact is slightly larger than that of a normal impact, while the increase amplitude varies with different impact speeds. Resin removal is more prone to occur when the projection of the waterjet velocity on the impact surface is perpendicular (marked as the fiber orientation PE) rather than parallel (marked as the fiber orientation PA) to the fiber direction of the top layer. A PE fiber orientation can lead to mass material peeling in comparison with PA, and the damage range is even much larger than for a normal impact. The underlying mechanism can be attributed to the increased lateral jet-particle velocity and resultant shear stress along the impact projection direction. The distinct damage modes observed on the CFRP laminate with the different fiber orientations PE and PA originate from the asymmetric tensile properties in the longitudinal/transverse directions of laminates coupled with dissimilar fiber–matrix interfacial characteristics. A theoretical model for the surface damage area under a single-jet impact was established through experimental data fitting based on a modified water-hammer pressure contact-radius formulation. The model quantitatively characterizes the influence of critical parameters, including the jet velocity, diameter, and impact angle, on the central area of the surface failure ring. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

25 pages, 5317 KiB  
Article
High Temperature and Ethinylestradiol May Reduce Body Growth, Liver and Hepatocyte Volumes and Lipid Droplets in Adult Male Guppies
by Margarida Vilaça, Sukanlaya Tantiwisawaruji, Maria João Rocha and Eduardo Rocha
Animals 2025, 15(14), 2152; https://doi.org/10.3390/ani15142152 - 21 Jul 2025
Viewed by 251
Abstract
Global warming raises surface water temperatures, impacting fish alongside pollutants, such as ubiquitous xenoestrogens. Combined stressor effects are poorly studied but likely to worsen impacts and hinder biota adaptation, warranting further research. Unadapted fish face heightened risks. The liver is a vital metabolic [...] Read more.
Global warming raises surface water temperatures, impacting fish alongside pollutants, such as ubiquitous xenoestrogens. Combined stressor effects are poorly studied but likely to worsen impacts and hinder biota adaptation, warranting further research. Unadapted fish face heightened risks. The liver is a vital metabolic organ, sensitive to temperature and xenoestrogens, eventually adjusting hepatocyte size and number to ensure survival, growth, and reproduction. This study assessed, for the first time, the impact of exposure (45 days) to thermal stress (29 °C versus 26 °C) and ethinylestradiol (EE2, 5 ng/L) on male guppies, primarily on body and quantitative liver morphology. Higher temperature reduced body mass (14%) and standard length (3.6%) gain. EE2 exposure reduced body mass increase (14%), hepatosomatic index (20%), and the volumes of the liver (32%), hepatocytes (16%), and their nuclei (17%). The nucleus-to-cytoplasm ratio and total hepatocyte number remained stable. No histopathological lesions existed. Guppies appear to have adapted to stressors by reducing hepatocyte size and utilizing lipid reserves, yet they exhibited deficits in body growth and hepatosomatic index. Gonadal maturation was unaffected. Only under EE2 at 29 °C did hepatocytes show minimal lipid droplet content (less vacuolation). This indicated exhausted reserves, reinforcing how heat and toxicants interact to exacerbate impacts. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Graphical abstract

18 pages, 3268 KiB  
Article
In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism
by Liangliang Wang, Minghua Shi, Jiaxin Li, Baiqiang Shi, Xiaoming Su, Yande Zhao, Qing Guo and Yuan Yuan
Energies 2025, 18(14), 3879; https://doi.org/10.3390/en18143879 - 21 Jul 2025
Viewed by 280
Abstract
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development [...] Read more.
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development of offshore oilfields. This study addresses the challenges hindering water flooding development in offshore oilfields by investigating the emulsification mechanism and key influencing factors based on oil–water emulsion characteristics, thereby proposing a novel in situ emulsification flooding method. Based on a fundamental analysis of oil–water properties, key factors affecting emulsion stability were examined. Core flooding experiments clarified the impact of spontaneous oil–water emulsification on water flooding recovery. Two-dimensional T1–T2 NMR spectroscopy was employed to detect pure fluid components, innovating the method for distinguishing oil–water distribution during flooding and revealing the characteristics of in situ emulsification interactions. The results indicate that emulsions formed between crude oil and formation water under varying rheometer rotational speeds (500–2500 r/min), water cuts (30–80%), and emulsification temperatures (40–85 °C) are all water-in-oil (W/O) type. Emulsion viscosity exhibits a positive correlation with shear rate, with droplet sizes primarily ranging between 2 and 7 μm and a viscosity amplification factor up to 25.8. Emulsion stability deteriorates with increasing water cut and temperature. Prolonged shearing initially increases viscosity until stabilization. In low-permeability cores, spontaneous oil–water emulsification occurs, yielding a recovery factor of only 30%. For medium- and high-permeability cores (water cuts of 80% and 50%, respectively), recovery factors increased by 9.7% and 12%. The in situ generation of micron-scale emulsions in porous media achieved a recovery factor of approximately 50%, demonstrating significantly enhanced oil recovery (EOR) potential. During emulsification flooding, the system emulsifies oil at pore walls, intensifying water–wall interactions and stripping wall-adhered oil, leading to increased T2 signal intensity and reduced relaxation time. Oil–wall interactions and collision frequencies are lower than those of water, which appears in high-relaxation regions (T1/T2 > 5). The two-dimensional NMR spectrum clearly distinguishes oil and water distributions. Full article
Show Figures

Figure 1

18 pages, 10314 KiB  
Article
Multispectral and Thermal Imaging for Assessing Tequila Vinasse Evaporation: Unmanned Aerial Vehicles and Satellite-Based Observations
by Jesús Gabriel Rangel-Peraza, Sergio Alberto Monjardin-Armenta, Osiris Chávez-Martínez and José de Anda
Processes 2025, 13(7), 2281; https://doi.org/10.3390/pr13072281 - 17 Jul 2025
Viewed by 210
Abstract
This work aims to assess the droplets produced by a novel evaporation process, proposed as an alternative for managing tequila vinasses, using a spectral camera with three spectral bands and a thermal camera mounted on an unmanned aerial vehicle (UAV). High-resolution satellite images [...] Read more.
This work aims to assess the droplets produced by a novel evaporation process, proposed as an alternative for managing tequila vinasses, using a spectral camera with three spectral bands and a thermal camera mounted on an unmanned aerial vehicle (UAV). High-resolution satellite images with seven spectral bands complemented this characterization. The spectral characterization was conducted by comparing three experimental conditions: the background of the study area without droplets, the droplets generated from purified water, and the droplets produced from tequila vinasses. Two monitoring campaigns, conducted in November 2024 and January 2025, revealed that the tequila vinasse droplets exhibited a maximum influence radius of 16 m, primarily regulated by wind speed conditions (6–16 km/h). Thermal analysis identified the droplet plume as a zone with a lower temperature, creating a thermal contrast of up to 6.6 °C against the average background temperature of 36.6 °C. No significant difference was observed in the influence radius between the droplets generated from vinasse and those from potable water. Spectral analysis of the UAV and satellite images showed significant (p < 0.05) differences in reflectance when the droplets were present (e.g., the coastal blue band increased from an average of 14.43 to 95.59 when vinasse droplets were present). This suggests that the presence of chemical compounds altered light absorption and reflection. However, the instrument’s sensitivity limited the detection of organic compounds at concentrations below its detection limit. The monitoring data presented in this manuscript is crucial for developing strategies to mitigate the potential environmental impacts of the droplets emitted by this novel process. Full article
Show Figures

Figure 1

22 pages, 5767 KiB  
Article
Influence of Humidity on the Electric Field, Filtration Efficiency, and Flow Velocity in Electret Filter Media: Direct Numerical Simulation
by Daniel Stoll and Sergiy Antonyuk
Atmosphere 2025, 16(7), 815; https://doi.org/10.3390/atmos16070815 - 3 Jul 2025
Viewed by 356
Abstract
Electret filter media are electrostatically charged during the manufacturing process to activate effective electrical separation mechanisms. In order to investigate the influence of humidity on these mechanisms, the electric field, and filtration efficiency, a Direct Numerical Simulation (DNS) study of the aerosol deposition [...] Read more.
Electret filter media are electrostatically charged during the manufacturing process to activate effective electrical separation mechanisms. In order to investigate the influence of humidity on these mechanisms, the electric field, and filtration efficiency, a Direct Numerical Simulation (DNS) study of the aerosol deposition within wetted fibrous nonwoven filter media used in masks was carried out. Initial experimental investigations determined key properties of the filter material, including porosity, fiber diameter, and surface charge density. Using Micro-Computed Tomography (µCT), preferred locations for droplet deposition within the filter were identified. Additional experiments quantified the amount of water absorbed by the filter medium and assessed its impact on the existing electric field. Numerical simulations examined various models with differing porosity and fiber diameter, incorporating different levels of water content to analyze the changes in the electric field, flow velocity, and resulting filtration efficiency. The results provide valuable insights into the significant effects of fiber change on filtration performance, demonstrating the electret filter’s ability to partially compensate for the negative impacts of water. Full article
(This article belongs to the Special Issue Electrostatics of Atmospheric Aerosols (2nd Edition))
Show Figures

Figure 1

19 pages, 3175 KiB  
Article
Soy Protein-Based Emulsions: Application as Lipid Substitutes in Surimi Gels
by Fali Zhang, Jian Shi, Yanfei Chen, Yao Yue, Wenzheng Shi, Tanye Xu and Min Qu
Foods 2025, 14(13), 2342; https://doi.org/10.3390/foods14132342 - 1 Jul 2025
Viewed by 500
Abstract
By analyzing interfacial dynamics between soybean oil concentrations and soy protein isolate (SPI), this study established their impact on Pickering emulsion stability. Two optimal soy protein-based emulsions (EM60 with 60% oil phase; EM75 with 75%) were identified as lipid substitutes in silver carp [...] Read more.
By analyzing interfacial dynamics between soybean oil concentrations and soy protein isolate (SPI), this study established their impact on Pickering emulsion stability. Two optimal soy protein-based emulsions (EM60 with 60% oil phase; EM75 with 75%) were identified as lipid substitutes in silver carp surimi products. The results revealed that uniformly spherical droplets in EM60 enhanced interparticle interactions at emulsion interfaces. Compared to EM75 addition, EM60’s finely dispersed droplets improved gel network compactness in the surimi matrix. This increased water-holding capacity (WHC) by 12.037% and gel strength by 2414.168 g·mm. EM75 addition significantly enhanced gel whiteness by 0.8483 units (p < 0.05). It also demonstrated superior physical filling effects in sol state, reinforcing structural rigidity. As unsaturated lipids, soybean oil substitution for saturated fats (e.g., lard) contributes positively to human health. Pre-emulsified soybean oil yielded stronger structural rigidity in surimi sol than direct oil addition. Post-gelation, significant increases were observed in gel strength (+828.100 g·mm), WHC (+6.093%), and elasticity (+0.07 units). Collectively, SPI-based emulsions offer novel insights for healthy lipid substitution in surimi gels. They elucidate differential impact mechanisms on texture, WHC, whiteness, and microstructure. This provides theoretical guidance for developing premium healthy surimi products. Full article
(This article belongs to the Special Issue Oil and Protein Engineering and Its Applications in Food Industry)
Show Figures

Figure 1

13 pages, 543 KiB  
Article
Overcoming Sperm Cell Survival Challenges Cryopreserved in Nanoliter Volumes
by Bat-Sheva Galmidi, Raoul Orvieto, Naomi Zurgil, Mordechai Deutsch and Dror Fixler
Int. J. Mol. Sci. 2025, 26(13), 6343; https://doi.org/10.3390/ijms26136343 - 30 Jun 2025
Viewed by 379
Abstract
The cryopreservation of limited sperm samples, especially those retrieved from patients, poses significant challenges due to the small number of viable cells available for freezing. Traditional microliter cryopreservation methods are fraught with difficulties, as thawed sperm cells become nearly impossible to locate under [...] Read more.
The cryopreservation of limited sperm samples, especially those retrieved from patients, poses significant challenges due to the small number of viable cells available for freezing. Traditional microliter cryopreservation methods are fraught with difficulties, as thawed sperm cells become nearly impossible to locate under a microscope due to their mobility and the multiple focal planes presented by larger drops. This search time is critical, as sperm cells enter a state of decline post thaw. Conversely, when sperm cells are cryopreserved in nanoliter volumes, they can be easily discovered but do not survive the freezing and thawing processes entirely. This phenomenon is attributed to the diffusion of water molecules from the droplet into the surrounding oil, which, while designed to limit evaporation, inadvertently increases solute concentrations in the aqueous environment, leading to cellular desiccation. This article elucidates the mechanisms underlying this lethal diffusion effect and presents a novel approach for freezing in nanoliter volumes, which has demonstrated significantly improved survival rates through carefully optimized procedures in clinical trials. Our findings highlight the importance of adapting cryopreservation techniques to enhance the viability of individual sperm cells, ultimately facilitating better outcomes in assisted reproductive technologies. This study provides the first quantification of nanoscale water diffusion dynamics during cryopreservation, establishing a predictive model that explains the catastrophic loss of sperm viability and identifying the critical role of water diffusion as a major impediment for limited samples. The novelty of our results lies in both elucidating this specific mechanism of cell death and introducing a novel approach: utilizing water-saturated oil as a protective layer. This method effectively mitigates the osmotic stress caused by water loss, demonstrating remarkably improved cell survival. This work not only advances the scientific understanding of cryopreservation at the nanoscale but also offers a practical, impactful solution poised to revolutionize fertility treatments for patients with low sperm counts and holds promise for broader applications in biological cryopreservation. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine: 2nd Edition)
Show Figures

Graphical abstract

17 pages, 4494 KiB  
Article
Experimental Investigation on the Erosion Resistance Characteristics of Compressor Impeller Coatings to Water Droplet Impact
by Richárd Takács, Ibolya Zsoldos, Norbert Kiss, Izolda Popa-Müller, István Barabás, Balázs Dobos, Miklós Zsolt Tabakov, Csaba Tóth-Nagy and Pavel Novotny
Coatings 2025, 15(7), 767; https://doi.org/10.3390/coatings15070767 - 28 Jun 2025
Viewed by 362
Abstract
This study presents a comparative analysis of the water droplet erosion resistance of three compressor wheels coated with Ni-P and Si-P layers. The tests were conducted using a custom-developed experimental apparatus in accordance with the ASTM G73-10 standard. The degree of erosion was [...] Read more.
This study presents a comparative analysis of the water droplet erosion resistance of three compressor wheels coated with Ni-P and Si-P layers. The tests were conducted using a custom-developed experimental apparatus in accordance with the ASTM G73-10 standard. The degree of erosion was monitored through continuous precision mass measurements, and structural changes on the surfaces of both the base materials and the coatings were examined using a Zeiss Crossbeam 350 scanning electron microscope (SEM). Hardness values were determined using a Vickers KB 30 hardness tester, while the chemical composition was analysed using a WAS Foundry Master optical emission spectrometer. Significant differences in erosion resistance were observed among the various compressor wheels, which can be attributed to differences in coating hardness values, as well as to the detachment of the Ni-P layer from the base material under continuous erosion. In all cases, water droplet erosion led to a reduction in the isentropic efficiency of the compressor—measured using a hot gas turbocharger testbench—with the extent of efficiency loss depending upon the type of coating applied. Although blade protection technologies for turbocharger compressor impellers used in the automotive industry have been the subject of only a limited number of studies, modern technologies, such as the application of certain alternative fuels and exhaust gas recirculation, have increased water droplet formation, thereby accelerating the erosion rate of the impeller. The aim of this study is to evaluate the resistance of three different coating layers to water droplet erosion through standardized tests conducted using a custom-designed experimental apparatus. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

20 pages, 2709 KiB  
Article
Study on the Characteristics of High-Temperature and High-Pressure Spray Flash Evaporation for Zero-Liquid Discharge of Desulfurization Wastewater
by Lanshui Zhang and Zhong Liu
Energies 2025, 18(12), 3180; https://doi.org/10.3390/en18123180 - 17 Jun 2025
Viewed by 312
Abstract
Zero-liquid discharge (ZLD) of desulfurization wastewater from coal-fired power plants is a critical challenge in the thermal power industry. Flash evaporation technology provides an efficient method for wastewater concentration and the recovery of high-quality freshwater resources. In this study, numerical simulations of the [...] Read more.
Zero-liquid discharge (ZLD) of desulfurization wastewater from coal-fired power plants is a critical challenge in the thermal power industry. Flash evaporation technology provides an efficient method for wastewater concentration and the recovery of high-quality freshwater resources. In this study, numerical simulations of the high-temperature and high-pressure spray flash evaporation process within a flash tank were conducted using the Discrete Phase Model (DPM) and a self-developed heat and mass transfer model for superheated droplets under depressurization conditions. The effects of feedwater temperature, pressure, nozzle spray angle, and mass flow rate on spray flash evaporation characteristics were systematically analyzed. Key findings reveal that (1) feedwater temperature is the dominant factor, with the vaporization rate significantly increasing from 19.78% to 55.88% as temperature rises from 240 °C to 360 °C; (2) higher pressure reduces equilibrium time (flash evaporation is complete within 6 ms) but shows negligible impact on final vaporization efficiency (stabilized at 33.93%); (3) increasing the spray angle provides limited improvement to water recovery efficiency (<1%); (4) an optimal mass flow rate exists (0.2 t/h), achieving a peak vaporization rate of 42.6% due to balanced evaporation space utilization. This work provides valuable insights for industrial applications in desulfurization wastewater treatment. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 3259 KiB  
Article
Simultaneously Selective Detection of Trace Lead and Cadmium Ions by Bi-Modified Delaminated Ti3C2Tx/GCE Sensor: Optimization, Performance and Mechanism Insights
by Ruhua Peng, Kai Tao, Baixiong Liu, Jiayu Chen, Yunhang Zhang, Yuxiang Tan, Fuqiang Zuo, Caihua Song and Xingyu He
Materials 2025, 18(12), 2828; https://doi.org/10.3390/ma18122828 - 16 Jun 2025
Viewed by 372
Abstract
Lead (Pb) and cadmium (Cd) ions have serious negative impacts on human health and the ecological environment due to toxicity, persistence and nonbiodegradability. Among various trace Pb and Cd ions detection technologies, electrochemical analysis is considered as one of the most promising methods. [...] Read more.
Lead (Pb) and cadmium (Cd) ions have serious negative impacts on human health and the ecological environment due to toxicity, persistence and nonbiodegradability. Among various trace Pb and Cd ions detection technologies, electrochemical analysis is considered as one of the most promising methods. The deposition of Bi nanoparticles on delaminated Ti3C2Tx (DL-Ti3C2Tx) develops a sensor with good conductivity and performance. Square wave anodic stripping voltammetry (SWASV) technology was applied to simultaneously deposit Bi on DL-Ti3C2Tx/GCE and achieve the rapid detection of Pb and Cd ions. The Bi nanoparticles effectively improved the sensitivity of Bi/DL-Ti3C2Tx/GCE sensors to detect Pb and Cd ions. The preparation conditions of the Bi/DL-Ti3C2Tx/GCE were optimized, including DL-Ti3C2Tx droplet amount, solution pH, Bi3+ concentration, deposition time and deposition potential, to improve the detection ability. The Bi/DL-Ti3C2Tx/GCE sensor has detection limits of 1.73 and 1.06 μg/L for Pb and Cd ions, respectively (S/N > 3). This electrochemical sensor is easy, sensitive and selective to apply in actual water samples for trace Pb and Cd ions detection. Full article
(This article belongs to the Special Issue Adsorptive and Catalytic Materials Used in Environmental Treatment)
Show Figures

Graphical abstract

18 pages, 12819 KiB  
Article
Investigation of Droplet Spreading and Rebound Dynamics on Superhydrophobic Surfaces Using Machine Learning
by Samo Jereb, Jure Berce, Robert Lovšin, Matevž Zupančič, Matic Može and Iztok Golobič
Biomimetics 2025, 10(6), 357; https://doi.org/10.3390/biomimetics10060357 - 1 Jun 2025
Viewed by 729
Abstract
The spreading and rebound of impacting droplets on superhydrophobic interfaces is a complex phenomenon governed by the interconnected contributions of surface, fluid and environmental factors. In this work, we employed a collection of 1498 water–glycerin droplet impact experiments on monolayer-functionalized laser-structured aluminum samples [...] Read more.
The spreading and rebound of impacting droplets on superhydrophobic interfaces is a complex phenomenon governed by the interconnected contributions of surface, fluid and environmental factors. In this work, we employed a collection of 1498 water–glycerin droplet impact experiments on monolayer-functionalized laser-structured aluminum samples to train, validate and optimize a machine learning regression model. To elucidate the role of each influential parameter, we analyzed the model-predicted individual parameter contributions on key descriptors of the phenomenon, such as contact time, maximum spreading coefficient and rebound efficiency. Our results confirm the dominant contribution of droplet impact velocity while highlighting that the droplet spreading phase appears to be independent of surface microtopography, i.e., the depth and width of laser-made features. Interestingly, once the rebound transitions to the retraction stage, the importance of the unwetted area fraction is heightened, manifesting in higher rebound efficiency on samples with smaller distances between laser-fabricated microchannels. Finally, we exploited the trained models to develop empirical correlations for predicting the maximum spreading coefficient and rebound efficiency, both of which strongly outperform the currently published models. This work can aid future studies that aim to bridge the gap between the observed macroscale surface-droplet interactions and the microscale properties of the interface or the thermophysical properties of the fluid. Full article
Show Figures

Figure 1

15 pages, 2896 KiB  
Article
Evaluation of Air-Assisted Spraying Technology for Pesticide Drift Reduction
by Seweryn Lipiński, Zdzisław Kaliniewicz, Piotr Markowski and Piotr Szczyglak
Sustainability 2025, 17(11), 5036; https://doi.org/10.3390/su17115036 - 30 May 2025
Viewed by 488
Abstract
Reducing pesticide drift is essential for minimizing environmental pollution and so implementing sustainable agricultural practices. Various methods can be employed to counteract this phenomenon, one of which is air-assisted spraying. This study evaluates the impact of air assistance on spray deposition using a [...] Read more.
Reducing pesticide drift is essential for minimizing environmental pollution and so implementing sustainable agricultural practices. Various methods can be employed to counteract this phenomenon, one of which is air-assisted spraying. This study evaluates the impact of air assistance on spray deposition using a field sprayer designed for cereal crops. Spray quality was assessed using water-sensitive paper, allowing drift levels to be estimated not only by assessing coverage but also by measuring the average number of droplets per square centimeter on the paper surface. This method provided a more reliable evaluation of drift reduction. The results indicate that air assistance reduced drift by 40.74% in coverage and 37.55% in droplet density per square centimeter. Notably, the greatest drift reduction occurred at the point of highest coverage—1 m from the spraying area—with an average reduction of 50%. Furthermore, at this distance, an 80% drift reduction was achieved at the recommended sprayer speed of 6 km/h. These findings highlight the potential of air-assisted spraying to enhance efficiency while reducing environmental impact. This research aligns with the objectives of the European Green Deal, supporting the transition toward more sustainable pesticide application techniques and contributing to environmentally responsible crop protection practices. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Graphical abstract

23 pages, 2743 KiB  
Article
Aerosol, Clouds and Radiation Interactions in the NCEP Unified Forecast Systems
by Anning Cheng and Fanglin Yang
Meteorology 2025, 4(2), 14; https://doi.org/10.3390/meteorology4020014 - 23 May 2025
Viewed by 1128
Abstract
In this study, we evaluate aerosol, cloud, and radiation interactions in GFS.V17.p8 (Global Forecast System System Version 17 prototype 8). Two experiments were conducted for the summer of 2020. In the control experiment (EXP CTL), aerosols interact with radiation only, incorporating direct and [...] Read more.
In this study, we evaluate aerosol, cloud, and radiation interactions in GFS.V17.p8 (Global Forecast System System Version 17 prototype 8). Two experiments were conducted for the summer of 2020. In the control experiment (EXP CTL), aerosols interact with radiation only, incorporating direct and semi-direct aerosol effects. The sensitivity experiment (EXP ACI) couples aerosols with both radiation and Thompson microphysics, accounting for aerosol indirect effects and fully interactive aerosol–cloud dynamics. Introducing aerosol and cloud interactions results in net cooling at the top of the atmosphere (TOA). Further analysis shows that the EXP ACI produces more liquid water at lower levels and less ice water at higher levels compared to the EXP CTL. The aerosol optical depth (AOD) shows a good linear relationship with cloud droplet number concentration, similar to other climate models, though with larger standard deviations. Including aerosol and cloud interactions generally enhances simulations of the Indian Summer Monsoon, stratocumulus, and diurnal cycles. Additionally, the study evaluates the impacts of aerosols on deep convection and cloud life cycles. Full article
Show Figures

Figure 1

Back to TopTop