Simultaneously Selective Detection of Trace Lead and Cadmium Ions by Bi-Modified Delaminated Ti3C2Tx/GCE Sensor: Optimization, Performance and Mechanism Insights
Abstract
:1. Introduction
Reagents
2. Materials and Methods
2.1. Preparation of Ti3C2Tx MXene Nanosheets
2.2. Electrode Preparation
2.2.1. GCE Pretreatment and Preparation
2.2.2. Preparation of DL-Ti3C2Tx/GCE
2.2.3. Preparation of Bi/DL-Ti3C2Tx/GCE
2.3. Electrochemical Characterization of Bi/DL-Ti3C2Tx/GCE
2.4. Bi/DL-Ti3C2Tx/GCE Detection Experiment for Heavy Metal Ions
3. Results and Discussion
3.1. Material Morphology
3.2. Electrochemical Characterization
3.3. Experimental Exploration
3.4. Optimization Experiment of Bi/DL-Ti3C2Tx/GCE Sensor Conditions for Cd and Pb Ions Detection
3.5. Bi/DL-Ti3C2Tx/GCE Sensor for Quantitative Cd and Pb Ions Detection
3.6. Stability and Repeatability Experiments
3.7. Anti-Interference Experiment
3.8. Interference Experiments
3.9. Actual Water Sample Testing
3.10. Mechanism Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, T.; Khan, S.; Rasheed, T.; Ullah, N. Graphitic carbon nitride nanosheets as promising candidates for the detection of hazardous contaminants of environmental and biological concern in aqueous matrices. Microchim. Acta 2022, 189, 426. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guan, L.; Tu, Y.; Ruan, Z.; Chen, J.; Xu, Z.; Wang, R.; Liu, H.; Liu, Z. Development of high-performance MoS2 with nanofoam architecture for gaseous elemental mercury sequestration: The key role of edge sulfur vacancy. Chem. Eng. J. 2025, 503, 158786. [Google Scholar] [CrossRef]
- Liu, J.; Kang, H.; Tao, W.; Li, H.; He, D.; Ma, L.; Li, X. A spatial distribution–Principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil. Sci. Total Environ. 2023, 859, 160112. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Deng, F.; Shen, T.; Yang, L.; Chen, D.; Lou, J.; Luo, X.; Min, X.; Wang, F. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight. J. Colloid Interface Sci. 2019, 539, 223–234. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Z.; Zhong, C.; Ji, J. Temporal–spatial variation and source apportionment of soil heavy metals in the representative river–alluviation depositional system. Environ. Pollut. 2016, 216, 18–26. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, J.; Luo, Z.; Wang, X.; Duan, Y. Label-free and enzyme-free colorimetric detection of Pb2+ based on RNA cleavage and annealing-accelerated hybridization chain reaction. Anal. Chem. 2019, 91, 4806–4813. [Google Scholar] [CrossRef]
- Zhou, X.; Pu, H.; Sun, D.W. DNA functionalized metal and metal oxide nanoparticles: Principles and recent advances in food safety detection. Crit. Rev. Food Sci. 2021, 61, 2277–2296. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, D.; Ren, F.; Huang, L. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. Sci. Total Environ. 2023, 871, 161768. [Google Scholar] [CrossRef]
- Saleh, T.A.; Mustaqeem, M.; Khaled, M. Water treatment technologies in removing heavy metal ions from wastewater: A review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100617. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, B.; Gao, Y.; Zhang, H.; Liu, L. Heavy metal contamination assessment and probabilistic health risks in soil and maize near coal mines. Front. Public Health 2022, 10, 1004579. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, B.; Zhou, Z. Pollution assessment and source apportionment of heavy metals in soil from lead–Zinc mining areas of south China. J. Environ. Chem. Eng. 2023, 11, 109320. [Google Scholar] [CrossRef]
- Douvris, C.; Vaughan, T.; Bussan, D.; Bartzas, G.; Thomas, R. How ICP-OES changed the face of trace element analysis: Review of the global application landscape. Sci. Total Environ. 2023, 905, 167242. [Google Scholar] [CrossRef]
- Chen, W.T.; Jiang, S.J.; Sahayam, A.C. Speciation analysis of thallium in tobaccos using liquid chromatography inductively coupled plasma mass spectrometry. Microchem. J. 2018, 141, 104–109. [Google Scholar] [CrossRef]
- Xing, G.; Sardar, M.R.; Lin, B.; Lin, J.M. Analysis of trace metals in water samples using NOBIAS chelate resins by HPLC and ICP-MS. Talanta 2019, 204, 50–56. [Google Scholar] [CrossRef]
- Smirnova, S.V.; Samarina, T.O.; Ilin, D.V.; Pletnev, I.V. Multielement determination of trace heavy metals in water by microwave-induced plasma atomic emission spectrometry after extraction in unconventional single-salt aqueous biphasic system. Anal. Chem. 2018, 90, 6323–6331. [Google Scholar] [CrossRef]
- Shirani, M.; Habibollahi, S.; Akbari, A. Centrifuge-less deep eutectic solvent based magnetic nanofluid-linked air-agitated liquid–liquid microextraction coupled with electrothermal atomic absorption spectrometry for simultaneous determination of cadmium, lead, copper, and arsenic in food samples and non-alcoholic beverages. Food Chem. 2019, 281, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Gao, X.; Pan, B. Nanoconfinement-mediated water treatment: From fundamental to application. Environ. Sci. Technol. 2020, 54, 8509–8526. [Google Scholar] [CrossRef]
- Han, Q.; Yang, X.; Huo, Y.; Lu, J.; Liu, Y. Determination of ultra-trace amounts of copper in environmental water samples by dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry. Separations 2023, 10, 93. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, R.; Zhang, Z.; Chen, D.; Gao, Y.; Liu, Z.; Wang, C. Label-free electrochemical biosensor based on GR5 DNAzyme/Ti3C2Tx Mxenes for Pb2+ detection. J. Electroanal. Chem. 2022, 905, 115979. [Google Scholar] [CrossRef]
- Sulthana, S.F.; Iqbal, U.M.; Suseela, S.B.; Anbazhagan, R.; Chinthaginjala, R.; Chitathuru, D.; Kim, T.H. Electrochemical sensors for heavy metal ion detection in aqueous medium: A systematic review. ACS Omega 2024, 9, 25493–25512. [Google Scholar] [CrossRef]
- Ariño, C.; Banks, C.E.; Bobrowski, A.; Crapnell, R.D.; Economou, A.; Królicka, A.; Wang, J. Electrochemical stripping analysis. Nat. Rev. Methods Primes 2022, 2, 62. [Google Scholar] [CrossRef]
- Oularbi, L.; Turmine, M.; El Rhazi, M. Preparation of novel nanocomposite consisting of bismuth particles, polypyrrole and multi-walled carbon nanotubes for simultaneous voltammetric determination of cadmium(II) and lead(II). Synth. Met. 2019, 253, 1–8. [Google Scholar] [CrossRef]
- Yu, L.; Sun, L.; Zhang, Q.; Zhou, Y.; Zhang, J.; Yang, B.; Xu, Q. Nanomaterials-based ion-imprinted electrochemical sensors for heavy metal ions detection: A review. Biosensors 2022, 12, 1096. [Google Scholar] [CrossRef] [PubMed]
- Promsuwan, K.; Sanguarnsak, C.; Samoson, K.; Saichanapan, J.; Soleh, A.; Saisahas, K.; Limbut, W. Single-drop electrodeposition of nanoneedle-like bismuth on disposable graphene electrode for on-site electrochemical detection of cadmium and lead. Talanta 2024, 276, 126179. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, J.; Zheng, Y.; Bai, W.; Ma, Y.; Zhao, X. A screen-printed carbon electrode modified with bismuth nanoparticles and conjugated mesoporous polymer for simultaneous determination of Pb (II) and Cd (II) in seafood samples. J. Food Compos. Anal. 2024, 125, 105837. [Google Scholar] [CrossRef]
- Wen, L.; Dong, J.; Yang, H.; Zhao, J.; Hu, Z.; Han, H.; Huo, D. A novel electrochemical sensor for simultaneous detection of Cd2+ and Pb2+ by MXene aerogel-CuO/carbon cloth flexible electrode based on oxygen vacancy and bismuth film. Sci. Total Environ. 2022, 851, 158325. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Zhang, Y.; Meng, H.; Xu, Y.; Han, Y.; Zhang, X. Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage. J. Energy Chem. 2020, 47, 203–209. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef]
- Ho, D.H.; Choi, Y.Y.; Jo, S.B.; Myoung, J.M.; Cho, J.H. Sensing with MXenes: Progress and prospects. Adv. Mater. 2021, 33, 2005846. [Google Scholar] [CrossRef]
- Barmann, P.; Nolle, R.; Siozios, V.; Ruttert, M.; Guillon, O.; Winter, M.; Placke, T. Solvent co-intercalation into few-layered Ti3C2Tx MXenes in lithium ion batteries induced by acidic or basic post-treatment. ACS Nano 2021, 15, 3295–3308. [Google Scholar] [CrossRef]
- Lu, M.; Li, H.; Han, W.; Wang, Y.; Shi, W.; Wang, J.; Zheng, W. Integrated MXene & CoFe2O4 electrodes with multi-level interfacial architectures for synergistic lithium-ion storage. Nanoscale 2019, 11, 15037–15042. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Zhu, Q.; Li, K.; Zhang, P.; Zhao, Q.; Xu, B. Self-propagating fabrication of 3D porous MXene-rGO film electrode for high-performance supercapacitors. J. Energy Chem. 2021, 52, 243–250. [Google Scholar] [CrossRef]
- Rasheed, P.A.; Pandey, R.P.; Gomez, T.; Naguib, M.; Mahmoud, K.A. Large interlayer spacing Nb4C3Tx (MXene) promotes the ultrasensitive electrochemical detection of Pb2+ on glassy carbon electrodes. RSC Adv. 2020, 10, 24697–24704. [Google Scholar] [CrossRef]
- Zukauskas, S.; Rucinskiene, A.; Ramanavicius, S.; Popov, A.; Niaura, G.; Baginskiy, I.; Ramanavicius, A. Electrochemical real-time sensor for the detection of Pb(II) ions based on Ti3C2Tx MXene. Sci. Total Environ. 2024, 950, 175190. [Google Scholar] [CrossRef]
- Hou, W.; Sun, Y.; Zhang, Y.; Wang, T.; Wu, L.; Du, Y.; Zhong, W. Mixed-dimensional heterostructure of few-layer MXene based vertical aligned MoS2 nanosheets for enhanced supercapacitor performance. J. Alloys Compd. 2021, 859, 157797. [Google Scholar] [CrossRef]
- Kumar, S.; Lei, Y.; Alshareef, N.H.; Quevedo-Lopez, M.A.; Salama, K.N. Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens. Bioelectron. 2018, 121, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Zhu, Q.; Anasori, B.; Zhang, P.; Liu, H.; Gogotsi, Y.; Xu, B. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater. 2019, 29, 1906282. [Google Scholar] [CrossRef]
- Guo, X.; Ding, Y.; Kuang, D.; Wu, Z.; Sun, X.; Du, B.; He, Y. Enhanced ammonia sensing performance based on MXene-Ti3C2Tx multilayer nanoflakes functionalized by tungsten trioxide nanoparticles. J. Colloid Interface Sci. 2021, 595, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Hong, L.F.; Guo, R.T.; Yuan, Y.; Ji, X.Y.; Li, Z.S.; Lin, Z.D.; Pan, W.G. Recent progress of two-dimensional MXenes in photocatalytic applications: A review. Mater. Today Energy 2020, 18, 100521. [Google Scholar] [CrossRef]
- Zhang, H.; Abe, I.; Oyumi, T.; Ishii, R.; Hara, K.; Izumi, Y. Photocatalytic CO2 Reduction Using Ti3C2Xy (X = Oxo, OH, F, or Cl) MXene–ZrO2: Structure, Electron Transmission, and the Stability. Langmuir 2024, 40, 6330–6341. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Zhang, D. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 2018, 57, 6115–6119. [Google Scholar] [CrossRef] [PubMed]
- Rostami, M.; Badiei, A.; Ziarani, G.M. A review of recent progress in the synthesis of 2D Ti3C2Tx MXenes and their multifunctional applications. Inorg. Chem. Commun. 2024, 163, 112362. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, W.; Wang, K.; Xu, J. GO-Ti3C2 two-dimensional heterojunction nanomaterial for anticorrosion enhancement of epoxy zinc-rich coatings. J. Hazard. Mater. 2021, 417, 126048. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Zhang, B.; Li, M.; Zhang, J.; Hu, Q.; Liu, H. Electrochemical Detection of Cd2+ and Pb2+ in Wastewater by Amino C-dot-MOF/GCE. ECS. J. Solid State Sci. Technol. 2024, 13, 107001. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, J.X.; Wang, J.W.; Liu, Y.; Wang, L.C.; Weerasooriya, R.; Wu, Y.C. Doping ZIF-67 with transition metals results in bimetallic centers for electrochemical detection of Hg(II). Electrochim. Acta 2021, 387, 138539. [Google Scholar] [CrossRef]
- Wang, W.; Wu, S. A new ternary composite based on carbon nanotubes/polyindole/graphene with preeminent electrocapacitive performance for supercapacitors. Appl. Surf. Sci. 2017, 396, 1360–1367. [Google Scholar] [CrossRef]
- Tahaei, R.; Shayani-Jam, H.; Yaftian, M.R. Voltammetric determination of trace copper(II), cadmium(II), and lead(II) using a Schiff base modified glassy carbon working electrode. Monatsh. Chem. 2021, 152, 51–59. [Google Scholar] [CrossRef]
- Hui, X.; Sharifuzzaman, M.; Sharma, S.; Xuan, X.; Zhang, S.; Ko, S.G.; Park, J.Y. High-performance flexible electrochemical heavy metal sensor based on layer-by-layer assembly of Ti3C2Tx/MWNTs nanocomposites for noninvasive detection of copper and zinc ions in human biofluids. ACS Appl. Mater. Interfaces 2020, 12, 48928–48937. [Google Scholar] [CrossRef]
- Sun, Y.F.; Li, P.H.; Yang, M.; Huang, X.J. Highly sensitive electrochemical detection of Pb(II) based on excellent adsorption and surface Ni(II)/Ni(III) cycle of porous flower-like NiO/rGO nanocomposite. Sens. Actuators B-Chem. 2019, 292, 136–147. [Google Scholar] [CrossRef]
- Rosolina, S.M.; Chambers, J.Q.; Lee, C.W.; Xue, Z.L. Direct determination of cadmium and lead in pharmaceutical ingredients using anodic stripping voltammetry in aqueous and DMSO/water solutions. Anal. Chim. Acta 2015, 893, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, L.; Chen, Z.; Megharaj, M.; Naidu, R. Voltammetric determination of lead(II) and cadmium(II) using a bismuth film electrode modified with mesoporous silica nanoparticles. Electrochim. Acta 2014, 132, 223–229. [Google Scholar] [CrossRef]
- Cerovac, S.; Guzsvány, V.; Kónya, Z.; Ashrafi, A.M.; Švancara, I.; Rončević, S.; Vytřas, K. Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode. Talanta 2015, 134, 640–649. [Google Scholar] [CrossRef]
- He, Y.; Wang, Z.; Ma, L.; Zhou, L.; Jiang, Y.; Gao, J. Synthesis of bismuth nanoparticle-loaded cobalt ferrite for electrochemical detection of heavy metal ions. RSC Adv. 2020, 10, 27697–27705. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, B.; Hou, H.; Huang, Z.; Zeinu, K.M.; Huang, L.; Yang, J. Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim. Acta 2017, 248, 46–57. [Google Scholar] [CrossRef]
Sensor | Detection Technique | Analyte | Linear Range (µg/L) | LOD (µg/L) | Ref. |
---|---|---|---|---|---|
Bi/GCE | Electrochemical (SWASV) | Cd(II) | 5–150 | 3.2 | [51] |
Pb(II) | 5–150 | 1.9 | |||
BiFE/NanoSiO2/GCE | Electrochemical (SWASV) | Cd(II) | 2–150 | 0.6 | [52] |
Pb(II) | 2–150 | 0.2 | |||
BiOCl/MWCNT/GCE | Electrochemical (SWASV) | Cd(II) | 5–50 | 1.2 | [53] |
Pb(II) | 5–50 | 0.57 | |||
BiNPs @CoFe2O4@GCE | Electrochemical (SWASV) | Cd(II) | 9–67.4 | 0.92 | [54] |
Pb(II) | 12.4–124 | 1.51 | |||
GCE/MXene/Nafion | Electrochemical (CV) | Pb(II) | 50–2072 | 10 | [34] |
Nb4C3Tx/GCE | Electrochemical (SWASV) | Pb(II) | 5.2–103.6 | 2.49 | [33] |
Alk-Ti3C2/GCE | Electrochemical (SWASV) | Cd(II) | 11.2–112 | 11 | [55] |
Pb(II) | 20–115 | 8.50 | |||
Bi/DL-Ti3C2Tx/GCE | Electrochemical (SWASV) | Cd(II) | 5–800 | 1.73 | This work |
Pb(II) | 5–1600 | 1.06 |
Sample | Added (μg/L) | Cd(II) | Pb(II) | ||||||
---|---|---|---|---|---|---|---|---|---|
Found (μg/L) | Recovery (%) | RSD (%) | ICP-MS (μg/L) | Found (μg/L) | Recovery (%) | RSD (%) | ICP-MS (μg/L) | ||
Tap water | 10 | 10.24 | 102.4 | 3.03 | 10.01 | 10.18 | 101.80 | 1.37 | 10.03 |
50 | 50.78 | 101.56 | 1.01 | 50.13 | 48.93 | 97.86 | 1.45 | 49.60 | |
100 | 104.47 | 104.47 | 1.40 | 100.25 | 104.63 | 104.63 | 1.01 | 100.15 | |
Lake water | 10 | 10.33 | 103.30 | 2.03 | 101.46 | 10.21 | 102.10 | 3.14 | 101.81 |
50 | 52.11 | 104.22 | 3.92 | 102.83 | 50.16 | 100.32 | 1.43 | 50.20 | |
100 | 105.33 | 105.33 | 2.05 | 103.27 | 101.92 | 101.92 | 2.15 | 100.65 | |
River water | 10 | 9.96 | 99.60 | 3.39 | 9.98 | 10.42 | 104.20 | 3.24 | 103.22 |
50 | 52.01 | 104.02 | 1.99 | 100.62 | 51.09 | 102.18 | 1.30 | 101.53 | |
100 | 98.74 | 98.74 | 0.92 | 99.2 | 105.04 | 105.04 | 1.41 | 102.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, R.; Tao, K.; Liu, B.; Chen, J.; Zhang, Y.; Tan, Y.; Zuo, F.; Song, C.; He, X. Simultaneously Selective Detection of Trace Lead and Cadmium Ions by Bi-Modified Delaminated Ti3C2Tx/GCE Sensor: Optimization, Performance and Mechanism Insights. Materials 2025, 18, 2828. https://doi.org/10.3390/ma18122828
Peng R, Tao K, Liu B, Chen J, Zhang Y, Tan Y, Zuo F, Song C, He X. Simultaneously Selective Detection of Trace Lead and Cadmium Ions by Bi-Modified Delaminated Ti3C2Tx/GCE Sensor: Optimization, Performance and Mechanism Insights. Materials. 2025; 18(12):2828. https://doi.org/10.3390/ma18122828
Chicago/Turabian StylePeng, Ruhua, Kai Tao, Baixiong Liu, Jiayu Chen, Yunhang Zhang, Yuxiang Tan, Fuqiang Zuo, Caihua Song, and Xingyu He. 2025. "Simultaneously Selective Detection of Trace Lead and Cadmium Ions by Bi-Modified Delaminated Ti3C2Tx/GCE Sensor: Optimization, Performance and Mechanism Insights" Materials 18, no. 12: 2828. https://doi.org/10.3390/ma18122828
APA StylePeng, R., Tao, K., Liu, B., Chen, J., Zhang, Y., Tan, Y., Zuo, F., Song, C., & He, X. (2025). Simultaneously Selective Detection of Trace Lead and Cadmium Ions by Bi-Modified Delaminated Ti3C2Tx/GCE Sensor: Optimization, Performance and Mechanism Insights. Materials, 18(12), 2828. https://doi.org/10.3390/ma18122828