Influence of Humidity on the Electric Field, Filtration Efficiency, and Flow Velocity in Electret Filter Media: Direct Numerical Simulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Electret Filter Media
2.2. Micro-Computed Tomography (μCT) Images
2.3. Water Content and Surface Potential of the Filter Medium
3. Direct Numerical Simulation (DNS)
3.1. 3D Model Generation
3.2. Computation of Gas Flow, Electric Field, and Particle Movement
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baron, P.A.; Kulkarni, P.; Willeke, K. (Eds.) Aerosol Measurement: Principles, Techniques, and Applications, 3rd ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology; Wiley & Sons: New York, NY, USA, 1982. [Google Scholar]
- Baumgartner, H.P.; Löffler, F. The collection performance of electret filters in the particle size range 10 nm–10 μm. J. Aerosol Sci. 1986, 17, 438–445. [Google Scholar] [CrossRef]
- Wang, C.S. Electrostatic forces in fibrous filters—A review. Powder Technol. 2001, 118, 166–170. [Google Scholar] [CrossRef]
- Kerner, M.; Schmidt, K.; Hellmann, A.; Schumacher, S.; Pitz, M.; Asbach, C.; Ripperger, S.; Antonyuk, S. Numerical and experimental study of submicron aerosol deposition in electret microfiber nonwovens. J. Aerosol Sci. 2018, 122, 32–44. [Google Scholar] [CrossRef]
- Brown, R.C. Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters, 1st ed.; Pergamon Press: Oxford, UK, 1993; ISBN 9780080412740. [Google Scholar]
- Sanchez, A.; Hubbard, J.; Dellinger, J.; Servantes, B.L. Experimental Study of electrostatic aerosol filtration at moderate filter face velocities. Aerosol Sci. Technol. 2013, 47, 606–615. [Google Scholar] [CrossRef]
- Thakur, R.; Da, D.; Das, A. Electret Air Filters. Sep. Purif. Rev. 2013, 42, 87–129. [Google Scholar] [CrossRef]
- Tegge, G. Löffler, F.: Staubabscheiden. (Aus der Lehrbuchreihe Chemieingenieurwesen/Verfahrenstechnik). Georg Thieme Verlag, Stuttgart–New York 1988. ISBN 3-13-712201-5, 354 Seiten, mit 244 Abb. und 34 Tab. Kartoniert DM 84,–. Starch/Stärke 1989, 41, 122. [Google Scholar] [CrossRef]
- Ji, J.H.; Bae, G.N.; Kang, S.H.; Hwang, J. Effect of particle loading on the collection performance of an electret cabin air filter for submicron aerosols. J. Aerosol Sci. 2003, 34, 1493–1504. [Google Scholar] [CrossRef]
- Schumacher, S.; Jasti, R.; Asbach, C. Einfluss von Entladungsmethode und Aerosolmaterial auf die Abscheideeffizienz von Elektretfiltern. Gefahrstoffe-Reinhalt. Der Luft 2018, 78, 316–322. [Google Scholar]
- Kerner, M.; Schmidt, K.; Schumacher, S.; Asbach, C.; Antonyuk, S. Ageing of electret filter media due to deposition of submicron particles—Experimental and numerical investigations. Sep. Purif. Technol. 2020, 251, 117299. [Google Scholar] [CrossRef]
- Turnhout, J.V.; Hoeneveld, W.J.; Adamse, J.-W.C.; Rossen, L.M.V. Electret Filters for High-Efficiency and High-Flow Air Cleaning. IEEE Trans. Ind. Appl. 1981, IA-17, 240–248. [Google Scholar] [CrossRef]
- Brown, R.C. Electrically Charged Air Filters. KONA Powder Part. J. 1991, 9, 174–186. [Google Scholar] [CrossRef]
- Motyl, E.; Łowkis, B. Effect of air humidity on charge decay and lifetime of PP electret nonwovens. Fibres Text. East. Eur. 2006, 14, 39–42. [Google Scholar]
- Lee, M.; Otani, Y.; Namiki, N.; Emi, H. Prediction of Collection Efficiency of High-performance Electret Filters. J. Chem. Eng. Jpn. 2002, 35, 57–62. [Google Scholar] [CrossRef]
- Kim, J.; Hinestroza, J.; Jasper, W.; Barker, R. Effect of solvent exposure on the filtration performance of electrically charged polypropylene filter media. Text. Res. J. 2009, 79, 343–350. [Google Scholar] [CrossRef]
- Choi, H.-J.; Park, E.-S.; Kim, J.-U.; Kim, J.-U.; Lee, M.-H. Experimental study on charge dacy of electret filter due to organic solvant exposure. Aerosol Sci. Technol. 2015, 49, 977–983. [Google Scholar] [CrossRef]
- DIN EN 143:2017-08; Atemschutzgeräte-Partikelfilter-Anforderungen, Prüfung, Kennzeichnung; Deutsche und Englische Fassung EN 143:2017. Beuth Verlag GmbH: Berlin, Germany, 2017.
- DIN EN 149:2009-08; Atemschutzgeräte-Filtrierende Halbmasken zum Schutz gegen Partikeln-Anforderungen, Prüfung, Kennzeichnung; Deutsche Fassung EN_149:2001+A1:2009. Beuth Verlag GmbH: Berlin, Germany, 2009.
- Bourouiba, L. The Fluid Dynamics of Disease Transmission. Annu. Rev. Fluid Mech. 2021, 53, 473–508. [Google Scholar] [CrossRef]
- Papineni, R.S.; Rosenthal, F.S. The size distribution of droplets in the exhaled breath of healthy human subjects. J. Aerosol Med. 1997, 10, 105–116. [Google Scholar] [CrossRef]
- Johnson, G.R.; Morawska, L. The mechanism of breath aerosol formation. J. Aerosol Med. Pulm. Drug Deliv. 2009, 22, 229–237. [Google Scholar] [CrossRef]
- Malashenko, A.; Tsuda, A.; Haber, S. Propagation and breakup of liquid menisci and aerosol generation in small airways. J. Aerosol Med. Pulm. Drug Deliv. 2009, 22, 341–353. [Google Scholar] [CrossRef]
- Bagchi, S.; Basu, S.; Chaudhuri, S.; Saha, A. Penetration and secondary atomization of droplets impacted on wet facemasks. Phys. Rev. Fluids 2021, 6, 110510. [Google Scholar] [CrossRef]
- Sharma, S.; Pinto, R.; Saha, A.; Chaudhuri, S.; Basu, S. On secondary atomization and blockage of surrogate cough droplets in single-and multilayer face masks. Sci. Adv. 2021, 7, eabf0452. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.Y.; Weng, W.G.; Huang, Q.Y. Characterizations of particle size distribution of the droplets exhaled by sneeze. J. R. Soc. Interface 2013, 10, 20130560. [Google Scholar] [CrossRef]
- Luckey, T.D. Introduction to intestinal microecology. Am. J. Clin. Nutr. 1972, 25, 1292–1294. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, Y. Airborne spread of infectious agents in the indoor environment. Am. J. Infect. Control 2016, 44, S102–S108. [Google Scholar] [CrossRef]
- Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef]
- Balazy, A.; Toivola, M.; Adhikari, A.; Sivasubramani, S.; Reponen, T.; Grinsphun, S. Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? Am. J. Infect. Control. 2006, 34, 51–57. [Google Scholar] [CrossRef]
- Ahlert, B.; Hemke, G.; Hillemann, L.; Mueller, K.; Ripperger, S.; Stintz, M.; Voigt, T. Rückhaltevermögen von Atemschutzfiltern Gegenüber Biologischen Arbeitsstoffen—BGN/DrM-Zusammenfassung. 2008. Available online: https://www.fsa.de/fileadmin/user_upload/forschung/gefahrstoffe_und_mikrobiologie/zusammenfassung_filtermasken.pdf (accessed on 9 January 2025).
- Asadi, S.; Cappa, C.D.; Barreda, S.; Wexler, A.S.; Bouvier, N.M.; Ristenpart, W.D. Efficacy of masks and face coverings in controlling outward aerosol particle emission from expiratory activities. Sci. Rep. 2020, 10, 15665. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Y.K.; Lam, E.P.W.; Chan, C.K.; Chan, S.Y.; Chiu, M.K.; Chong, W.H.; Chu, K.W.; Hon, M.S.; Kwan, L.K.; Tsang, K.L.; et al. Practice and technique of using face mask amongst adults in the community: A cross-sectional descriptive study. BMC Public Health 2020, 20, 948. [Google Scholar] [CrossRef]
- Leffler, C.T.; Ing, E.; Lykins, J.D.; Hogan, M.C.; McKeown, C.A.; Grzybowski, A. As-sociation of Country-wide Coronavirus Mortality with Demographics, Testing, Lockdowns, and Public Wearing of Masks. Am. J. Trop. 2020, 103, 2400. [Google Scholar] [CrossRef]
- Roberge, R.J.; Kim, J.-H.; Benson, S.M. Absence of consequential changes in physiological, thermal and subjective responses from wearing a surgical mask. Respir. Phyiology Neurobiol. 2012, 181, 29–35. [Google Scholar] [CrossRef]
- Roberge, R.J.; Bayer, E.; Powell, J.B.; Coca, A.; Roberge, M.R.; Benson, S.M. Effect of Exhaled Moisture on Breathing Resistance of N95 Filtering Facepiece Respirators. Ann. Occup. Hyg. 2010, 54, 671–677. [Google Scholar] [CrossRef]
- Mahdavi, A.; Haghighat, F.; Bahloul, A.; Brochot, C.; Ostiguy, C. Particle Loading Time and Humidity Effects on the Efficiency of an N95 Filtering Facepiece Respirator Model under Constant and Inhalation Cyclic Flows. Ann. Occup. Hyg. 2015, 59, 629–640. [Google Scholar] [CrossRef]
- Zhang, T.; Fu, Z.; Zhou, H. Experimental Study of the Effect of Humidity on Air Filter Material Performance. Energies 2023, 16, 3626. [Google Scholar] [CrossRef]
- Otani, Y.; Emi, H.; Mori, J. Initial Collection Efficiency of Electret Filter and Its Durability for Solid and Liquid Particles. KONA Powder Part. J. 1993, 11, 207–214. [Google Scholar] [CrossRef]
- Stoll, D.; Antonyuk, S. Influence of Humidity on FFP Masks with Electret Filter Media Under Real-Life Wearing Conditions. Atmosphere 2025, 16, 62. [Google Scholar] [CrossRef]
- Kaminski, M.; Jakub, M.G.; Sobiech, P.; Kozikowski, P.; Jankowski, T. Pressure Drop Dynamics during Filtration of Mixture Aerosol Containing Water, Oil, and Soot Particles on Nonwoven Filters. Polymers 2023, 15, 1787. [Google Scholar] [CrossRef]
- Schwarz, A.D.; König, L.; Meyer, J.; Dittler, A. Impact of water droplet and humidity interaction with soluble particles on the operational performance of surface filters in gas cleaning applications. J. Aerosol Sci. 2020, 142, 105523. [Google Scholar] [CrossRef]
- Schmidt, K. Dreidimensionale Modellierung von Filtermedien und Simulation der Partikelabscheidung auf der Mikroskala. Ph.D. Thesis, University of Kaiserslautern, Kaiserslautern, Germany, 2011. [Google Scholar]
- Kerner, M.; Schmidt, K.; Schumacher, S.; Asbach, C.; Antonyuk, S. Electret Filters—From the Influence of Discharging Methods to Optimization Potential. Atmosphere 2021, 12, 65. [Google Scholar] [CrossRef]
- Ueda, M.; Fukasawa, T.; Ishigami, T.; Fukui, K. Effect of Surface Wettability on Droplet Coalescence and Pressure Drop in a Fibrous Filter: Direct Numerical Simulation Coordinated with X-ray Computed Tomography Images. Ind. Eng. Chem. Res. 2021, 60, 4168–4179. [Google Scholar] [CrossRef]
- Straube, C.; Meyer, J.; Dittler, A. Identification of Deposited Oil Structures on Thin Porous Oil Mist Filter Media Applying µ-CT Imaging Technique. Separations 2021, 8, 193. [Google Scholar] [CrossRef]
- Straube, C.; Meyer, J.; Dittler, A. Investigation of the local oil distribution on oleophilic mist filters applying X-ray micro-computed tomography. Sep. Purif. Technol. 2023, 311, 123279. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Bonaccurso, E. Comparison of spontaneous wetting and drop impact dynamics of aqueous surfactant solutions on hydrophobic polypropylene surfaces: Scaling of the contact radius. Colloid Polym. Sci. 2014, 293, 257–265. [Google Scholar] [CrossRef]
- Tabti, B.; Dascalescu, L.; Plopeanu, M.; Antoniu, A.; Mekideche, M. Factors that influence the corona charging of fibrous dielectric materials. J. Electrost. 2009, 67, 193–197. [Google Scholar] [CrossRef]
- Kerner, M. Abscheidung Submikroner Aerosolpartikeln in Elektrostatisch Ausgerüsteten Vliesstoffen—Experimentelle und Numerische Untersuchungen; Dissertation, Schriftreihe des Lehrstuhls für Mechanische Verfahrenstechnik der TU Kaiserslautern; Technische Universität Kaiserslautern: Kaiserslautern, Germany, 2022; Volume 27, ISBN 978-3-95974-172-9. [Google Scholar]
- Plopeanu, M.C.; Dascalescu, L.; Yahiaoui, B.; Antoniu, A.; Hulea, M.; Notingher, P.V. Repartition of Electric Potential at the Surface of Nonwoven Fabrics for Air Filtration. IEEE Trans. Indutry Appl. 2012, 48, 851–856. [Google Scholar] [CrossRef]
- Puderbach, V.; Schmidt, K.; Antonyuk, S. A Coupled CFD-DEM Model for Resolved Simulation of Filter Cake Formation During Solid-Liquid Separation. Processes 2021, 9, 826. [Google Scholar] [CrossRef]
- Tang, M.; Thompson, D.; Chang, D.-Q.; Chen, S.-C.; Pui, D.Y.H. Filtration efficiency and loading characteristics of PM2.5 through commercial electret filter media. Sep. Purif. Technol. 2018, 195, 101–109. [Google Scholar] [CrossRef]
- Nifuku, M.; Zhou, Y.; Kisiel, A.; Kobayashi, T.; Katoh, H. Charging characteristics for electret filter materials. J. Electrost. 2001, 51–52, 200–205. [Google Scholar] [CrossRef]
- Chorin, A.J. A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 1967, 2, 12–26. [Google Scholar] [CrossRef]
- Stratton, J.A. A Classic Reissue—Electromagnetic Theory; IEEE Press: Piscataway, NJ, USA; McGraw-Hill: New York, NY, USA, 1941; ISBN 13 978-0-470-13153-4. [Google Scholar]
- Metaxas, A.C.; Meredith, R.J. Industrial Microwave Heating; IEE Power Engineering Series; Peter Peregrinus: London, UK, 1983; Volume 4, ISBN 0-906048-89-3. [Google Scholar]
- Wiedensohler, A. An approximation of the bipolar charge distribution for particles in the submicron size range. J. Aerosol Sci. 1988, 19, 387–389. [Google Scholar] [CrossRef]
- Von Hippel, A. Dielectric Materials and Applications, 2nd ed.; Technology Press: Boston, MA, USA, 1954; Artech House: Boston, MA, USA, 1995; ISBN 0-89006-805-4. [Google Scholar]
Properties | A | B | C |
---|---|---|---|
Basis weight [g/m2] | 260.86 ± 8.49 | 161.64 ± 1.76 | 286.58 ± 6.61 |
Thickness [mm] | 2.48 ± 0.05 | 1.39 ± 0.03 | 3.70 ± 0.29 |
Porosity [/] | 0.876 ± 0.012 | 0.882 ± 0.003 | 0.921 ± 0.004 |
Air permeability [L/(s∙m2)] | 292.32 ± 4.97 | 194.21 ± 3.64 | 387.74 ± 6.90 |
Fiber diameter—inner layer [µm] | 6.02 ± 0.91 | 19.22 ± 2.53 | 15.82 ± 1.85 |
Fiber diameter—middle layer [µm] | 62.31 ± 4.72 | 19.67 ± 3.01 | 2.26 ± 1.14 |
Fiber diameter—outer layer [µm] | 15.16 ± 1.40 | 2.90 ± 1.07 | 3.06 ± 1.06 |
Inner Layer | Middle Layer | Outer Layer | ||||
---|---|---|---|---|---|---|
Mass [g] | [%] | Mass [g] | [%] | Mass [g] | [%] | |
Dry | 0.5176 | 0.3901 | 0.1945 | |||
H-I | 0.6195 | 16.45% | 0.4880 | 20.06% | 0.2475 | 21.41% |
H-II | 0.8480 | 38.96% | 0.5915 | 34.05% | 0.3291 | 40.89% |
H-III | 1.2051 | 57.05% | 0.9317 | 58.13% | 0.4325 | 55.03% |
Surface Potential [V] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 |
Mean | 372 | −134 | 240 | −198 | 228 | 324 | −128 | −238 | 136 | −316 |
SD | 65 | 40 | 62 | 58 | 59 | 54 | 48 | 48 | 23 | 38 |
Surface Potential [V] | ||||||
---|---|---|---|---|---|---|
Inner Layer | Middle Layer | Outer Layer | ||||
Mean | SD | Mean | SD | Mean | SD | |
S1_Dry | 372 | 65 | 138 | 19 | 56 | 17 |
S1_H-I | 202 | 69 | 61 | 10 | 17 | 3 |
S1_H-II | 98 | 26 | 32 | 8 | 11 | 2 |
S1_H-III | 18 | 2 | 9 | 2 | 4 | 1 |
Inner Layer | Middle Layer | Outer Layer | ||||
---|---|---|---|---|---|---|
DSP [%] | [%] | DSP [%] | [%] | DSP [%] | [%] | |
S1_H-I | 45.69 | 16.45 | 55.79 | 20.06 | 60.71 | 21.41 |
S1_H-II | 73.66 | 38.96 | 76.81 | 34.05 | 80.36 | 40.89 |
S1_H-III | 95.16 | 57.05 | 93.48 | 58.13 | 92.86 | 55.03 |
Surface Potential [V] | ||||||
---|---|---|---|---|---|---|
Inner Layer | Middle Layer | Outer Layer | ||||
Mean | SD | Mean | SD | Mean | SD | |
New | 312 | 62 | 154 | 33 | 32 | 8 |
Wet | 2 | 0.5 | 2 | 0.7 | 1 | 0.5 |
Drying 72 h | 304 | 50 | 130 | 32 | 32 | 10 |
Parameters | Model 1 | Model | Model 3 |
---|---|---|---|
Size [Voxel] | 200 × 200 × 200 | 200 × 200 × 200 | 200 × 200 × 200 |
Voxel-size [µm] | 0.5 | 1 | 2 |
Porosity [/] | 0.921 | 0.876 | 0.882 |
Fiber diameter [µm] | 2–5 | 5–10 | 10–20 |
Surface charge density [µC/m2] | 10, 25, 50 | 10, 25, 50 | 10, 25, 50 |
[%] | Pore Filling [%] | |||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | |
WCP I | 8.88 | 8.05 | 7.10 | 0.77 | 0.73 | 1.05 |
WCP II | 30.97 | 27.76 | 22.64 | 3.53 | 3.18 | 4.0 |
WCP III | 55.98 | 56.39 | 42.36 | 10.0 | 10.71 | 10.05 |
Simulation Parameters | Value |
---|---|
Temperature [K] | 293.15 |
Pressure [mbar] | 1013 |
Gas viscosity [Pa·s] | 18.1 × 10−6 |
Gas density [kg/m3] | 1.2 |
Particle density [kg/m3] | 2160 |
Relative permittivity particles [F/m] | 5.9 |
Relative permittivity fibers [F/m] | 2.3 |
Air velocity [m/s] | 0.01 |
Surface charge density [µC/m2] | 10, 25, 50 |
Model | Filtration Efficiency [%] | |||
---|---|---|---|---|
SCD [µC/m2] | 10 | 25 | 50 | |
1 | Charged | 81.52 | 90.03 | 94.82 |
Uncharged | 52.33 | 52.33 | 52.33 | |
WCP I | 76.33 | 87.18 | 92.46 | |
WCP II | 72.25 | 84.64 | 90.96 | |
WCP III | 64.22 | 78.90 | 87.03 | |
2 | Charged | 87.12 | 94.02 | 97.57 |
Uncharged | 54.59 | 54.59 | 54.59 | |
WCP I | 75.98 | 88.21 | 93.20 | |
WCP II | 73.34 | 86.90 | 92.38 | |
WCP III | 64.90 | 75.23 | 82.00 | |
3 | Charged | 69.96 | 81.79 | 88.96 |
Uncharged | 33.65 | 33.65 | 33.65 | |
WCP I | 58.41 | 69.26 | 76.75 | |
WCP II | 56.97 | 67.74 | 75.39 | |
WCP III | 54.72 | 65.28 | 72.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoll, D.; Antonyuk, S. Influence of Humidity on the Electric Field, Filtration Efficiency, and Flow Velocity in Electret Filter Media: Direct Numerical Simulation. Atmosphere 2025, 16, 815. https://doi.org/10.3390/atmos16070815
Stoll D, Antonyuk S. Influence of Humidity on the Electric Field, Filtration Efficiency, and Flow Velocity in Electret Filter Media: Direct Numerical Simulation. Atmosphere. 2025; 16(7):815. https://doi.org/10.3390/atmos16070815
Chicago/Turabian StyleStoll, Daniel, and Sergiy Antonyuk. 2025. "Influence of Humidity on the Electric Field, Filtration Efficiency, and Flow Velocity in Electret Filter Media: Direct Numerical Simulation" Atmosphere 16, no. 7: 815. https://doi.org/10.3390/atmos16070815
APA StyleStoll, D., & Antonyuk, S. (2025). Influence of Humidity on the Electric Field, Filtration Efficiency, and Flow Velocity in Electret Filter Media: Direct Numerical Simulation. Atmosphere, 16(7), 815. https://doi.org/10.3390/atmos16070815