Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (855)

Search Parameters:
Keywords = water delineation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9692 KiB  
Article
Integrating GIS, Remote Sensing, and Machine Learning to Optimize Sustainable Groundwater Recharge in Arid Mediterranean Landscapes: A Case Study from the Middle Draa Valley, Morocco
by Adil Moumane, Abdessamad Elmotawakkil, Md. Mahmudul Hasan, Nikola Kranjčić, Mouhcine Batchi, Jamal Al Karkouri, Bojan Đurin, Ehab Gomaa, Khaled A. El-Nagdy and Youssef M. Youssef
Water 2025, 17(15), 2336; https://doi.org/10.3390/w17152336 - 6 Aug 2025
Abstract
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies [...] Read more.
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies and compares six machine learning (ML) algorithms—decision trees (CART), ensemble methods (random forest, LightGBM, XGBoost), distance-based learning (k-nearest neighbors), and support vector machines—integrating GIS, satellite data, and field observations to delineate zones suitable for groundwater recharge. The results indicate that ensemble tree-based methods yielded the highest predictive accuracy, with LightGBM outperforming the others by achieving an overall accuracy of 0.90. Random forest and XGBoost also demonstrated strong performance, effectively identifying priority areas for artificial recharge, particularly near ephemeral streams. A feature importance analysis revealed that soil permeability, elevation, and stream proximity were the most influential variables in recharge zone delineation. The generated maps provide valuable support for irrigation planning, aquifer conservation, and floodwater management. Overall, the proposed machine learning–geospatial framework offers a robust and transferable approach for mapping groundwater recharge zones (GWRZ) in arid and semi-arid regions, contributing to the achievement of Sustainable Development Goals (SDGs))—notably SDG 6 (Clean Water and Sanitation), by enhancing water-use efficiency and groundwater recharge (Target 6.4), and SDG 13 (Climate Action), by supporting climate-resilient aquifer management. Full article
Show Figures

Figure 1

21 pages, 26631 KiB  
Technical Note
Induced Polarization Imaging: A Geophysical Tool for the Identification of Unmarked Graves
by Matthias Steiner and Adrián Flores Orozco
Remote Sens. 2025, 17(15), 2687; https://doi.org/10.3390/rs17152687 - 3 Aug 2025
Viewed by 183
Abstract
The identification of unmarked graves is important in archaeology, forensics, and cemetery management, but invasive methods are often restricted due to ethical or cultural concerns. This necessitates the use of non-invasive geophysical techniques. Our study demonstrates the potential of induced polarization (IP) imaging [...] Read more.
The identification of unmarked graves is important in archaeology, forensics, and cemetery management, but invasive methods are often restricted due to ethical or cultural concerns. This necessitates the use of non-invasive geophysical techniques. Our study demonstrates the potential of induced polarization (IP) imaging as a non-invasive remote sensing technique specifically suited for detecting and characterizing unmarked graves. IP leverages changes in the electrical properties of soil and pore water, influenced by the accumulation of organic matter from decomposition processes. Measurements were conducted at an inactive cemetery using non-invasive textile electrodes to map a documented grave from the early 1990s, with a survey design optimized for high spatial resolution. The results reveal a distinct polarizable anomaly at a 0.75–1.0 m depth with phase shifts exceeding 12 mrad, attributed to organic carbon from wooden burial boxes, and a plume-shaped conductive anomaly indicating the migration of dissolved organic matter. While electrical conductivity alone yielded diffuse grave boundaries, the polarization response sharply delineated the grave, aligning with photographic documentation. These findings underscore the value of IP imaging as a non-invasive, data-driven approach for the accurate localization and characterization of graves. The methodology presented here offers a promising new tool for archaeological prospection and forensic search operations, expanding the geophysical toolkit available for remote sensing in culturally and legally sensitive contexts. Full article
Show Figures

Figure 1

19 pages, 6898 KiB  
Article
Integrated Application of Radon Measurement and Conventional Electrical Prospecting in Geothermal Exploration: A Case Study of Lantian Section, Ningdu, Jiangxi Province
by Yingying Zhang, Gongxin Chen, Hailong Ye and Ximin Bai
Geosciences 2025, 15(8), 286; https://doi.org/10.3390/geosciences15080286 - 31 Jul 2025
Viewed by 207
Abstract
As a pivotal clean energy source with considerable reserves, geothermal water plays an indispensable role in diminishing reliance on fossil fuels and accomplishing carbon neutrality. This study employed conventional electrical prospecting and radon gas surveys in the Lantian area of Ningdu, aimed at [...] Read more.
As a pivotal clean energy source with considerable reserves, geothermal water plays an indispensable role in diminishing reliance on fossil fuels and accomplishing carbon neutrality. This study employed conventional electrical prospecting and radon gas surveys in the Lantian area of Ningdu, aimed at curtailing geothermal development costs by precise targeting of resource locations. The investigations successfully delineated fracture structures within the Lantian region. Distinct anomalies were identified in the electrical profiling along Survey Lines 1, 2, and 4, with the most pronounced features observed on Line 4. Accordingly, characteristic peak anomalies were exhibited by the radon gas measurement profiles S1, S2, and S4 corresponding to Lines 1, 2, and 4, respectively. The synergistic interpretation of resistivity and radon survey data recognized two primary fracture zones: the NE-trending zone F1 and the NEE-trending zone F2. This integrated approach not only ascertained the efficacy of the radon gas measurement, but also lays a robust basis for future geothermal water exploration targeting. Full article
Show Figures

Figure 1

19 pages, 4467 KiB  
Article
Delineation of Dynamic Coastal Boundaries in South Africa from Hyper-Temporal Sentinel-2 Imagery
by Mariel Bessinger, Melanie Lück-Vogel, Andrew Luke Skowno and Ferozah Conrad
Remote Sens. 2025, 17(15), 2633; https://doi.org/10.3390/rs17152633 - 29 Jul 2025
Viewed by 160
Abstract
The mapping and monitoring of coastal regions are critical to ensure their sustainable use and viability in the long term. Delineation of coastlines is becoming increasingly important in the light of climate change and rising sea levels. However, many coastlines are highly dynamic; [...] Read more.
The mapping and monitoring of coastal regions are critical to ensure their sustainable use and viability in the long term. Delineation of coastlines is becoming increasingly important in the light of climate change and rising sea levels. However, many coastlines are highly dynamic; therefore, mono-temporal assessments of coastal ecosystems and coastlines are mere snapshots of limited practical value for space-based planning. Understanding of the spatio-temporal dynamics of coastal ecosystem boundaries is important to inform ecosystem management but also for a meaningful delineation of the high-water mark, which is used as a benchmark for coastal spatial planning in South Africa. This research aimed to use hyper-temporal Sentinel-2 imagery to extract ecological zones on the coast of KwaZulu-Natal, South Africa. A total of 613 images, collected between 2019 and 2023, were classified into four distinct coastal ecological zones—vegetation, bare, surf, and water—using a Random Forest model. Across all classifications, the percentage of each of the four classes’ occurrence per pixel over time was determined. This enabled the identification of ecosystem locations, spatially static ecosystem boundaries, and the occurrence of ecosystem boundaries with a more dynamic location over time, such as the non-permanent vegetation zone of the foredune area as well as the intertidal zone. The overall accuracy of the model was 98.13%, while the Kappa coefficient was 0.975, with user’s and producer’s accuracies ranging between 93.02% and 100%. These results indicate that cloud-based analysis of Sentinel-2 time series holds potential not just for delineating coastal ecosystem boundaries, but also for enhancing the understanding of spatio-temporal dynamics between them, to inform meaningful environmental management, spatial planning, and climate adaptation strategies. Full article
Show Figures

Figure 1

36 pages, 9354 KiB  
Article
Effects of Clouds and Shadows on the Use of Independent Component Analysis for Feature Extraction
by Marcos A. Bosques-Perez, Naphtali Rishe, Thony Yan, Liangdong Deng and Malek Adjouadi
Remote Sens. 2025, 17(15), 2632; https://doi.org/10.3390/rs17152632 - 29 Jul 2025
Viewed by 157
Abstract
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such [...] Read more.
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such as from Landsat-8. In this study, rather than simply masking visual obstructions, we aimed to investigate the role and influence of clouds within the spectral data itself. To achieve this, we employed Independent Component Analysis (ICA), a statistical method capable of decomposing mixed signals into independent source components. By applying ICA to selected Landsat-8 bands and analyzing each component individually, we assessed the extent to which cloud signatures are entangled with surface data. This process revealed that clouds contribute to multiple ICA components simultaneously, indicating their broad spectral influence. With this influence on multiple wavebands, we managed to configure a set of components that could perfectly delineate the extent and location of clouds. Moreover, because Landsat-8 lacks cloud-penetrating wavebands, such as those in the microwave range (e.g., SAR), the surface information beneath dense cloud cover is not captured at all, making it physically impossible for ICA to recover what is not sensed in the first place. Despite these limitations, ICA proved effective in isolating and delineating cloud structures, allowing us to selectively suppress them in reconstructed images. Additionally, the technique successfully highlighted features such as water bodies, vegetation, and color-based land cover differences. These findings suggest that while ICA is a powerful tool for signal separation and cloud-related artifact suppression, its performance is ultimately constrained by the spectral and spatial properties of the input data. Future improvements could be realized by integrating data from complementary sensors—especially those operating in cloud-penetrating wavelengths—or by using higher spectral resolution imagery with narrower bands. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

26 pages, 13192 KiB  
Article
Investigating a Large-Scale Creeping Landmass Using Remote Sensing and Geophysical Techniques—The Case of Stropones, Evia, Greece
by John D. Alexopoulos, Ioannis-Konstantinos Giannopoulos, Vasileios Gkosios, Spyridon Dilalos, Nicholas Voulgaris and Serafeim E. Poulos
Geosciences 2025, 15(8), 282; https://doi.org/10.3390/geosciences15080282 - 25 Jul 2025
Viewed by 315
Abstract
The present paper deals with an inhabited, creeping mountainous landmass with profound surface deformation that affects the local community. The scope of the paper is to gather surficial and subsurface information in order to understand the parameters of this creeping mass, which is [...] Read more.
The present paper deals with an inhabited, creeping mountainous landmass with profound surface deformation that affects the local community. The scope of the paper is to gather surficial and subsurface information in order to understand the parameters of this creeping mass, which is usually affected by several parameters, such as its geometry, subsurface water, and shear zone. Therefore, a combined aerial and surface investigation has been conducted. The aerial investigation involves UAV’s LiDAR acquisition for the terrain model and a comparison of historical aerial photographs for land use changes. The multi-technique surface investigation included resistivity (ERT) and seismic (SRT, MASW) measurements and density determination of geological formations. This combination of methods proved to be fruitful since several aspects of the landslide were clarified, such as water flow paths, the internal geological structure of the creeping mass, and its geometrical extent. The depth of the shear zone of the creeping mass is delineated at the first five to ten meters from the surface, especially from the difference in diachronic resistivity change. Full article
Show Figures

Figure 1

32 pages, 6622 KiB  
Article
Health Monitoring of Abies nebrodensis Combining UAV Remote Sensing Data, Climatological and Weather Observations, and Phytosanitary Inspections
by Lorenzo Arcidiaco, Manuela Corongiu, Gianni Della Rocca, Sara Barberini, Giovanni Emiliani, Rosario Schicchi, Peppuccio Bonomo, David Pellegrini and Roberto Danti
Forests 2025, 16(7), 1200; https://doi.org/10.3390/f16071200 - 21 Jul 2025
Viewed by 308
Abstract
Abies nebrodensis L. is a critically endangered conifer endemic to Sicily (Italy). Its residual population is confined to the Madonie mountain range under challenging climatological conditions. Despite the good adaptation shown by the relict population to the environmental conditions occurring in its habitat, [...] Read more.
Abies nebrodensis L. is a critically endangered conifer endemic to Sicily (Italy). Its residual population is confined to the Madonie mountain range under challenging climatological conditions. Despite the good adaptation shown by the relict population to the environmental conditions occurring in its habitat, Abies nebrodensis is subject to a series of threats, including climate change. Effective conservation strategies require reliable and versatile methods for monitoring its health status. Combining high-resolution remote sensing data with reanalysis of climatological datasets, this study aimed to identify correlations between vegetation indices (NDVI, GreenDVI, and EVI) and key climatological variables (temperature and precipitation) using advanced machine learning techniques. High-resolution RGB (Red, Green, Blue) and IrRG (infrared, Red, Green) maps were used to delineate tree crowns and extract statistics related to the selected vegetation indices. The results of phytosanitary inspections and multispectral analyses showed that the microclimatic conditions at the site level influence both the impact of crown disorders and tree physiology in terms of water content and photosynthetic activity. Hence, the correlation between the phytosanitary inspection results and vegetation indices suggests that multispectral techniques with drones can provide reliable indications of the health status of Abies nebrodensis trees. The findings of this study provide significant insights into the influence of environmental stress on Abies nebrodensis and offer a basis for developing new monitoring procedures that could assist in managing conservation measures. Full article
Show Figures

Figure 1

26 pages, 2178 KiB  
Article
Optimizing Agri-PV System: Systematic Methodology to Assess Key Design Parameters
by Kedar Mehta and Wilfried Zörner
Energies 2025, 18(14), 3877; https://doi.org/10.3390/en18143877 - 21 Jul 2025
Viewed by 414
Abstract
Agrivoltaic (Agri-PV) systems face the critical challenge of balancing photovoltaic energy generation with crop productivity, yet systematic approaches to quantifying the trade-offs between these objectives remain scarce. In this study, we identify nine essential design indicators: panel tilt angle, elevation, photovoltaic coverage ratio, [...] Read more.
Agrivoltaic (Agri-PV) systems face the critical challenge of balancing photovoltaic energy generation with crop productivity, yet systematic approaches to quantifying the trade-offs between these objectives remain scarce. In this study, we identify nine essential design indicators: panel tilt angle, elevation, photovoltaic coverage ratio, shading factor, land equivalent ratio, photosynthetically active radiation (PAR) utilization, crop yield stability index, water use efficiency, and return on investment. We introduce a novel dual matrix Analytic Hierarchy Process (AHP) to evaluate their relative significance. An international panel of eighteen Agri-PV experts, encompassing academia, industry, and policy, provided pairwise comparisons of these indicators under two objectives: maximizing annual energy yield and sustaining crop output. The high consistency observed in expert responses allowed for the derivation of normalized weight vectors, which form the basis of two Weighted Influence Matrices. Analysis of Total Weighted Influence scores from these matrices reveal distinct priority sets: panel tilt, coverage ratio, and elevation are most influential for energy optimization, while PAR utilization, yield stability, and elevation are prioritized for crop productivity. This methodology translates qualitative expert knowledge into quantitative, actionable guidance, clearly delineating both synergies, such as the mutual benefit of increased elevation for energy and crop outcomes, and trade-offs, exemplified by the negative impact of high photovoltaic coverage on crop yield despite gains in energy output. By offering a transparent, expert-driven decision-support tool, this framework enables practitioners to customize Agri-PV system configurations according to local climatic, agronomic, and economic contexts. Ultimately, this approach advances the optimization of the food energy nexus and supports integrated sustainability outcomes in Agri-PV deployment. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

32 pages, 6735 KiB  
Article
Flood Hazard Assessment Through AHP, Fuzzy AHP, and Frequency Ratio Methods: A Comparative Analysis
by Nikoleta Taoukidou, Dimitrios Karpouzos and Pantazis Georgiou
Water 2025, 17(14), 2155; https://doi.org/10.3390/w17142155 - 19 Jul 2025
Viewed by 375
Abstract
Floods are the biggest hydrometeorological disaster, affecting millions annually. Thus, flood hazard assessment is crucial and plays a pivotal role in rational water management. This study was undertaken to evaluate flood hazards through the application of MCDM methods and a bivariate statistical model [...] Read more.
Floods are the biggest hydrometeorological disaster, affecting millions annually. Thus, flood hazard assessment is crucial and plays a pivotal role in rational water management. This study was undertaken to evaluate flood hazards through the application of MCDM methods and a bivariate statistical model integrated with GIS. The methodologies applied were AHP, fuzzy AHP, and the frequency ratio. Eight flood-related criteria were considered—elevation, flow accumulation, geology, slope, land use/land cover (LULC), distance from the drainage network, drainage density, and rainfall index—for the construction of a Flood Hazard Map for each methodology, with the aim to delineate the regions within the study area most prone to flooding. The results demonstrated that around 34% of the Chalkidiki regional unit presents a high and very high hazard to the occurrence of floods. The comparison of the maps generated using DSC demonstrated that all models are capable of delineating high and very high hazard areas with overlap values varying from 0.8 to 0.98. The validation results indicated that the models exhibit sufficient performance in flood hazard mapping with AUC-ROC scores of 66.6%, 65.7%, and 76.5% for the AHP, FAHP, and FR models, respectively. Full article
(This article belongs to the Special Issue Machine Learning Models for Flood Hazard Assessment)
Show Figures

Figure 1

25 pages, 16639 KiB  
Article
Hydraulic Modeling of Newtonian and Non-Newtonian Debris Flows in Alluvial Fans: A Case Study in the Peruvian Andes
by David Chacon Lima, Alan Huarca Pulcha, Milagros Torrejon Llamoca, Guillermo Yorel Noriega Aquise and Alain Jorge Espinoza Vigil
Water 2025, 17(14), 2150; https://doi.org/10.3390/w17142150 - 19 Jul 2025
Viewed by 604
Abstract
Non-Newtonian debris flows represent a critical challenge for hydraulic infrastructure in mountainous regions, often causing significant damage and service disruption. However, current models typically simplify these flows as Newtonian, leading to inaccurate design assumptions. This study addresses this gap by comparing the hydraulic [...] Read more.
Non-Newtonian debris flows represent a critical challenge for hydraulic infrastructure in mountainous regions, often causing significant damage and service disruption. However, current models typically simplify these flows as Newtonian, leading to inaccurate design assumptions. This study addresses this gap by comparing the hydraulic behavior of Newtonian and non-Newtonian flows in an alluvial fan, using the Amoray Gully in Apurímac, Peru, as a case study. This gully intersects the Interoceánica Sur national highway via a low-water crossing (baden), making it a relevant site for evaluating debris flow impacts on critical road infrastructure. The methodology integrates hydrological analysis, rheological characterization, and hydraulic modeling. QGIS 3.16 was used for watershed delineation and extraction of physiographic parameters, while a high-resolution topographic survey was conducted using an RTK drone. Rainfall-runoff modeling was performed in HEC-HMS 4.7 using 25 years of precipitation data, and hydraulic simulations were executed in HEC-RAS 6.6, incorporating rheological parameters and calibrated with the footprint of a historical event (5-year return period). Results show that traditional Newtonian models underestimate flow depth by 17% and overestimate velocity by 54%, primarily due to unaccounted particle-collision effects. Based on these findings, a multi-barrel circular culvert was designed to improve debris flow management. This study provides a replicable modeling framework for debris-prone watersheds and contributes to improving design standards in complex terrain. The proposed methodology and findings offer practical guidance for hydraulic design in mountainous terrain affected by debris flows, especially where infrastructure intersects active alluvial fans. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

18 pages, 14333 KiB  
Article
Unveiling the Intrinsic Linkages Between “Water–Carbon–Ecology” Footprints in the Yangtze River Economic Belt and the Yellow River Basin
by Daiwei Zhang, Ming Jing, Weiwei Chen, Buhui Chang, Ting Li, Shuai Zhang, En Liu, Ziming Li and Chang Liu
Sustainability 2025, 17(14), 6419; https://doi.org/10.3390/su17146419 - 14 Jul 2025
Viewed by 238
Abstract
Unveiling the relationship between the “Water–Carbon–Ecology” (W-C-E) footprints embodied in regional trade and resource flows is crucial for enhancing the synergistic benefits between economic development and environmental protection. This study constructs an association framework based on the Multi-Regional Input–Output (MRIO) model to systematically [...] Read more.
Unveiling the relationship between the “Water–Carbon–Ecology” (W-C-E) footprints embodied in regional trade and resource flows is crucial for enhancing the synergistic benefits between economic development and environmental protection. This study constructs an association framework based on the Multi-Regional Input–Output (MRIO) model to systematically evaluate the “W-C-E” footprints and resource flow characteristics of the Yangtze River Economic Belt and the Yellow River Basin. By integrating import and export trade data, this study reveals the patterns of resource flows within and outside these regions. This research delineates the connection patterns between the “W-C-E” footprints and resource flows across three dimensions: spatial, sectoral, and environmental–economic factors. The results indicate that the Yangtze River Economic Belt has gained significant economic benefits from regional trade but also bears substantial environmental costs. Import and export trade further exacerbate the imbalance in regional resource flows, with the Yangtze River Economic Belt exporting many embodied resources through high-energy-consuming products, while the Yellow River Basin increases resource input by importing products such as food and tobacco. Sectoral analysis reveals that agriculture, electricity and water supply, and mining are the sectors with the highest net output of “W-C-E” footprints in both regions, whereas services, food and tobacco, and construction are the sectors with the highest net input. The comprehensive framework of this study can be extended to the analysis of resource–environment–economic systems in other regions, providing methodological support for depicting complex human–land system linkage patterns. Full article
Show Figures

Figure 1

27 pages, 50073 KiB  
Article
A Spatiotemporal Analysis of Drought Conditions Framework in Vast Paddy Cultivation Areas of Thung Kula Ronghai, Thailand
by Pariwate Varnakovida, Nathapat Punturasan, Usa Humphries, Anisara Tibkaew and Sornkitja Boonprong
Agriculture 2025, 15(14), 1503; https://doi.org/10.3390/agriculture15141503 - 12 Jul 2025
Viewed by 392
Abstract
This study presents an integrated spatiotemporal assessment of drought conditions in the Thung Kula Ronghai region of Northeastern Thailand from 2001 to 2023. Multiple satellite-derived drought indices, including SPI, SPEI, RDI, and AI, together with NDVI anomalies, were used to detect seasonal and [...] Read more.
This study presents an integrated spatiotemporal assessment of drought conditions in the Thung Kula Ronghai region of Northeastern Thailand from 2001 to 2023. Multiple satellite-derived drought indices, including SPI, SPEI, RDI, and AI, together with NDVI anomalies, were used to detect seasonal and long-term drought dynamics affecting rainfed Hom Mali rice production. The results show that dry season droughts now affect up to 17 percent of the region’s agricultural land in some years, while severe drought zones persist across more than 2.5 million hectares over the 20-year period. In the most recent 5 years, approximately 50 percent of cultivated areas experienced moderate to severe drought conditions. The RDI showed the strongest correlation with NDVI anomalies (r = 0.22), indicating its relative value for assessing vegetation response to moisture deficits. The combined index approach delineated high-risk sub-regions, particularly in central Thung Kula Ronghai and lower Surin, where drought frequency and severity have intensified. These findings underscore the region’s increasing exposure to dry-season water stress and highlight the need for site-specific irrigation development and adaptive cropping strategies. The methodological framework demonstrated here provides a practical basis for improving drought monitoring and early warning systems to support the resilience of Thailand’s high-value rice production under changing climate conditions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

22 pages, 4476 KiB  
Article
A Method for Identifying Key Areas of Ecological Restoration, Zoning Ecological Conservation, and Restoration
by Shuaiqi Chen, Zhengzhou Ji and Longhui Lu
Land 2025, 14(7), 1439; https://doi.org/10.3390/land14071439 - 10 Jul 2025
Viewed by 317
Abstract
Ecological security patterns (ESPs) are fundamental to safeguarding regional ecological integrity and enhancing human well-being. Consequently, research on conservation and restoration in critical regions is vital for ensuring ecological security and optimizing territorial ecological spatial configurations. Focusing on the Henan section of the [...] Read more.
Ecological security patterns (ESPs) are fundamental to safeguarding regional ecological integrity and enhancing human well-being. Consequently, research on conservation and restoration in critical regions is vital for ensuring ecological security and optimizing territorial ecological spatial configurations. Focusing on the Henan section of the Yellow River Basin, this study established the regional ESP and conservation–restoration framework through an integrated approach: (1) assessing four key ecosystem services—soil conservation, water retention, carbon sequestration, and habitat quality; (2) identifying ecological sources based on ecosystem service importance classification; (3) calculating a comprehensive resistance surface using the entropy weight method, incorporating key factors (land cover type, NDVI, topographic relief, and slope); (4) delineating ecological corridors and nodes using Linkage Mapper and the minimum cumulative resistance (MCR) theory; and (5) integrating ecological functional zoning to synthesize the final spatial conservation and restoration strategy. Key findings reveal: (1) 20 ecological sources, totaling 8947 km2 (20.9% of the study area), and 43 ecological corridors, spanning 778.24 km, were delineated within the basin. Nineteen ecological barriers (predominantly located in farmland, bare land, construction land, and low-coverage grassland) and twenty-one ecological pinch points (primarily clustered in forestland, grassland, water bodies, and wetlands) were identified. Collectively, these elements form the Henan section’s Ecological Security Pattern (ESP), integrating source areas, a corridor network, and key regional nodes for ecological conservation and restoration. (2) Building upon the ESP and the ecological baseline, and informed by ecological functional zoning, we identified a spatial framework for conservation and restoration characterized by “one axis, two cores, and multiple zones”. Tailored conservation and restoration strategies were subsequently proposed. This study provides critical data support for reconciling ecological security and economic development in the Henan Yellow River Basin, offering a scientific foundation and practical guidance for regional territorial spatial ecological restoration planning and implementation. Full article
Show Figures

Figure 1

21 pages, 2238 KiB  
Article
DMLU-Net: A Hybrid Neural Network for Water Body Extraction from Remote Sensing Images
by Ziqiang Xu, Mingfeng Li and Haixiang Guo
Appl. Sci. 2025, 15(14), 7733; https://doi.org/10.3390/app15147733 - 10 Jul 2025
Viewed by 226
Abstract
The delineation of aquatic features from satellite remote sensing data is vital for environmental monitoring and disaster early warning. However, existing water body detection models struggle with cross-scale feature extraction, often failing to resolve blurred boundaries, and they under-detect small water bodies in [...] Read more.
The delineation of aquatic features from satellite remote sensing data is vital for environmental monitoring and disaster early warning. However, existing water body detection models struggle with cross-scale feature extraction, often failing to resolve blurred boundaries, and they under-detect small water bodies in complex landscapes. To tackle these challenges, in this study, we present DMLU-Net, a U-shaped neural network integrated with a dynamic multi-kernel large-scale attention mechanism. The model employs a dynamic multi-kernel large-scale attention module (DMLKA) to enhance cross-scale feature capture; a spectral–spatial attention module (SSAM) in the decoder to boost water region sensitivity; and a dynamic upsampling module (DySample) in the encoder to restore image details. DMLU-Net and six models are tested and compared on two publicly available Chinese remote sensing datasets. The results show that the F1-scores of DMLU-net on the two datasets are 94.50% and 86.86%, and the IoU (Intersection over Union) values are 90.46% and 77.74%, both demonstrating the best performance. Notably, the model significantly reduces water boundary artifacts, and it improves overall prediction accuracy and small water body recognition, thus verifying its generalization ability and practical application potential in real-world scenarios. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

19 pages, 4359 KiB  
Article
Toward Sustainable Landscape and Tourism Planning: A Methodological Framework for the Regeneration of Marginal Rural Areas in Eastern Sicily
by Dario Mirabella, Monica C. M. Parlato, Mariagrazia Leonardi and Simona M. C. Porto
Sustainability 2025, 17(14), 6299; https://doi.org/10.3390/su17146299 - 9 Jul 2025
Viewed by 325
Abstract
Rural landscapes play a key role in preserving ecological processes, cultural identity, and socio-economic well-being, yet these areas often face challenges such as land degradation, water scarcity, and an inadequate road network. A sustainable approach to rural landscape and tourism planning is essential [...] Read more.
Rural landscapes play a key role in preserving ecological processes, cultural identity, and socio-economic well-being, yet these areas often face challenges such as land degradation, water scarcity, and an inadequate road network. A sustainable approach to rural landscape and tourism planning is essential for enhancing both environmental resilience and socio-economic vitality in areas facing degradation and global change. This study aims to develop and validate an integrated methodological workflow that combines Landscape Character Assessment (LCA), ECOVAST guidelines, SWOT analysis, and open-source GIS techniques, complemented by a bottom-up approach of spontaneous fruition mapped through Wikiloc heatmaps. The framework was applied to a case study in Paternò, Eastern Sicily, Italy—a territory distinguished by its key local values such as Calanchi formations, proximity to Mount Etna, and cultural heritage. Through this application, eight distinct Landscape Units (LUs) were delineated, and key strengths, weaknesses, opportunities, and threats for sustainable development were identified. Using open-access data and a survey-free protocol, this approach facilitates detailed landscape assessment without extensive fieldwork. The methodology is readily transferable to other rural Italian and Mediterranean contexts, providing practical guidance for researchers, planners, and stakeholders engaged in sustainable tourism development and landscape management. Full article
Show Figures

Figure 1

Back to TopTop