Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,128)

Search Parameters:
Keywords = water consumption analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 (registering DOI) - 2 Aug 2025
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

28 pages, 2191 KiB  
Article
An Evaluation of Food Security and Grain Production Trends in the Arid Region of Northwest China (2000–2035)
by Yifeng Hao and Yaodong Zhou
Agriculture 2025, 15(15), 1672; https://doi.org/10.3390/agriculture15151672 (registering DOI) - 2 Aug 2025
Abstract
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource [...] Read more.
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource matching assessment with grain production forecasting. Based on data from 2000 to 2020, this research projects the food security status to 2035 using the GM(1,1) model, incorporating a comprehensive index of soil and water resource matching and regression analysis to inform production forecasts. Key assumptions include continued historical trends in population growth, urbanization, and dietary shifts towards an increased animal protein consumption. The findings revealed a consistent upward trend in grain production from 2000 to 2020, with an average annual growth rate of 3.5%. Corn and wheat emerged as the dominant grain crops. Certain provinces demonstrated comparative advantages for specific crops like rice and wheat. The most significant finding is that despite the projected growth in the total grain output by 2035 compared to 2020, the regional grain self-sufficiency rate is projected to range from 79.6% to 84.1%, falling below critical food security benchmarks set by the FAO and China. This projected shortfall carries significant implications, underscoring a serious challenge to regional food security and highlighting the region’s increasing vulnerability to external food supply fluctuations. The findings strongly signal that current trends are insufficient and necessitate urgent and proactive policy interventions. To address this, practical policy recommendations include promoting water-saving technologies, enhancing regional cooperation, and strategically utilizing the international grain trade to ensure regional food security. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

28 pages, 2266 KiB  
Review
Uncovering Plastic Pollution: A Scoping Review of Urban Waterways, Technologies, and Interdisciplinary Approaches
by Peter Cleveland, Donna Cleveland, Ann Morrison, Khoi Hoang Dinh, An Nguyen Pham Hai, Luca Freitas Ribeiro and Khanh Tran Duy
Sustainability 2025, 17(15), 7009; https://doi.org/10.3390/su17157009 (registering DOI) - 1 Aug 2025
Abstract
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, [...] Read more.
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, addressed, and reconceptualized. Drawing from the literature across environmental science, technology, and social studies, we identify four interconnected areas of focus: urban pollution pathways, innovations in monitoring and methods, community-based interventions, and interdisciplinary perspectives. Our analysis combines qualitative synthesis with visual mapping techniques, including keyword co-occurrence networks, to explore how real-time tools, such as IoT sensors, multi-sensor systems, and geospatial technologies, are transforming the ways plastic waste is tracked and analyzed. The review also considers the growing use of novel theoretical frameworks, such as post-phenomenology and ecological materialism, to better understand the role of plastics as both pollutants and ecological agents. Despite progress, the literature reveals persistent gaps in longitudinal studies, regional representation, and policy translation, particularly across the Global South. We emphasize the value of participatory models and community-led research in bridging these gaps and advancing more inclusive and responsive solutions. These insights inform the development of plastic tracker technologies currently being piloted in Vietnam and contribute to broader sustainability goals, including SDG 6 (Clean Water and Sanitation), SDG 12 (Responsible Consumption and Production), and SDG 14 (Life Below Water). Full article
Show Figures

Figure 1

15 pages, 5596 KiB  
Article
Effects of Hypertension Induced by 0.3% Saline Loading on Diabetic Retinopathy in Spontaneously Diabetic Torii Fatty Rats
by Rina Takagi, Yoshiaki Tanaka, Tetsuya Hasegawa, Masami Shinohara, Yasushi Kageyama, Tomohiko Sasase, Takeshi Ohta, Shin-ichi Muramatsu, Nobuhiko Ohno, Akihiro Kakehashi and Toshikatsu Kaburaki
Diabetology 2025, 6(8), 73; https://doi.org/10.3390/diabetology6080073 (registering DOI) - 1 Aug 2025
Abstract
Objective: This study aimed to determine the possibility of creating a new animal model in which diabetic retinopathy (DR) progresses due to hypertension caused by salt loading. Methods: Male Spontaneously Diabetic Torii (SDT) fatty rats were divided into two groups: one group received [...] Read more.
Objective: This study aimed to determine the possibility of creating a new animal model in which diabetic retinopathy (DR) progresses due to hypertension caused by salt loading. Methods: Male Spontaneously Diabetic Torii (SDT) fatty rats were divided into two groups: one group received 0.3% saline water starting at 8 weeks of age for a duration of 16 weeks (salt SDT fatty group), while the control group was provided with tap water (SDT fatty group). In addition, Sprague-Dawley (SD) rats receiving tap water served as normal controls. Retinal function was assessed by electroretinography (ERG) at 8 and 24 weeks of age. At 24 weeks, following perfusion with fluorescein dextran, the eyes were enucleated, and retinal flat mounts were prepared for vascular evaluation. Retinal thickness and the number of retinal folds were assessed histologically, and ultrastructural changes in the retina were examined using transmission electron microscopy. Results: Saline administration did not lead to significant changes in food consumption or body weight among the groups. In the salt SDT fatty group, blood pressure was significantly elevated, while blood glucose levels showed a slight reduction. ERG analysis showed that the amplitude of oscillatory potential (OP)1 waves was suppressed, and the latencies of OP3, OP4, and OP5 waves were prolonged. Although no significant changes were noted in retinal thickness or the number of retinal folds, thickening of the retinal capillary basement membrane was evident in the salt SDT fatty group. Conclusions: Hypertension induced by 0.3% saline promotes DR progression in SDT fatty rats. This model may help clarify the role of hypertension in DR. Full article
Show Figures

Graphical abstract

18 pages, 6506 KiB  
Article
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
by Xiaohui Zhong, Yuxin Li, Daogui Tang, Hamidreza Arasteh and Josep M. Guerrero
Energies 2025, 18(15), 4069; https://doi.org/10.3390/en18154069 (registering DOI) - 31 Jul 2025
Abstract
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port [...] Read more.
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations, using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production, storage, refueling, and consumption technologies, we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP, which achieves 49.67% renewable energy contribution and an annual reduction of 22,000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency, multi-tier hydrogen storage systems, and fuel cell applications for vehicles and power generation. Despite these achievements, challenges such as high production costs, infrastructure scalability, and data integration gaps persist. The study underscores the importance of policy support, technological innovation, and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals. Full article
Show Figures

Figure 1

16 pages, 3079 KiB  
Article
Optimized Solar-Powered Evaporative-Cooled UFAD System for Sustainable Thermal Comfort: A Case Study in Riyadh, KSA
by Mohamad Kanaan, Semaan Amine and Mohamed Hmadi
Thermo 2025, 5(3), 26; https://doi.org/10.3390/thermo5030026 - 30 Jul 2025
Viewed by 146
Abstract
Evaporative cooling (EC) offers an energy-efficient alternative to direct expansion (DX) cooling but suffers from high water consumption. This limitation can be mitigated by pre-cooling incoming fresh air using cooler exhaust air via energy recovery. This study presents and optimizes a solar-driven EC [...] Read more.
Evaporative cooling (EC) offers an energy-efficient alternative to direct expansion (DX) cooling but suffers from high water consumption. This limitation can be mitigated by pre-cooling incoming fresh air using cooler exhaust air via energy recovery. This study presents and optimizes a solar-driven EC system integrated with underfloor air distribution (UFAD) to enhance thermal comfort and minimize water use in a temporary office in Riyadh’s arid climate. A 3D CFD model was developed and validated against published data to simulate indoor airflow, providing data for thermal comfort evaluation using the predicted mean vote model in cases with and without energy recovery. A year-round hourly energy analysis revealed that the solar-driven EC-UFAD system reduces grid power consumption by 93.5% compared to DX-based UFAD under identical conditions. Energy recovery further cuts annual EC water usage by up to 31.3%. Operational costs decreased by 84% without recovery and 87% with recovery versus DX-UFAD. Full article
Show Figures

Figure 1

15 pages, 2018 KiB  
Article
Study on Preparation and Properties of Super Absorbent Gels of Homogenous Cotton Straw-Acrylic Acid-Acrylamide by Graft Copolymerization
by Jun Guo, Jing Shi, Lisheng Xu, Xingtao Zhang, Fangkai Han and Minwei Xu
Gels 2025, 11(8), 583; https://doi.org/10.3390/gels11080583 - 28 Jul 2025
Viewed by 118
Abstract
To rationally utilize and develop agricultural waste products, this research involved the synthesis of degradable high water-absorbing resin through the graft copolymerization of cotton straw (CS) with monomers. Among them, acrylic acid (AA) and acrylamide (Am) are used as grafting copolymer monomers, cellulose [...] Read more.
To rationally utilize and develop agricultural waste products, this research involved the synthesis of degradable high water-absorbing resin through the graft copolymerization of cotton straw (CS) with monomers. Among them, acrylic acid (AA) and acrylamide (Am) are used as grafting copolymer monomers, cellulose in the straw serves as the network framework, and MBA acts as the crosslinking agent. 60Co gamma rays as initiators. Different concentrations of alkaline solution were used to dissolve the cellulose in the straw. Single-factor and orthogonal experiments were conducted to optimize the experimental conditions. various analytical methods such as thermogravimetric analysis (TG), X-ray crystallography (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM) were employed to characterize the structure and properties of the product. 60Co gamma rays as initiators, can reduce the pollution caused by chemical initiators and lower energy consumption. Through this research, agricultural waste can be effectively utilized, reducing environmental pollution, lowering industrial energy consumption, and synthesizing degradable and environmentally friendly high-absorbent resins. The product can be applied to agricultural water retention agent, fertilizer controlled release agent and other aspects. Full article
(This article belongs to the Special Issue Cellulose-Based Hydrogels for Advanced Applications)
Show Figures

Graphical abstract

35 pages, 6389 KiB  
Article
Towards Sustainable Construction: Experimental and Machine Learning-Based Analysis of Wastewater-Integrated Concrete Pavers
by Nosheen Blouch, Syed Noman Hussain Kazmi, Mohamed Metwaly, Nijah Akram, Jianchun Mi and Muhammad Farhan Hanif
Sustainability 2025, 17(15), 6811; https://doi.org/10.3390/su17156811 - 27 Jul 2025
Viewed by 347
Abstract
The escalating global demand for fresh water, driven by urbanization and industrial growth, underscores the need for sustainable water management, particularly in the water-intensive construction sector. Although prior studies have primarily concentrated on treated wastewater, the practical viability of utilizing untreated wastewater has [...] Read more.
The escalating global demand for fresh water, driven by urbanization and industrial growth, underscores the need for sustainable water management, particularly in the water-intensive construction sector. Although prior studies have primarily concentrated on treated wastewater, the practical viability of utilizing untreated wastewater has not been thoroughly investigated—especially in developing nations where treatment expenses frequently impede actual implementation, even for non-structural uses. While prior research has focused on treated wastewater, the potential of untreated or partially treated wastewater from diverse industrial sources remains underexplored. This study investigates the feasibility of incorporating wastewater from textile, sugar mill, service station, sewage, and fertilizer industries into concrete paver block production. The novelty lies in a dual approach, combining experimental analysis with XGBoost-based machine learning (ML) models to predict the impact of key physicochemical parameters—such as Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Hardness—on mechanical properties like compressive strength (CS), water absorption (WA), ultrasonic pulse velocity (UPV), and dynamic modulus of elasticity (DME). The ML models showed high predictive accuracy for CS (R2 = 0.92) and UPV (R2 = 0.97 direct, 0.99 indirect), aligning closely with experimental data. Notably, concrete pavers produced with textile (CP-TXW) and sugar mill wastewater (CP-SUW) attained 28-day compressive strengths of 47.95 MPa and exceeding 48 MPa, respectively, conforming to ASTM C936 standards and demonstrating the potential to substitute fresh water for non-structural applications. These findings demonstrate the viability of using untreated wastewater in concrete production with minimal treatment, offering a cost-effective, sustainable solution that reduces fresh water dependency while supporting environmentally responsible construction practices aligned with SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible Consumption and Production). Additionally, the model serves as a practical screening tool for identifying and prioritizing viable wastewater sources in concrete production, complementing mandatory laboratory testing in industrial applications. Full article
Show Figures

Figure 1

19 pages, 2475 KiB  
Article
Efficient Extraction of 1,2-Dichloroethane from Wastewater Using Hydrophobic Deep Eutectic Solvents: A Green Approach
by Irfan Wazeer, Abdullah Omair, Lahssen El Blidi, Salim Mokraoui, Emad Ali and Mohamed K. Hadj-Kali
Separations 2025, 12(8), 197; https://doi.org/10.3390/separations12080197 - 27 Jul 2025
Viewed by 228
Abstract
This study provides a thorough examination of the utilization of hydrophobic deep eutectic solvents (HDESs) for the extraction of 1,2-dichloroethane (1,2-DCA) from effluent, with an emphasis on a sustainable and environmentally friendly approach. The extraction efficacy of six HDES systems was initially evaluated, [...] Read more.
This study provides a thorough examination of the utilization of hydrophobic deep eutectic solvents (HDESs) for the extraction of 1,2-dichloroethane (1,2-DCA) from effluent, with an emphasis on a sustainable and environmentally friendly approach. The extraction efficacy of six HDES systems was initially evaluated, and the combinations of thymol/camphor (Thy/Cam) and menthol/thymol (Men/Thy) exhibited superior performance. Subsequently, these two HDESs were chosen for a comprehensive parametric analysis. The impact of contact time demonstrated that extraction equilibrium was reached at 15 min for both systems, thereby achieving a balance between high efficiency and time efficiency. Next, the impact of the HDES-to-water mass ratio was investigated. A 1:1 ratio was determined to be the most effective, as it minimized solvent consumption and provided high efficiency. An additional examination of the molar ratios of the HDES components revealed that the 1:1 ratio exhibited the most effective extraction performance. This was due to the fact that imbalances in the solvent mixture resulted in diminished efficiency as a result of disrupted molecular interactions. The extraction efficiency was significantly influenced by the initial concentration of 1,2-DCA, with higher concentrations resulting in superior results as a result of the increased mass transfer driving forces. In general, the Men/Thy and Thy/Cam systems have shown noteworthy stability and efficiency under different conditions, which makes them highly suitable for large-scale applications. Full article
(This article belongs to the Special Issue Green Separation and Purification Technology)
Show Figures

Figure 1

28 pages, 5172 KiB  
Article
Machine Learning-Assisted Sustainable Mix Design of Waste Glass Powder Concrete with Strength–Cost–CO2 Emissions Trade-Offs
by Yuzhuo Zhang, Jiale Peng, Zi Wang, Meng Xi, Jinlong Liu and Lei Xu
Buildings 2025, 15(15), 2640; https://doi.org/10.3390/buildings15152640 - 26 Jul 2025
Viewed by 429
Abstract
Glass powder, a non-degradable waste material, offers significant potential to reduce cement consumption and carbon emissions in concrete production. However, existing mix design methods for glass powder concrete (GPC) fail to systematically balance economic efficiency, environmental sustainability, and mechanical performance. To address this [...] Read more.
Glass powder, a non-degradable waste material, offers significant potential to reduce cement consumption and carbon emissions in concrete production. However, existing mix design methods for glass powder concrete (GPC) fail to systematically balance economic efficiency, environmental sustainability, and mechanical performance. To address this gap, this study proposes an AI-assisted framework integrating machine learning (ML) and Multi-Objective Optimization (MOO) to achieve a sustainable GPC design. A robust database of 1154 experimental records was developed, focusing on five key predictors: cement content, water-to-binder ratio, aggregate composition, glass powder content, and curing age. Seven ML models were optimized via Bayesian tuning, with the Ensemble Tree model achieving superior accuracy (R2 = 0.959 on test data). SHapley Additive exPlanations (SHAP) analysis further elucidated the contribution mechanisms and underlying interactions of material components on GPC compressive strength. Subsequently, a MOO framework minimized unit cost and CO2 emissions while meeting compressive strength targets (15–70 MPa), solved using the NSGA-II algorithm for Pareto solutions and TOPSIS for decision-making. The Pareto-optimal solutions provide actionable guidelines for engineers to align GPC design with circular economy principles and low-carbon policies. This work advances sustainable construction practices by bridging AI-driven innovation with building materials, directly supporting global goals for waste valorization and carbon neutrality. Full article
Show Figures

Figure 1

38 pages, 28889 KiB  
Article
Holding Sustainability Promises in Politics: Trends in Ecosystem and Resource Management in Electoral Party Manifestos
by Gonçalo Rodrigues Brás, Ana Isabel Lillebø and Helena Vieira
Sustainability 2025, 17(15), 6749; https://doi.org/10.3390/su17156749 - 24 Jul 2025
Viewed by 493
Abstract
Achieving Sustainable Development Goals (SDGs) remains a critical global challenge. This study analyses the environmental priorities related to SDGs 12, 14, and 15—interlinked and focused on responsible production and consumption, life below water, and life on land respectively—reflected in political party manifestos from [...] Read more.
Achieving Sustainable Development Goals (SDGs) remains a critical global challenge. This study analyses the environmental priorities related to SDGs 12, 14, and 15—interlinked and focused on responsible production and consumption, life below water, and life on land respectively—reflected in political party manifestos from the 2019, 2022, and 2024 Portuguese general elections, assessing their alignment with the SDGs and broader European political ideologies. A content analysis reveals significant disparities in attention across these goals, with SDG 15 receiving greater prominence than SDGs 12 and 14. Findings highlight the influence of political ideology, showing left-wing parties emphasize all three SDGs more consistently than their right-wing counterparts. These results underscore the need for a more balanced and comprehensive political commitment to sustainability. By exploring the interplay between national and European political agendas, this research provides valuable insights for aligning environmental policies with the UN 2030 Agenda and fostering transformative change in sustainability governance. Full article
(This article belongs to the Special Issue Sustainability in Environmental Policy and Green Economics)
Show Figures

Figure 1

21 pages, 1934 KiB  
Article
Energy Conservation and Carbon Emission Reduction Potentials of Major Household Appliances in China Leveraging the LEAP Model
by Runhao Guo, Aijun Xu and Heng Li
Buildings 2025, 15(15), 2615; https://doi.org/10.3390/buildings15152615 - 23 Jul 2025
Viewed by 256
Abstract
Household appliances constitute the second largest source of residential energy consumption in China, accounting for over 20% of the total and exhibiting a steady growth trend. Despite their substantial impact on energy demand and carbon emissions, a comprehensive analysis of the current status [...] Read more.
Household appliances constitute the second largest source of residential energy consumption in China, accounting for over 20% of the total and exhibiting a steady growth trend. Despite their substantial impact on energy demand and carbon emissions, a comprehensive analysis of the current status and future trends of household appliances in China is still lacking. This study employs the Long-Range Energy Alternatives Planning (LEAP) system to model energy consumption and carbon emissions for five major household appliances (air conditioners, refrigerators, washing machines, TVs, and water heaters) from 2022 to 2052. Three scenarios were analyzed: a Reference (REF) scenario (current trends), an Existing Policy Option (EPO) scenario (current energy-saving measures), and a Further Strengthening (FUR) scenario (enhanced efficiency measures). Key results show that by 2052, the EPO scenario achieves cumulative savings of 1074.8 billion kWh and reduces emissions by 580.7 million metric tons of CO2 equivalent compared to REF. The FUR scenario yields substantially greater benefits, demonstrating the significant potential of strengthened policies. This analysis underscores the critical role of improving appliance energy efficiency and provides vital insights for policymakers and stakeholders aiming to reduce residential sector emissions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 562 KiB  
Article
Transforming Agri-Waste into Health Innovation: A Circular Framework for Sustainable Food Design
by Smita Mortero, Jirarat Anuntagool, Achara Chandrachai and Sanong Ekgasit
Sustainability 2025, 17(15), 6712; https://doi.org/10.3390/su17156712 - 23 Jul 2025
Viewed by 358
Abstract
This study addresses the problem of agricultural waste utilization and nutrition for older adults by developing a food product based on a circular design approach. Pineapple core was used to produce a clean-label dietary powder without chemical or enzymatic treatment, relying on repeated [...] Read more.
This study addresses the problem of agricultural waste utilization and nutrition for older adults by developing a food product based on a circular design approach. Pineapple core was used to produce a clean-label dietary powder without chemical or enzymatic treatment, relying on repeated rinsing and hot-air drying. The development process followed a structured analysis of physical, chemical, and sensory properties. The powder contained 83.46 g/100 g dietary fiber, 0° Brix sugar, pH 4.72, low water activity (aw < 0.45), and no detectable heavy metals or microbial contamination. Sensory evaluation by expert panelists confirmed that the product was acceptable in appearance, aroma, and texture, particularly for older adults. These results demonstrate the feasibility and safety of valorizing agri-waste into functional ingredients. The process was guided by the Transformative Circular Product Blueprint, which integrates clean-label processing, IoT-enabled solar drying, and decentralized production. This model supports traceability, low energy use, and adaptation at the community scale. This study contributes to sustainable food innovation and aligns with Sustainable Development Goals (SDGs) 3 (Good Health and Well-being), 9 (Industry, Innovation and Infrastructure), and 12 (Responsible Consumption and Production). Full article
Show Figures

Figure 1

22 pages, 3283 KiB  
Article
Optimal Configuration of Distributed Pumped Storage Capacity with Clean Energy
by Yongjia Wang, Hao Zhong, Xun Li, Wenzhuo Hu and Zhenhui Ouyang
Energies 2025, 18(15), 3896; https://doi.org/10.3390/en18153896 - 22 Jul 2025
Viewed by 216
Abstract
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering [...] Read more.
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering the maximization of the investment benefit of distributed pumped storage as the upper goal, a configuration scheme of the installed capacity is formulated. Second, under the two-part electricity price mechanism, combined with the basin hydraulic coupling relationship model, the operation strategy optimization of distributed pumped storage power stations and small hydropower stations is carried out with the minimum operation cost of the clean energy system as the lower optimization objective. Finally, the bi-level optimization model is solved by combining the alternating direction multiplier method and CPLEX solver. This study demonstrates that distributed pumped storage implementation enhances seasonal operational performance, improving clean energy utilization while reducing industrial electricity costs. A post-implementation analysis revealed monthly operating cost reductions of 2.36, 1.72, and 2.13 million RMB for wet, dry, and normal periods, respectively. Coordinated dispatch strategies significantly decreased hydropower station water wastage by 82,000, 28,000, and 52,000 cubic meters during corresponding periods, confirming simultaneous economic and resource efficiency improvements. Full article
Show Figures

Figure 1

26 pages, 3891 KiB  
Article
Investigation of Hollow Block Production by Substituting Chicken Feather, Cotton and Rock Wool Waste Fibers for Pumice Aggregate
by Ela Bahsude Gorur Avsaroglu
Buildings 2025, 15(15), 2587; https://doi.org/10.3390/buildings15152587 - 22 Jul 2025
Viewed by 254
Abstract
Currently, natural resources are rapidly depleting as a result of increasing construction facilities. Increasing energy consumption with increasing construction is another serious issue. In addition, many problems that threaten the environment and human health arise during the disposal and storage of waste materials [...] Read more.
Currently, natural resources are rapidly depleting as a result of increasing construction facilities. Increasing energy consumption with increasing construction is another serious issue. In addition, many problems that threaten the environment and human health arise during the disposal and storage of waste materials obtained in different sectors. The main objective of this study is to investigate the substitution of cotton (CW), chicken feather (CFF) and stone wool waste (SWW) from pumice aggregate in the production of environmentally friendly hollow blocks. To achieve this, CW, CFF and SWW were substituted for pumice at ratios of 2.5–5–7.5–10% in mass, and hollow blocks were produced with this mixture under low pressure and vibrations in a production factory. Various characterization methods, including a size and tolerance analysis, unit volume weight test, thermal conductivity test, durability test, water absorption test and strength tests, were carried out on the samples produced. This study showed that waste fibers of chicken feather and stone wool are suitable for the production of sustainable and environmentally friendly hollow blocks that can reduce the dead load of the building, have sufficient strength, provide energy efficiency due to low thermal conductivity and have a high durability due to a low water absorption value. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop