Efficient Extraction of 1,2-Dichloroethane from Wastewater Using Hydrophobic Deep Eutectic Solvents: A Green Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of HDESs
2.2. Experimental Procedure
2.3. Selection of HDESs
3. Results and Discussion
3.1. Cross-Contamination of HDESs with Water
3.2. Screening of HDESs
3.3. Eeffect of Contact Time
3.4. Eeffect of HDES-to-Water Mass Ratio
3.5. Eeffect of HDES Molar Ratio
3.6. Effect of Initial Concentration of 1,2-DCA
3.7. Extraction Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Larsen, T.A.; Hoffmann, S.; Lüthi, C.; Truffer, B.; Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef]
- Al-Baldawi, I.A. Removal of 1, 2-Dichloroethane from real industrial wastewater using a sub-surface batch system with Typha angustifolia L. Ecotoxicol. Environ. Saf. 2018, 147, 260–265. [Google Scholar] [CrossRef]
- Jeong, W.-G.; Kim, J.-G.; Baek, K. Removal of 1, 2-dichloroethane in groundwater using Fenton oxidation. J. Hazard. Mater. 2022, 428, 128253. [Google Scholar] [CrossRef]
- Wu, S.; Wang, P.; Fang, N.; Wang, Y.; Ding, S.; Chu, Y. Insight into catalytic performance and reaction mechanism for 1,2-dichloroethane elimination over MnCoOx-supported catalyst. Fuel 2024, 360, 130551. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.R.; Jaafarzadeh, N.; Hematian, S.; Sheikhmohammadi, A. Removal of 1,2-dichloroethane from industrial wastewater with membrane filtration. J. Health Field 2014, 2, 8–15. [Google Scholar]
- Motomizu, S.; Sakai, T. On-line sample pretreatment: Extraction and preconcentration. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2008; Volume 54, pp. 159–201. [Google Scholar]
- Zhou, Z.; Huang, J.; Danish, M.; Zeng, G.; Yang, R.; Gu, X.; Ali, M.; Lyu, S. Insights into enhanced removal of 1, 2-dichloroethane by amorphous boron-enhanced Fenton system: Performances and mechanisms. J. Hazard. Mater. 2021, 420, 126589. [Google Scholar] [CrossRef]
- Lee, H.-H.; Hirano, Y.; Murayama, N.; Matsumoto, S.; Shibata, J. Adsorption properties of activated carbon prepared from waste beer lees by KOH activation and CO2 activation. Resour. Process. 2007, 54, 19–24. [Google Scholar] [CrossRef]
- Reyes, J.; Arriola, E.; Hernández, J.A.; Fuentes, G.A. Liquid-phase chloroform hydrodechlorination catalyzed by Pd/TiO2–Na. Appl. Catal. A Gen. 2015, 497, 211–215. [Google Scholar]
- Baric, M.; Majone, M.; Beccari, M.; Papini, M.P. Coupling of polyhydroxybutyrate (PHB) and zero valent iron (ZVI) for enhanced treatment of chlorinated ethanes in permeable reactive barriers (PRBs). Chem. Eng. J. 2012, 195, 22–30. [Google Scholar] [CrossRef]
- Nunez Garcia, A.; Boparai, H.K.; O’Carroll, D.M. Enhanced dechlorination of 1,2-dichloroethane by coupled nano iron-dithionite treatment. Environ. Sci. Technol. 2016, 50, 5243–5251. [Google Scholar] [CrossRef]
- Eydivand, S.; Nikazar, M. Degradation of 1,2-dichloroethane in simulated wastewater solution: A comprehensive study by photocatalysis using TiO2 and ZnO nanoparticles. Chem. Eng. Commun. 2015, 202, 102–111. [Google Scholar] [CrossRef]
- Büyüksönmez, F.h.; Hess, T.F.; Crawford, R.L.; Watts, R.J. Toxic effects of modified Fenton reactions on Xanthobacter flavus FB71. Appl. Environ. Microbiol. 1998, 64, 3759–3764. [Google Scholar] [CrossRef]
- Bello, M.M.; Raman, A.A.A.; Asghar, A. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Saf. Environ. Prot. 2019, 126, 119–140. [Google Scholar] [CrossRef]
- Liu, X.; Vellanki, B.P.; Batchelor, B.; Abdel-Wahab, A. Degradation of 1, 2-dichloroethane with advanced reduction processes (ARPs): Effects of process variables and mechanisms. Chem. Eng. J. 2014, 237, 300–307. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Critical perspective on advanced treatment processes for water and wastewater: AOPs, ARPs, and AORPs. Appl. Sci. 2020, 10, 4549. [Google Scholar] [CrossRef]
- De Marines, F.; Cruciata, I.; Di Bella, G.; Di Trapani, D.; Giustra, M.G.; Calabrisotto, L.S.; Lucchina, P.G.; Quatrini, P.; Viviani, G. Degradation of 1,2-dichloroethane in real polluted groundwater by using enriched bacterial consortia in aerobic and anaerobic laboratory-scale conditions. Int. Biodeterior. Biodegrad. 2023, 183, 105644. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, X.; Liu, G.; Li, W.; Lu, L.; Li, P.; Xu, X.; Jiang, J.; Wang, B.; Qiao, W. Sustained detoxification of 1, 2-dichloroethane to ethylene by a symbiotic consortium containing Dehalococcoides species. Environ. Pollut. 2023, 325, 121443. [Google Scholar] [CrossRef]
- Draga, M.; Ciucanu, I.; Agotici, V.; Fernandez, A.; Barna, R. Quantitative evaluation of perchlorethylene in groundwater before and after its oxidation by helical solid sorbent extraction and gas chromatography. Chemosphere 2009, 75, 1210–1214. [Google Scholar] [CrossRef]
- Dolatabadi, M.; Ghorbanian, A.; Ahmadzadeh, S. Degradation of high-concentration of perchloroethylene from aqueous solution using electro-fenton process. J. Environ. Health Sustain. Dev. 2022, 7, 1676–1683. [Google Scholar] [CrossRef]
- Liu, X.; Wu, M.; Zhao, J. Removal of trichloroethylene from water by bimetallic Ni/Fe nanoparticles. Water 2022, 14, 1616. [Google Scholar] [CrossRef]
- Dominguez, C.M.; Rodriguez, V.; Montero, E.; Romero, A.; Santos, A. Methanol-enhanced degradation of carbon tetrachloride by alkaline activation of persulfate: Kinetic model. Sci. Total Environ. 2019, 666, 631–640. [Google Scholar] [CrossRef]
- Li, B.; Li, L.; Lin, K.; Zhang, W.; Lu, S.; Luo, Q. Removal of 1, 1, 1-trichloroethane from aqueous solution by a sono-activated persulfate process. Ultrason. Sonochem. 2013, 20, 855–863. [Google Scholar] [CrossRef]
- Almomani, F.; Rene, E.R.; Veiga, M.C.; Bhosale, R.R.; Kennes, C. Treatment of waste gas contaminated with dichloromethane using photocatalytic oxidation, biodegradation and their combinations. J. Hazard. Mater. 2021, 405, 123735. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Cao, Z.; Li, Y.; Bai, Y.; Zhang, X.; Li, T.; Ren, B. Absorption of ethylene dichloride with imidazolium-based ionic liquids. J. Mol. Liq. 2023, 376, 121449. [Google Scholar] [CrossRef]
- Gui, C.; Li, G.; Lei, Z.; Wei, Z.; Dong, Y. Experiment and molecular mechanism of two chlorinated volatile organic compounds in ionic liquids. Ind. Eng. Chem. Res. 2023, 62, 1160–1171. [Google Scholar] [CrossRef]
- Song, M.; Gui, C.; Lei, Z. Experimental and Simulation Studies on the Capture of Chlorinated Volatile Organic Compounds by Ionic Liquids. Ind. Eng. Chem. Res. 2023, 62, 10184–10194. [Google Scholar] [CrossRef]
- Yang, C.; Yu, X.; Wang, L.; Shi, M.; He, G.; Li, Q. Experimental measurement and thermodynamic modelling of liquid-liquid equilibria for the separation of 1,2-dichloroethane from cyclohexane using various extractants. J. Mol. Liq. 2018, 252, 263–270. [Google Scholar] [CrossRef]
- Rawa-Adkonis, M.; Wolska, L.; Przyjazny, A.; Namieśnik, J. Sources of errors associated with the determination of PAH and PCB analytes in water samples. Anal. Lett. 2006, 39, 2317–2331. [Google Scholar] [CrossRef]
- Tshepelevitsh, S.; Hernits, K.; Jenčo, J.; Hawkins, J.M.; Muteki, K.; Solich, P.; Leito, I. Systematic optimization of liquid–liquid extraction for isolation of unidentified components. ACS Omega 2017, 2, 7772–7776. [Google Scholar] [CrossRef]
- Almohasin, J.A.; Balag, J.; Miral, V.G.; Moreno, R.V.; Tongco, L.J.; Lopez, E.C.R. Green Solvents for Liquid–Liquid Extraction: Recent Advances and Future Trends. Eng. Proc. 2023, 56, 174. [Google Scholar]
- Rudrapal, M.; Kothawade, A.P.; Ezzat, S.M.; Egbuna, C. Bioanalysis: Methods, techniques, and applications. In Analytical Techniques in Biosciences; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–24. [Google Scholar]
- Wazeer, I.; Mulyono, S.; Halilu, A.; Hizaddin, H.F.; Hashim, M.A.; Hadj-Kali, M.K. Comparative analysis of lead and cadmium extraction capacities of hydrophobic deep eutectic solvents. J. Ind. Eng. Chem. 2025, 143, 303–318. [Google Scholar] [CrossRef]
- Wazeer, I.; Hizaddin, H.F.; Wen, N.X.; El Blidi, L.; Hashim, M.A.; Hadj-Kali, M.K. Extraction of phenol as pollutant from aqueous effluents using hydrophobic deep eutectic solvents. Water 2023, 15, 4289. [Google Scholar] [CrossRef]
- Cichowska-Kopczyńska, I.; Nowosielski, B.; Warmińska, D. Deep eutectic solvents: Properties and applications in CO2 separation. Molecules 2023, 28, 5293. [Google Scholar] [CrossRef]
- Lee, J.; Jung, D.; Park, K. Hydrophobic deep eutectic solvents for the extraction of organic and inorganic analytes from aqueous environments. TrAC Trends Anal. Chem. 2019, 118, 853–868. [Google Scholar] [CrossRef]
- Van Osch, D.J.; Zubeir, L.F.; Van Den Bruinhorst, A.; Rocha, M.A.; Kroon, M.C. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem. 2015, 17, 4518–4521. [Google Scholar] [CrossRef]
- Xing, J.; Liu, X.; Dai, Y.; Zhang, Y.; Su, Z.; Chen, Z.; Gao, J.; Wang, Y.; Cui, P. Phase behavior and extraction mechanism of ethanol in alcohol ester mixture separated by deep eutectic solvents. J. Mol. Liq. 2022, 368, 120694. [Google Scholar] [CrossRef]
- Zafarani-Moattar, M.T.; Shekaari, H.; Dizaj, A.S. Investigation of solute-solvent interactions in binary and quaternary solutions containing lithium perchlorate, propylene carbonate, and the deep eutectic solvent (choline chloride/ethylene glycol) at T=(288.15 to 318.15) K. J. Mol. Liq. 2020, 319, 114090. [Google Scholar] [CrossRef]
- Adeyemi, A.; Bergman, J.; Branalt, J.; Sävmarker, J.; Larhed, M. Continuous flow synthesis under high-temperature/high-pressure conditions using a resistively heated flow reactor. Org. Process Res. Dev. 2017, 21, 947–955. [Google Scholar] [CrossRef]
- Wazeer, I.; Hizaddin, H.F.; Mulyono, S.; Hashim, M.A.; Hadj-Kali, M.K. Removal of cresol contaminants from aqueous media using hydrophobic deep eutectic solvents. J. Mol. Liq. 2024, 407, 125082. [Google Scholar] [CrossRef]
- Vlachoudi, D.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Lalas, S.I. Enhanced extraction of carotenoids from tomato industry waste using menthol/fatty acid deep eutectic solvent. Waste 2023, 1, 977–992. [Google Scholar] [CrossRef]
- Fan, C.; Sebbah, T.; Liu, Y.; Cao, X. Terpenoid-capric acid based natural deep eutectic solvent: Insight into the nature of low viscosity. Clean. Eng. Technol. 2021, 3, 100116. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.A.; Marrucho, I.M. Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents. ACS Sustain. Chem. Eng. 2015, 3, 2469–2477. [Google Scholar] [CrossRef]
- Martins, M.A.; Crespo, E.A.; Pontes, P.V.; Silva, L.P.; Bülow, M.; Maximo, G.J.; Batista, E.A.; Held, C.; Pinho, S.P.; Coutinho, J.A. Tunable hydrophobic eutectic solvents based on terpenes and monocarboxylic acids. ACS Sustain. Chem. Eng. 2018, 6, 8836–8846. [Google Scholar] [CrossRef]
- Almustafa, G.; Sulaiman, R.; Kumar, M.; Adeyemi, I.; Arafat, H.A.; AlNashef, I. Boron extraction from aqueous medium using novel hydrophobic deep eutectic solvents. Chem. Eng. J. 2020, 395, 125173. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Klamt, A.; Eckert, F. COSMO-RS: A novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilib. 2000, 172, 43–72. [Google Scholar] [CrossRef]
- Stefanovic, R.; Ludwig, M.; Webber, G.B.; Atkin, R.; Page, A.J. Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor. Phys. Chem. Chem. Phys. 2017, 19, 3297–3306. [Google Scholar] [CrossRef]
Material | CAH | Media | Process | Conditions | Efficiency | Test | Ref. |
---|---|---|---|---|---|---|---|
PDS 1 | PCE | Groundwater | Oxidation | T = 25 °C, Time = 12 min | High removal efficiency | GC | [19] |
PDS | PCE | water | Electro-Fenton | PH = 5, PCE conc = 15 mg/L | 98.1% | NA | [20] |
Ni-nZVI | TCE | Water | nZVI reduction | 5 wt% Ni, T = 26 °C, pH = 7–8.8 | 100% | GC-MSD | [21] |
PS with Menthol | CTC 2 | Water | PS activation | Time = 48 h | ~100% | GC/MS | [22] |
PS | TCA | Water | Sono-activated oxidation | T = 20 °C, pH = 7, PS:TCA = 10:1 | ~100% | GC/MS | [23] |
TiO2 | DCM 3 | Waste Gas | Advanced oxidation | T = 20 °C, PH = 7 | 95.5% | NA | [24] |
[Bmim][DCA] | 1,2-DCA | NA | Absorption | T = 313.15 K, P = 1 atm | 0.37 g EDC/g IL | NA | [25] |
[Bmim][OAc] | 0.33 g EDC/g IL | ||||||
[Bmim][SCN] | 0.30 g EDC/g IL | ||||||
[Bmim][PF6] | 0.21 g EDC/g IL | ||||||
[Bmim][BF4] | 0.24 g EDC/g IL | ||||||
[EMIM][BF4] | 1,2-DCA | NA | Absorption | T = 298 K, P = 1 atm, flow rate = 15 mL/min | AR = 95.8% | GC | [26] |
[EMIM][BF4] | TCEt 4 | AR = 84.9% | GC | ||||
[EMIM][TF2N] | 1,2-DCA | AR = 94.9% | GC | ||||
[EMIM][TF2N] | TCEt | AR = 82.9% | GC | ||||
[EMIM][Ac] | DCM | NA | Absorption | T = 303 K | AC = 756.55 (mg/g) | GC | [27] |
Sulfolane | 1,2-DCA | Cyclo-hexane | Liquid–liquid extraction | T = 313.15 K, P = 1 atm | D = 1.83–2.08, S = 23.50–47.69 | GC | [28] |
DMSO 5 | D = 2.43–3.18, S = 12.31–39.32 | ||||||
DMF 6 | D = 1.46–2.11, S = 2.11–4.28 | ||||||
1,4-butanediol | D = 0.44–0.54, S = 9.16–14.44 |
Chemicals | Cas Number | Source | MW (g/mole) | Purity * |
---|---|---|---|---|
1,2-DCA | 107-06-2 | Thermo Scientific (New Jersey, USA) | 98.96 | 99.8 |
Naphthalene | 91-20-3 | Sigma-Aldrich (Schnelldorf, Germany) | 128.17 | ≥0.99 |
Menthol | 89-78-1 | Sigma-Aldrich (St. Louis, MO, USA) | 156.27 | ≥0.95 |
Thymol | 89-83-8 | BDH Laboratory (West Yorkshire, UK) | 150.22 | ≥0.99 |
Decanoic acid | 334-48-5 | Sigma-Aldrich (Petaling Jaya, Malaysia) | 172.26 | ≥0.98 |
Coumarin | 91-64-5 | Thermo Scientific (Les Ulis, France) | 146.14 | ≥0.99 |
Camphor | 76-22-2 | Acros Organics (Shanghai, China) | 152.23 | ≥0.96 |
Hydrocinnamic acid | 501-52-0 | Sigma-Aldrich (St. Louis, MO, USA) | 150.17 | ≥0.99 |
Naphthalene | 91-20-3 | Sigma-Aldrich (Schnelldorf, Germany) | 128.17 | ≥0.99 |
Toluene | 108-88-3 | Scarlau (Sentmenat, Spain) | 92.14 | ≥0.99 |
Ethanol | 64-17-5 | Sigma-Aldrich (Schnelldorf, Germany) | 46.07 | ≥0.99 |
GC Parameter | Value |
---|---|
Temperature of detector (°C) | 320.0 |
Temperature of injector (°C) | 320.0 |
Helium carrier gas total flow (mL/min) | 40.0 |
Oven program | 40 °C for 2 min |
180 °C to 300 °C | |
Hold time: 0 min | |
Rate: 30 °C/min |
HDES | Component 1 | Component 2 | Mole Ratio | Water Content (%) |
---|---|---|---|---|
Men/Thy | Menthol | Thymol | 1:1 | 0.011 |
Men/Dec | Menthol | Decanoic acid | 1:1 | 0.213 |
Thy/Dec | Thymol | Decanoic acid | 1:1 | 0.018 |
Hyd/Dec | Hydrocinnamic acid | Decanoic acid | 1:1 | 0.049 |
Thy/Cou | Thymol | Coumarin | 1:1 | 0.017 |
Thy/Cam | Thymol | Camphor | 1:1 | 0.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wazeer, I.; Omair, A.; Blidi, L.E.; Mokraoui, S.; Ali, E.; Hadj-Kali, M.K. Efficient Extraction of 1,2-Dichloroethane from Wastewater Using Hydrophobic Deep Eutectic Solvents: A Green Approach. Separations 2025, 12, 197. https://doi.org/10.3390/separations12080197
Wazeer I, Omair A, Blidi LE, Mokraoui S, Ali E, Hadj-Kali MK. Efficient Extraction of 1,2-Dichloroethane from Wastewater Using Hydrophobic Deep Eutectic Solvents: A Green Approach. Separations. 2025; 12(8):197. https://doi.org/10.3390/separations12080197
Chicago/Turabian StyleWazeer, Irfan, Abdullah Omair, Lahssen El Blidi, Salim Mokraoui, Emad Ali, and Mohamed K. Hadj-Kali. 2025. "Efficient Extraction of 1,2-Dichloroethane from Wastewater Using Hydrophobic Deep Eutectic Solvents: A Green Approach" Separations 12, no. 8: 197. https://doi.org/10.3390/separations12080197
APA StyleWazeer, I., Omair, A., Blidi, L. E., Mokraoui, S., Ali, E., & Hadj-Kali, M. K. (2025). Efficient Extraction of 1,2-Dichloroethane from Wastewater Using Hydrophobic Deep Eutectic Solvents: A Green Approach. Separations, 12(8), 197. https://doi.org/10.3390/separations12080197