Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,179)

Search Parameters:
Keywords = water and salinity stresses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5448 KiB  
Article
A Study of Climate-Sensitive Diseases in Climate-Stressed Areas of Bangladesh
by Ahammadul Kabir, Shahidul Alam, Nusrat Jahan Tarin, Shila Sarkar, Anthony Eshofonie, Mohammad Ferdous Rahman Sarker, Abul Kashem Shafiqur Rahman and Tahmina Shirin
Climate 2025, 13(8), 166; https://doi.org/10.3390/cli13080166 - 5 Aug 2025
Abstract
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of [...] Read more.
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of data on climate-sensitive diseases and related hospital visits in these areas. This study explored the prevalence of such diseases using the Delphi method through focus group discussions with 493 healthcare professionals from 153 hospitals in 156 upazilas across 21 districts and ten zones. Participants were selected by district Civil Surgeons. Key climate-sensitive diseases identified included malnutrition, diarrhea, pneumonia, respiratory infections, typhoid, skin diseases, hypertension, cholera, mental health disorders, hepatitis, heat stroke, and dengue. Seasonal surges in hospital visits were noted, influenced by factors like extreme heat, air pollution, floods, water contamination, poor sanitation, salinity, and disease vectors. Some diseases were zone-specific, while others were widespread. Regions with fewer hospital visits often had higher disease burdens, indicating under-reporting or lack of access. The findings highlight the need for area-specific adaptation strategies and updates to the Health National Adaptation Plan. Strengthening resilience through targeted investment and preventive measures is crucial to reducing health risks from climate change. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

28 pages, 3909 KiB  
Article
Exploring How Climate Change Scenarios Shape the Future of Alboran Sea Fisheries
by Isabella Uzategui, Susana Garcia-Tiscar and Paloma Alcorlo
Water 2025, 17(15), 2313; https://doi.org/10.3390/w17152313 - 4 Aug 2025
Viewed by 39
Abstract
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure [...] Read more.
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure on the biomass of commercially important species in the Alboran Sea from 1999 to 2022. Data were sourced from the Copernicus observational program, focusing on the geographical sub-area 1 (GSA-1) zone across three depth ranges. Generalized Additive Models were applied for analysis. Rising temperatures and seasonal anomalies have largely negative effects, disrupting species’ physiological balance. Changes in water quality, including improved nutrient and oxygen concentrations, have yielded complex ecological responses. Fishing indices highlight the vulnerability of small pelagic fish to climate change and overfishing, underscoring their economic and ecological significance. These findings stress the urgent need for ecosystem-based management strategies that integrate climate change impacts to ensure sustainable marine resource management. Full article
(This article belongs to the Special Issue Impact of Climate Change on Marine Ecosystems)
Show Figures

Figure 1

44 pages, 4144 KiB  
Article
Amelioration of Olive Tree Indices Related to Salinity Stress via Exogenous Administration of Amino Acid Content: Real Agronomic Effectiveness or Mechanistic Restoration Only?
by Helen Kalorizou, Paschalis Giannoulis, Stefanos Leontopoulos, Georgios Koubouris, Spyridoula Chavalina and Maria Sorovigka
Horticulturae 2025, 11(8), 890; https://doi.org/10.3390/horticulturae11080890 (registering DOI) - 1 Aug 2025
Viewed by 330
Abstract
Salinization of olive orchards constitutes a front-line agronomic challenge for farmers, consumers, and the scientific community as food security, olive logistics, and land use become more unsustainable and problematic. Plantlets of two olive varieties (var. Kalamon and var. Koroneiki) were tested for their [...] Read more.
Salinization of olive orchards constitutes a front-line agronomic challenge for farmers, consumers, and the scientific community as food security, olive logistics, and land use become more unsustainable and problematic. Plantlets of two olive varieties (var. Kalamon and var. Koroneiki) were tested for their performance under soil saline conditions, in which L-methionine, choline-Cl, and L-proline betaine were applied foliarly to alleviate adverse effects. The ‘Kalamon’ variety ameliorated its photosynthetic rates when L-proline betaine and L-methionine were administered at low saline exposure. The stressed varieties achieved higher leaf transpiration rates in the following treatment order: choline-Cl > L-methionine > L-proline betaine. Choline chloride supported stomatal conductance in stressed var. Kalamon olives without this pattern, which was also followed by var. Koroneiki. Supplementation regimes created a mosaic of responses on varietal water use efficiency under stress. The total phenolic content in leaves increased in both varieties after exogenous application only at the highest levels of saline stress. None of the substances applied to olive trees could stand alone as a tool to mitigate salinity stress in order to be recommended as a solid agronomic practice. The residual exploitation of amino acids by the olive orchard microbiome must also be considered as part of an environmentally friendly, integrated strategy to mitigate salinity stress. Full article
(This article belongs to the Special Issue Olive Stress Alleviation Strategies)
Show Figures

Figure 1

22 pages, 2591 KiB  
Article
Could Hydroinfiltrators Made with Biochar Modify the Soil Microbiome? A Strategy of Soil Nature-Based Solution for Smart Agriculture
by Azahara Navarro, Ana del Moral, Gabriel Delgado, Jesús Párraga, José Ángel Rufián, Raúl Rojano and Juan Manuel Martín-García
Appl. Sci. 2025, 15(15), 8503; https://doi.org/10.3390/app15158503 (registering DOI) - 31 Jul 2025
Viewed by 437
Abstract
Climate change negatively affects agriculture, causing desertification, salinisation, and drought. The biochar hydroinfiltrator (ES Patent No.: ES2793448 B2) is a device that increases the capture of rainwater or irrigation water for crops by increasing infiltration rates. Biochar, produced via biomass pyrolysis, has emerged [...] Read more.
Climate change negatively affects agriculture, causing desertification, salinisation, and drought. The biochar hydroinfiltrator (ES Patent No.: ES2793448 B2) is a device that increases the capture of rainwater or irrigation water for crops by increasing infiltration rates. Biochar, produced via biomass pyrolysis, has emerged as a promising agricultural amendment, as it helps to optimise moisture retention and improve soil structure, key aspects for boosting crop yields. There is growing interest in microorganisms’ plant-growth-promoting activity (PGP) by carrying out different activities considered growth promoters. The aim of the present study is to evaluate the use of a biochar hydroinfiltrator as a promoter of microbial activity when it is used in soil. Metagenomic analysis of soils with and without the device reveals that genera Bacillus and Sphingomonas became particularly enriched in soils with hydroinfiltrators. Also, in order to understand the interaction between the uses of biochar together with bacteria PGP, an in vitro test was carried out. Two microorganisms, previously selected for their characteristics as plant growth promoters, were inoculated in soils with and without biochar and they grew better after 15 to 30 days of inoculation, showing major CFU counts. This combined strategy—biochar hydroinfiltrator and PGP bacteria—offers an innovative, eco-friendly approach to sustainable agriculture, particularly under drought stress. Full article
Show Figures

Figure 1

19 pages, 7853 KiB  
Article
Pre-Transport Salt Baths Mitigate Physiological Stress and Tissue Damage in Channel Catfish (Ictalurus punctatus) Fingerlings: Evidence from Multi-Biomarker Assessment and Histopathology
by Guowei Huang, Haohua Li, Juguang Wang, Tao Liao, Liang Qiu, Guangquan Xiong, Lan Wang, Chan Bai and Yu Zhang
Animals 2025, 15(15), 2249; https://doi.org/10.3390/ani15152249 - 31 Jul 2025
Viewed by 136
Abstract
Effective transport strategies are critical for the survival and welfare of juvenile Ictalurus punctatus, but the effects of pre-transport salt bath treatments remain uncertain. In this study, we systematically evaluated the effects of pre-transport salt bath acclimation at 0‰ (S1), 1‰ (S2), [...] Read more.
Effective transport strategies are critical for the survival and welfare of juvenile Ictalurus punctatus, but the effects of pre-transport salt bath treatments remain uncertain. In this study, we systematically evaluated the effects of pre-transport salt bath acclimation at 0‰ (S1), 1‰ (S2), 5‰ (S3), and 9‰ (S4) salinity for 30 min on stress resilience and recovery in fingerlings during 12 h of simulated transport and 24 h of recovery. All fish survived, but total ammonia nitrogen (TAN) increased, and pH decreased in all groups, except S3, which showed significantly lower TAN and higher pH (p < 0.05). The S3 and S4 groups showed attenuated increases in serum cortisol and glucose, with S3 exhibiting the fastest return to baseline levels and stable serum sodium and potassium levels. Liver antioxidant enzyme activities in group S3 remained stable, with the lowest malondialdehyde (MDA) accumulation. Integrated biomarker response (IBR) and histological analyses demonstrated that S3 had the lowest systemic stress and tissue damage, whereas S1 and S4 displayed marked cellular disruption. These results indicate that a 5‰ salt bath applied prior to transport may improve water quality, mitigate stress responses, and preserve tissue integrity in juvenile channel catfish. Further studies are needed to confirm these findings in other species and under commercial transport conditions. Full article
Show Figures

Figure 1

16 pages, 1023 KiB  
Article
Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species
by María Rita Guzman, Xavier Rojas-Ruilova, Catarina Gomes-Domingues and Isabel Marques
Agronomy 2025, 15(8), 1802; https://doi.org/10.3390/agronomy15081802 - 25 Jul 2025
Viewed by 285
Abstract
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with [...] Read more.
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with 0, 50, 100, or 300 mM NaCl for 10 days. Salinity significantly enhanced proline content and the activity of key antioxidant enzymes (catalase, peroxidase, and ascorbate peroxidase), reflecting the activation of stress defense mechanisms. However, these defenses failed to fully protect reproductive organs. Flower number and size were consistently more sensitive to salinity than vegetative traits, with significant reductions observed even at 50 mM NaCl. Responses varied between species, with Zinnia elegans and Calendula officinalis exhibiting pronounced sensitivity to salinity, whereas Tagetes patula showed relative tolerance, particularly under moderate stress conditions. The results show that flower structures are more vulnerable to ionic and osmotic disturbances than vegetative tissues, likely due to their higher metabolic demands and developmental sensitivity. Their heightened vulnerability underscores the need to prioritize reproductive performance when evaluating stress tolerance. Incorporating these traits into breeding programs is essential for developing salt-tolerant floriculture species that maintain aesthetic quality under limited water availability. Full article
(This article belongs to the Special Issue Effect of Brackish and Marginal Water on Irrigated Agriculture)
Show Figures

Figure 1

18 pages, 3744 KiB  
Article
Effect of Plant Growth Regulators on the Physiological Response and Yield of Cucumis melo var. inodorus Under Different Salinity Levels in a Controlled Environment
by Dayane Mércia Ribeiro Silva, Francisca Zildélia da Silva, Isabelly Cristina da Silva Marques, Eduardo Santana Aires, Francisco Gilvan Borges Ferreira Freitas Júnior, Fernanda Nery Vargens, Vinicius Alexandre Ávila dos Santos, João Domingos Rodrigues and Elizabeth Orika Ono
Horticulturae 2025, 11(7), 861; https://doi.org/10.3390/horticulturae11070861 - 21 Jul 2025
Viewed by 290
Abstract
The objective of this study was to evaluate the physiological, biochemical, and productive effects of the foliar application of bioregulators, based on auxin, cytokinin, and gibberellic acid, on yellow melon, cultivar DALI®, plants subjected to different salinity levels in a protected [...] Read more.
The objective of this study was to evaluate the physiological, biochemical, and productive effects of the foliar application of bioregulators, based on auxin, cytokinin, and gibberellic acid, on yellow melon, cultivar DALI®, plants subjected to different salinity levels in a protected environment to simulate Brazil’s semi-arid conditions. The experiment was conducted using a completely randomized block design, in a 4 × 3 factorial scheme, with four salinity levels (0, 2, 4, and 6 dS m−1) and three doses of the bioregulator, Stimulate® (0%, 100%, and 150% of the recommended dose), with six weekly applications. The physiological variables (chlorophyll a fluorescence and gas exchange) and biochemical parameters (antioxidant enzyme activity and lipid peroxidation) were evaluated at 28 and 42 days after transplanting, and the agronomic traits (fresh fruit mass, physical attributes, and post-harvest quality) were evaluated at the end of the experiment. The results indicated that salinity impaired the physiological and productive performance of the plants, especially at higher levels (4 and 6 dS m−1), causing oxidative stress, reduced photosynthesis, and decreased yield. However, the application of the bioregulator at the 100% dose mitigated the effects of salt stress under moderate salinity (2 dS m−1), promoting higher CO2 assimilation rates of up to 31.5%, better water-use efficiency, and reduced lipid peroxidation. In addition, the fruits showed a greater mass of up to 66%, thicker pulp, and higher soluble solids (> 10 °Brix) content, making them suitable for sale in the market. The 150% dose did not provide additional benefits and, in some cases, resulted in inhibitory effects. It is concluded that the application of Stimulate® at the recommended dose is effective in mitigating the effects of moderate salinity, up to ~3 dS m−1, in yellow melon crops; however, its effectiveness is limited under high salinity conditions, requiring the use of complementary strategies. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

23 pages, 4385 KiB  
Article
Melatonin Enhances Tomato Salt Tolerance by Improving Water Use Efficiency, Photosynthesis, and Redox Homeostasis
by Chen Ru, Yuxuan Liu, Xingjiao Yu, Chuanliu Xie and Xiaotao Hu
Agronomy 2025, 15(7), 1746; https://doi.org/10.3390/agronomy15071746 - 20 Jul 2025
Viewed by 281
Abstract
Salinity stress is a primary abiotic constraint limiting global crop productivity, with progressive soil salinization inducing growth inhibition and physiological dysfunction in plants. Although melatonin (MT) has been extensively documented to enhance stress adaptation, the underlying mechanisms through which it mediates salt tolerance [...] Read more.
Salinity stress is a primary abiotic constraint limiting global crop productivity, with progressive soil salinization inducing growth inhibition and physiological dysfunction in plants. Although melatonin (MT) has been extensively documented to enhance stress adaptation, the underlying mechanisms through which it mediates salt tolerance by integrating physiological processes remain unclear. This study investigated the effects of varying MT concentrations on photosynthetic performance, plant water relations, water-use efficiency, and stress-responsive physiological parameters in tomatoes, aiming to identify the key physiological pathways for MT-mediated salt stress mitigation. The results showed that salt stress significantly reduced the leaf relative water content and root hydraulic conductivity, suppressed the photosynthetic rate, and ultimately caused significant reductions in the aboveground and root biomass. MT spraying effectively improved leaf water status and root water uptake capacity, enhancing the photosynthetic rate and water-use efficiency, thereby providing material and energy support for plant growth. Furthermore, MT spraying increased the total antioxidant capacity in leaves and promoted the synthesis of phenolic and flavonoid compounds, thereby reducing oxidative damage. Simultaneously, it stimulated the accumulation of osmolytes to enhance cellular osmotic adjustment capacity and optimized ion uptake to maintain cellular ion homeostasis. Among the tested concentrations, 100 μM MT showed the most significant alleviative effects. This concentration comprehensively enhanced the salt tolerance and growth performance of tomato plants by synergistically optimizing water use, photosynthetic function, antioxidant defense, and ion balance. In conclusion, these findings provide experimental evidence for elucidating the physiological mechanisms underlying MT-mediated salt tolerance in tomatoes and offer theoretical references for the rational application of MT in crop production under saline conditions. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

25 pages, 6525 KiB  
Article
Response of Anatomical Structure and Active Component Accumulation in Apocynum venetum L. (Apocynaceae) Under Saline Stress and Alkali Stress
by Yanlei Zhang, Shaowei Hu, Xiaxia Wang, Jie Yue, Dongmei Chen, Mingzhi Han, Wanmin Qiao, Yifan Wang and Haixia Wang
Plants 2025, 14(14), 2223; https://doi.org/10.3390/plants14142223 - 18 Jul 2025
Viewed by 290
Abstract
Soil salinization, affecting approximately 954 million hectares globally, severely impairs plant growth and agricultural productivity. Apocynum venetum L., a perennial herbaceous plant with ecological and economic value, demonstrates remarkable tolerance to saline and alkali soils. This study investigated the effects of saline (NaCl) [...] Read more.
Soil salinization, affecting approximately 954 million hectares globally, severely impairs plant growth and agricultural productivity. Apocynum venetum L., a perennial herbaceous plant with ecological and economic value, demonstrates remarkable tolerance to saline and alkali soils. This study investigated the effects of saline (NaCl) and alkali (Na2CO3 and NaHCO3) stress on the growth, anatomical adaptations, and metabolite accumulation of A. venetum (Apocynum venetum L.). Results showed that alkali stress (100 mM Na2CO3 and 50 mM NaHCO3) inhibited growth more than saline stress (NaCl 240 mM), reducing plant height by 29.36%. Anatomical adaptations included a 40.32% increase in the root cortex-to-diameter ratio (100 mM Na2CO3 and 50 mM NaHCO3), a 101.52% enlargement of xylem vessel diameter (NaCl 240 mM), and a 68.69% thickening of phloem fiber walls in the stem (NaCl 240 mM), enhancing water absorption, salt exclusion, and structural support. Additionally, leaf palisade tissue densification (44.68% increase at NaCl 160 mM), along with epidermal and wax layer adjustments, balanced photosynthesis and water efficiency. Metabolic responses varied with stress conditions. Root soluble sugar content increased 49.28% at NaCl 160 mM. Flavonoid accumulation in roots increased 53.58% at Na2CO3 100 mM and NaHCO3 50 mM, enhancing antioxidant defense. However, chlorophyll content and photosynthetic efficiency declined with increasing stress intensity. This study emphasizes the coordinated adaptations of A. venetum, providing valuable insights for the development of salt-tolerant crops. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

18 pages, 7163 KiB  
Article
Saline Water Stress in Caatinga Species with Potential for Reforestation in the Face of Advancing Desertification in the Brazilian Semiarid Region
by Márcia Bruna Marim de Moura, Tays Ferreira Barros, Thieres George Freire da Silva, Wagner Martins dos Santos, Lady Daiane Costa de Sousa Martins, Elania Freire da Silva, João L. M. P. de Lima, Xuguang Tang, Alexandre Maniçoba da Rosa Ferraz Jardim, Carlos André Alves de Souza, Klébia Raiane Siqueira de Souza and Luciana Sandra Bastos de Souza
Environments 2025, 12(7), 239; https://doi.org/10.3390/environments12070239 - 14 Jul 2025
Viewed by 600
Abstract
The advance of the soil desertification process and water salinisation hinders reforestation actions in the Brazilian semiarid region due to the negative effects on the initial establishment of seedlings. Knowledge of potential species for overcoming the problems of soil and water salinity is [...] Read more.
The advance of the soil desertification process and water salinisation hinders reforestation actions in the Brazilian semiarid region due to the negative effects on the initial establishment of seedlings. Knowledge of potential species for overcoming the problems of soil and water salinity is of broad interest. This study evaluated the growth of seedlings of the species Handroanthus impetiginosus and Handroanthus spongiosus subjected to the combined stresses of salinity and water deficit. The species were subjected to three water depths (WDs): WD1—50%, WD2—75% and WD3—100% of reference evapotranspiration, and four salinity levels (SL): SL1—0.27 dS m−1, SL2—2.52 dS m−1, SL3—6.35 dS m−1 and SL4—7.38 dS m−1. Biometric data, including plant height, number of leaves, collar diameter and biomass, was obtained. The results showed that H. impetiginosus was more tolerant of the conditions analysed. The species showed greater sensitivity to salt stress, which reduced growth and dry biomass accumulation by up to 98%. Increased water deficit reduced height, collar diameter, number of leaves, root biomass and total biomass. We propose that the optimal water depth for both species is 100% of the reference evapotranspiration. Full article
Show Figures

Figure 1

33 pages, 392 KiB  
Review
Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality
by Despoina G. Petoumenou and Vasiliki Liava
Plants 2025, 14(14), 2157; https://doi.org/10.3390/plants14142157 - 13 Jul 2025
Cited by 1 | Viewed by 569
Abstract
Environmental challenges such as drought, high temperatures, and salinity compromise grapevine physiology, reduce productivity, and negatively affect grape and wine quality. In recent years, foliar applications of biostimulants, antitranspirants, and phytohormones have emerged as promising strategies to enhance stress tolerance in grapevines. This [...] Read more.
Environmental challenges such as drought, high temperatures, and salinity compromise grapevine physiology, reduce productivity, and negatively affect grape and wine quality. In recent years, foliar applications of biostimulants, antitranspirants, and phytohormones have emerged as promising strategies to enhance stress tolerance in grapevines. This review focuses on the main effects of salinity, drought, and high temperatures and the combined impact of drought and high temperatures on grapevines and examines how foliar applications influence grapevine responses under these specific stress conditions. Synthesizing the recent findings from the last ten years (160 articles), it provides direct insights into the potential of these compounds to alleviate each type of stress, highlighting their effects on grapevine physiology, yield components, and secondary metabolites in berries. While their mechanism of action is not entirely clear and their efficacy can vary depending on the type of compound used and the grapevine variety, most studies report a beneficial effect or no effect on grapevines under abiotic stresses (either single or combined). Future research is necessary to optimize the concentrations of these compounds and determine the appropriate number and timing of applications, particularly under open-field experiments. Additionally, studies should assess the effect of foliar applications under multiple abiotic stress conditions. In conclusion, integrating foliar applications into vineyard management represents a sustainable technique to mitigate abiotic stresses associated with climate change, such as salinity, water deficit, and heat stress, while preserving or enhancing the quality of grapes and wines. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
18 pages, 3104 KiB  
Article
Reduced Glutathione in Modulation of Salt Stress on Sour Passion Fruit Production and Quality
by Weslley Bruno Belo de Souza, Geovani Soares de Lima, Lauriane Almeida dos Anjos Soares, Mirandy dos Santos Dias, Brencarla de Medeiros Lima, Larissa Fernanda Souza Santos, Valeska Karolini Nunes Oliveira, Rafaela Aparecida Frazão Torres, Hans Raj Gheyi, Lucyelly Dâmela Araújo Borborema, André Alisson Rodrigues da Silva, Vitor Manoel Bezerra da Silva and Valéria Fernandes de Oliveira Sousa
Plants 2025, 14(14), 2149; https://doi.org/10.3390/plants14142149 - 11 Jul 2025
Viewed by 412
Abstract
This study evaluated the effects of reduced glutathione (GSH) application on the production and quality of sour passion fruit irrigated with brackish water in the semi-arid region of Paraíba, Brazil. The experiment was conducted in drainage lysimeters under greenhouse conditions at the Center [...] Read more.
This study evaluated the effects of reduced glutathione (GSH) application on the production and quality of sour passion fruit irrigated with brackish water in the semi-arid region of Paraíba, Brazil. The experiment was conducted in drainage lysimeters under greenhouse conditions at the Center of Technology and Natural Resources of the Federal University of Campina Grande (UFCG). Treatments combined five levels of electrical conductivity of brackish irrigation water (Bw: 0.4, 1.2, 2.0, 2.8, and 3.6 dS m−1) and four GSH concentrations (0, 40, 80, and 120 mg L−1), arranged in a randomized block design with three replicates. Salinity levels above 0.4 dS m−1 negatively affected fruit production and post-harvest quality of ‘BRS GA1’ sour passion fruit. Foliar application of 120 mg L−1 GSH increased fruit yield, while 74 mg L−1 GSH mitigated salt stress effects on production and pulp chemical quality. The ‘BRS GA1’ cultivar was highly sensitive to salinity, showing a 26.9% yield reduction per unit increase in Bw electrical conductivity above 0.4 dS m−1. The results suggest that GSH can alleviate salt stress damage, improving crop productivity and fruit quality under semi-arid conditions. Full article
Show Figures

Figure 1

21 pages, 3307 KiB  
Article
Genome-Wide Insights into Streptomyces Novel Species Qhu-G9 and Its Potential for Enhancing Salt Tolerance and Growth in Avena sativa L. and Onobrychis viciifolia Scop
by Xin Xiang, Xiaolan Ma, Hengxia Yin, Liang Chen, Jiao Li, Wenjing Li, Shuhan Zhang, Chenghang Sun and Benyin Zhang
Plants 2025, 14(14), 2135; https://doi.org/10.3390/plants14142135 - 10 Jul 2025
Viewed by 293
Abstract
With the increasing severity of global climate change and soil salinization, the development of microorganisms that enhance crop salt tolerance has become a critical focus of agricultural research. In this study, we explored the potential of a novel Streptomyces species Qhu-G9 as a [...] Read more.
With the increasing severity of global climate change and soil salinization, the development of microorganisms that enhance crop salt tolerance has become a critical focus of agricultural research. In this study, we explored the potential of a novel Streptomyces species Qhu-G9 as a plant growth-promoting rhizobacterium (PGPR) under salt stress conditions, employing whole-genome sequencing and functional annotation. The genomic analysis revealed that Qhu-G9 harbors various genes related to plant growth promotion, including those involved in phosphate solubilization, indole-3-acetic acid (IAA) biosynthesis, antioxidant activity, and nitrogen fixation. A total of 8528 coding genes were annotated in Qhu-G9, with a significant proportion related to cell metabolism, catalytic activity, and membrane transport, suggesting its broad growth-promoting potential. In vitro experiments demonstrated that Qhu-G9 exhibited strong iron siderophore production, IAA synthesis, phosphate solubilization, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, all of which correlate with its plant growth-promoting capacity. Further plant growth trials revealed that Qhu-G9 significantly enhances the growth of Avena sativa and Onobrychis viciifolia seedlings under salt stress conditions, improving key physiological parameters, such as chlorophyll content, relative water content, and photosynthetic efficiency. Under salt stress conditions, inoculation with Qhu-G9 resulted in notable increases in total biomass, root length, and plant height. Biochemical analyses further confirmed that Qhu-G9 alleviates the oxidative damage induced by salt stress by boosting antioxidant enzyme activities, reducing peroxide levels, and promoting the accumulation of osmotic regulators. These findings suggest that Qhu-G9 holds great promise as a PGPR that not only promotes plant growth, but also enhances plant tolerance to salt stress; thus, it has significant agricultural potential. Full article
(This article belongs to the Special Issue Biochemical Responses of Horticultural Crops to Abiotic Stresses)
Show Figures

Figure 1

17 pages, 2428 KiB  
Article
Combining Diluted Seawater and Fertilizer in an Ion-Based Multivariate Approach as an Effective Assay of Salt Tolerance in Brassica juncea Seedlings
by Morgan Tomlin, William Bridges, Qiong Su, Raghupathy Karthikeyan, Byoung Ryong Jeong, Haibo Liu, Gary L. Amy and Jeffrey Adelberg
Horticulturae 2025, 11(7), 820; https://doi.org/10.3390/horticulturae11070820 - 10 Jul 2025
Viewed by 309
Abstract
Non-conventional water sources (saline and brackish water) are viable options for crop cultivation. Current salt-tolerance research largely focuses on Na+ and Cl, while other ions in these waters remain ill-understood. Synthetic seawater was a representative of saline and brackish water [...] Read more.
Non-conventional water sources (saline and brackish water) are viable options for crop cultivation. Current salt-tolerance research largely focuses on Na+ and Cl, while other ions in these waters remain ill-understood. Synthetic seawater was a representative of saline and brackish water in a Design of Experiments (DoE) treatment design used to evaluate the effects of factors [synthetic seawater (0, 15, 30, or 45%, v/v, Instant Ocean®), total inorganic nitrogen (0, 14, or 28 mM; 1 NH4+:8 NO3 ratio), potassium (0, 9, or 21 mM), calcium (0, 2, or 5 mM), silicon (0, 0.03, or 0.09 mM) and zinc (0, 0.05, or 2 mM)] on seedlings for two varieties of Brassica juncea [‘Carolina Broadleaf’ (CB) and ‘Florida Broadleaf’ (FB)] using a hydroponic assay. In 30–45% synthetic seawater, 0.09 mM of silicon or 2 mM of calcium alleviated salt stress. In FB, 0.04–0.06 mM of silicon was optimal for the production of new leaves. The CB variety showed greater production of new leaves with 0.09 mM of silicon and 28 mM of potassium. Potassium and calcium are components of seawater, and a sodium chloride assay would not account for their interactions without a multivariate approach to evaluate salt tolerance. The seedling assay identified factors and established criteria for larger-scale harvest experiments. Full article
(This article belongs to the Topic Plants Nutrients, 2nd Volume)
Show Figures

Graphical abstract

20 pages, 9728 KiB  
Article
The Response of the Functional Traits of Phragmites australis and Bolboschoenus planiculmis to Water and Saline–Alkaline Stresses
by Lili Yang, Yanjing Lou and Zhanhui Tang
Plants 2025, 14(14), 2112; https://doi.org/10.3390/plants14142112 - 9 Jul 2025
Viewed by 356
Abstract
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration [...] Read more.
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration levels as stress factors to assess eight key functional traits of Phragmites australis and Bolboschoenus planiculmis, dominant species in the salt marsh wetlands in the western region of Jilin province, China. The study aimed to evaluate how these factors influence the functional traits of P. australis and B. planiculmis. Our results showed that the leaf area, root biomass, and clonal biomass of P. australis significantly increased, and the leaf area of B. planiculmis significantly decreased under low and medium saline–alkaline concentration treatments, while the plant height, ramet number, and aboveground biomass of P. australis and the root biomass, clonal biomass, and clonal/belowground biomass ratio of B. planiculmis were significantly reduced and the ratio of belowground to aboveground biomass of B. planiculmis significantly increased under high saline–alkaline concentration treatment. The combination of drought conditions with medium and high saline–alkaline treatments significantly reduced leaf area, ramet number, and clonal biomass in both species. The interaction between flooding water level and medium and high saline–alkaline treatments significantly suppressed the plant height, root biomass, and aboveground biomass of both species, with the number of ramets having the greatest contribution. These findings suggest that the effects of water levels and saline–alkaline stress on the functional traits of P. australis and B. planiculmis are species-specific, and the ramet number–plant height–root biomass (RHR) strategy may serve as an adaptive mechanism for wetland clones to environmental changes. This strategy could be useful for predicting plant productivity in saline–alkaline wetlands. Full article
Show Figures

Figure 1

Back to TopTop