Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = water–energy–land–food nexus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 8817 KB  
Article
Geospatial Assessment and Modeling of Water–Energy–Food Nexus Optimization for Sustainable Paddy Cultivation in the Dry Zone of Sri Lanka: A Case Study in the North Central Province
by Awanthi Udeshika Iddawela, Jeong-Woo Son, Yeon-Kyu Sonn and Seung-Oh Hur
Water 2026, 18(2), 152; https://doi.org/10.3390/w18020152 - 6 Jan 2026
Viewed by 497
Abstract
This study presents a geospatial assessment and modeling of the water–energy–food (WEF) nexus to enrich the sustainable paddy cultivation of the North Central Province (NCP) of Sri Lanka in the Dry Zone. Increasing climatic variability and limited resources have raised concerns about the [...] Read more.
This study presents a geospatial assessment and modeling of the water–energy–food (WEF) nexus to enrich the sustainable paddy cultivation of the North Central Province (NCP) of Sri Lanka in the Dry Zone. Increasing climatic variability and limited resources have raised concerns about the need for efficient resource management to restore food security globally. The study analyzed the three components of the WEF nexus for their synergies and trade-offs using GIS and remote sensing applications. The food productivity potential was derived using the Normalized Difference Vegetation Index (NDVI), Soil Organic Carbon (SOC), soil type, and land use, whereas water availability was assessed using the Normalized Difference Water Index (NDWI), Soil Moisture Index (SMI), and rainfall data. Energy potential was mapped using WorldClim 2.1 datasets on solar radiation and wind speed and the proximity to the national grid. Scenario modeling was conducted through raster overlay analysis to identify zones of WEF constraints and synergies such as low food–low water areas and high energy–low productivity areas. To ensure the accuracy of the created model, Pearson correlation analysis was used to internally validate between hotspot layers (representing extracted data) and scenario layers (representing modeled outputs). The results revealed a strong positive correlation (r = 0.737), a moderate positive correlation for energy (r = 0.582), and a positive correlation for food (r = 0.273). Those values were statistically significant at p > 0.001. These results confirm the internal validity and accuracy of the model. This study further calculated the total greenhouse gas (GHG) emissions from paddy cultivation in NCP as 1,070,800 tCO2eq yr−1, which results in an emission intensity of 5.35 tCO2eq ha−1 yr−1, with CH4 contributing around 89% and N2O 11%. This highlights the importance of sustainable cultivation in mitigating agricultural emissions that contribute to climate change. Overall, this study demonstrates a robust framework for identifying areas of resource stress or potential synergy under the WEF nexus for policy implementation, to promote climate resilience and sustainable paddy cultivation, to enhance the food security of the country. This model can be adapted to implement similar research work in the future as well. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

23 pages, 3422 KB  
Article
Evolution of Urban–Agricultural–Ecological Spatial Structure Driven by Irrigation and Drainage Projects and Water–Heat–Vegetation Response
by Tianqi Su and Yongmei
Agriculture 2026, 16(2), 142; https://doi.org/10.3390/agriculture16020142 - 6 Jan 2026
Viewed by 233
Abstract
In the context of global climate change and intensified water resource constraints, studying the evolution of the urban–agricultural–ecological spatial structure and the water–heat–vegetation responses driven by large-scale irrigation and drainage projects in arid and semi-arid regions is of great significance. Based on multitemporal [...] Read more.
In the context of global climate change and intensified water resource constraints, studying the evolution of the urban–agricultural–ecological spatial structure and the water–heat–vegetation responses driven by large-scale irrigation and drainage projects in arid and semi-arid regions is of great significance. Based on multitemporal remote sensing data from 1985 to 2015, this study takes the Inner Mongolia Hetao Plain as the research area, constructs a “multifunctionality–dynamic evolution” dual-principle classification system for urban–agricultural–ecological space, and adopts the technical process of “separate interpretation of each single land type using the maximum likelihood algorithm followed by merging with conflict pixel resolution” to improve the classification accuracy to 90.82%. Through a land use transfer matrix, a standard deviation ellipse model, surface temperature (LST) inversion, and vegetation fractional coverage (VFC) analysis, this study systematically reveals the spatiotemporal differentiation patterns of spatial structure evolution and surface parameter responses throughout the project’s life cycle. The results show the following: (1) The spatial structure follows the path of “short-term intense disturbance–long-term stable optimization”, with agricultural space stability increasing by 4.8%, the ecological core area retention rate exceeding 90%, and urban space expanding with a shift from external encroachment to internal filling, realizing “stable grain yield with unchanged cultivated land area and improved ecological quality with controlled green space loss”. (2) The overall VFC shows a trend of “central area stable increase (annual growth rate 0.8%), eastern area fluctuating recovery (cyclic amplitude ±12%), and western area local improvement (key patches increased by 18%)”. (3) The LST-VFC relationship presents spatiotemporal misalignment, with a 0.8–1.2 °C anomalous cooling in the central region during the construction period (despite a 15% VFC decrease), driven by irrigation water thermal inertia, and a disrupted linear correlation after completion due to crop phenology changes and plastic film mulching. (4) Irrigation and drainage projects optimize water resource allocation, constructing a hub regulation model integrated with the Water–Energy–Food (WEF) Nexus, providing a replicable paradigm for ecological effect assessment of major water conservancy projects in arid regions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

23 pages, 11522 KB  
Article
Synergistic Regulation of Water–Land–Energy–Food–Carbon Nexus in Large Agricultural Irrigation Areas
by Zhenxiong Wan, Haiyan Li, Xiao Liu, Lijuan Huo, Yingshan Chen, Luchen Wang and Mo Li
Agronomy 2025, 15(12), 2776; https://doi.org/10.3390/agronomy15122776 - 30 Nov 2025
Cited by 1 | Viewed by 601
Abstract
Agricultural water resources face growing pressure from rising food demand and environmental changes. In large agricultural irrigation areas, water and land use is closely linked to energy consumption, carbon emissions, and food production. Therefore, regulating the water–land–energy–food–carbon nexus under multiple external changes is [...] Read more.
Agricultural water resources face growing pressure from rising food demand and environmental changes. In large agricultural irrigation areas, water and land use is closely linked to energy consumption, carbon emissions, and food production. Therefore, regulating the water–land–energy–food–carbon nexus under multiple external changes is essential for achieving sustainable agriculture. This study aims to optimize water and land allocation in large agricultural irrigation areas to enhance yields and reduce carbon emissions under different external environments and production conditions. A spatial–temporal synergistic optimization and regulation model for water and land resources in large agricultural irrigation zones is developed. Based on 191 representative irrigation districts in Heilongjiang Province, multiple scenarios are constructed, including water-saving irrigation, climate change and low-carbon irrigation energy transitions. Optimal solutions are identified using the Non-dominated Sorting Genetic Algorithm III. The results indicate that, after optimization in the current scenario, crop production increased by 2.13%, carbon emissions decreased by 1.23%, and irrigation energy productivity rose by 9.33%. Concurrently, water-saving irrigation should be prioritized in western regions. This study provides an efficient water management pathway for major food production regions. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

43 pages, 6077 KB  
Article
Sustainable Land Management by Agrivoltaics in Colombia’s Post-Conflict Regions: An Integrated Approach from the Water–Energy–Food Nexus
by Sebastian Caceres-Garcia, Pablo Rodriguez-Casas and Javier Rosero-Garcia
World 2025, 6(4), 149; https://doi.org/10.3390/world6040149 - 7 Nov 2025
Viewed by 1983
Abstract
Agrivoltaic (AV) systems are increasingly recognized as a strategy to enhance sustainable land management, yet their application in post-conflict settings remains underexplored. This study addresses this gap by evaluating AV deployment in two Colombian municipalities located in PDET/ZOMAC regions, using an integrated framework [...] Read more.
Agrivoltaic (AV) systems are increasingly recognized as a strategy to enhance sustainable land management, yet their application in post-conflict settings remains underexplored. This study addresses this gap by evaluating AV deployment in two Colombian municipalities located in PDET/ZOMAC regions, using an integrated framework that expands the conventional Water–Energy–Food (WEF) nexus into the Water–Energy–Food–Soil–Climate–Communities (WEFSCC) nexus. The research combined GIS-based site characterization, crop yield and water balance modeling (contrasting traditional irrigation with hydroponics), and photovoltaic performance simulations for 30 kW systems, under conservative and moderate scenarios. Economic analyses included Net Present Value (NPV), Internal Rate of Return (IRR), and Free Cash Flow (FCL), with sensitivity tests for crop prices, yields, tariffs, and costs. Results indicate that AV can reduce crop irrigation demand by up to 40%, while generating 17 MWh/month of electricity per site. Cabrera exhibited higher profitability than Pisba, explained by yield differences and site-specific energy outputs. Comparative analysis confirmed consistency with experiences in Africa and Europe, while emphasizing local socio-environmental benefits. Conclusions highlight AV systems as resilient tools for sustainable land management in Colombia’s post-conflict regions, with actionable implications for land-use regulation, fiscal incentives, and international cooperation programs targeting rural development. Full article
(This article belongs to the Special Issue Green Economy and Sustainable Economic Development)
Show Figures

Figure 1

19 pages, 914 KB  
Article
Driving Factors of Spatial–Temporal Differences in Agricultural Energy Consumption Evolution in the Yellow River Basin: A Perspective of Water–Energy–Food–Land–Population Nexus
by Chenjun Zhang, Jiaqin Shi, Xiangyang Zhao and Erjie Pei
Water 2025, 17(20), 2971; https://doi.org/10.3390/w17202971 - 15 Oct 2025
Viewed by 671
Abstract
The Yellow River Basin (YRB) is a core region for agricultural production in China; however, its agricultural energy consumption exhibits significant spatial–temporal differences, and it is confronted with the practical demand for the coordination of low-carbon transition and food security. Investigating the driving [...] Read more.
The Yellow River Basin (YRB) is a core region for agricultural production in China; however, its agricultural energy consumption exhibits significant spatial–temporal differences, and it is confronted with the practical demand for the coordination of low-carbon transition and food security. Investigating the driving factors of agricultural energy consumption in the YRB is crucial for optimizing its agricultural energy structure, advancing low-carbon agricultural development, and offering targeted support for regional agricultural sustainability. Based on the data of YRB from 2000 to 2021, this paper employs the Logarithmic Mean Divisia Index (LMDI) method to decompose the driving factors of agricultural energy consumption in the basin by examining the interrelationships among five key factors: water, energy, food, land, and population. The results showed the following: (1) Per capita food production efficiency effect is the main factor driving the increase in agricultural energy consumption, followed by the water consumption output efficiency effect, the effective irrigation rate effect, the actual irrigation ratio effect, and the population scale effect. (2) The agricultural employment structure effect, the energy consumption output efficiency effect, the intensity of agricultural acreage effect, and the irrigation quota effect have reduced agricultural energy consumption. (3) Specifically, in Inner Mongolia, Shanxi and Henan, the largest incremental effect is the per capita food production efficiency effect. However, the primary driver in the remaining six provinces is the water consumption output efficiency effect. Regarding the reduction effect, the largest driver in Gansu, Shanxi and Shandong is the energy consumption output efficiency effect. Further, this paper analyzes the drivers of spatial differences in agricultural energy consumption in nine places. The research results can provide theoretical support and practical references for formulating targeted regional policies for the low-carbon transition of agricultural energy in the YRB. Full article
Show Figures

Figure 1

21 pages, 1689 KB  
Review
Reconsidering the Soil–Water–Crops–Energy (SWCE) Nexus Under Climate Complexity—A Critical Review
by Nektarios N. Kourgialas
Agriculture 2025, 15(17), 1891; https://doi.org/10.3390/agriculture15171891 - 5 Sep 2025
Cited by 1 | Viewed by 1146
Abstract
Nowadays, sustainable agriculture is emerging as a critical framework within which food production, environmental protection and resilience to climate change must go hand in hand. At the core of this framework are the linkages between soil, water, crops, and energy (SWCE). As pressures [...] Read more.
Nowadays, sustainable agriculture is emerging as a critical framework within which food production, environmental protection and resilience to climate change must go hand in hand. At the core of this framework are the linkages between soil, water, crops, and energy (SWCE). As pressures from climate change, population growth and agricultural land degradation intensify, environmental management strategies are called upon to become more interdisciplinary, targeted and cost-effective. This review article synthesizes recent scientific findings shaping the contemporary understanding of hydro-environmental agriculture and critically examines the conceptual foundation of the SWCE nexus under climate complexity. In addition to reviewing methodological approaches, it highlights both successful global practice examples—such as integrated solar-powered irrigation and conservation-oriented soil–water management systems—and failed or problematic implementations where institutional fragmentation, unsustainable groundwater use, or energy trade-offs undermined outcomes. By analyzing these contrasting experiences, the article identifies key limiting factors and enabling conditions for scaling up nexus-based solutions. Finally, it provides recommendations for future research, integration, and policy-making, emphasizing the importance of adaptive governance, participatory approaches, and cross-sectoral collaboration to enhance the sustainability and resilience of agriculture. Full article
Show Figures

Graphical abstract

29 pages, 2759 KB  
Article
Exploring the Coordinated Development of Water-Land-Energy-Food System in the North China Plain: Spatio-Temporal Evolution and Influential Determinants
by Zihong Dai, Jie Wang, Wei Fu, Juanru Yang and Xiaoxi Xia
Land 2025, 14(9), 1782; https://doi.org/10.3390/land14091782 - 2 Sep 2025
Viewed by 1030
Abstract
Water, land, energy, and food are fundamental resources for human survival and ecological stability, yet they face intensifying pressure from surging demands and spatial mismatches. Integrated governance of their interconnected nexus is pivotal to achieving sustainable development. In this study, we analyze the [...] Read more.
Water, land, energy, and food are fundamental resources for human survival and ecological stability, yet they face intensifying pressure from surging demands and spatial mismatches. Integrated governance of their interconnected nexus is pivotal to achieving sustainable development. In this study, we analyze the water-land-energy-food (WLEF) nexus synergies in China’s North China Plain, a vital grain base for China’s food security. We develop a city-level WLEF evaluation framework and employ a coupling coordination model to assess spatiotemporal patterns of the WLEF system from 2010 to 2022. Additionally, we diagnose critical internal and external influencing factors of the WLEF coupling system, using obstacle degree modeling and geographical detectors. The results indicate that during this period, the most critical internal factor was per capita water resource availability. The impact of the external factor—urbanization level—was characterized by fluctuation and a general upward trend, and by 2022, it had become the dominant influencing factor. Results indicated that the overall development of the WLEF system exhibited a fluctuating trend of initial increasing then decreasing during the study period, peaking at 0.426 in 2016. The coupling coordination level of the WLEF system averaged around 0.5, with the highest value (0.526) in 2016, indicating a marginally coordinated state. Regionally, a higher degree of coordination was presented in the southern regions of the North China Plain compared with the northern areas. Anhui province achieved the optimal coordination, while Beijing consistently ranked lowest. The primary difference lies in the abundant water resources in Anhui, in contrast to the water scarcity in Beijing. Internal diagnostic analysis identified per capita water availability as the primary constraint on system coordination. External factors, including urbanization rate, primary industry’s added value, regional population, and rural residents’ disposable income, exhibited growing influence on the system over time. This study provides a theoretical framework for WLEF system coordination and offers decision-making support for optimizing resource allocation and promoting sustainable development in comparable regions. Full article
(This article belongs to the Special Issue Connections Between Land Use, Land Policies, and Food Systems)
Show Figures

Figure 1

18 pages, 3409 KB  
Article
Enhancing Resilience and Self-Sufficiency in the Water–Energy–Food Nexus: A Case Study of Hydroponic Greenhouse Systems in Central Greece
by G.-Fivos Sargentis, Errikos Markatos, Nikolaos Malamos and Theano Iliopoulou
Earth 2025, 6(3), 95; https://doi.org/10.3390/earth6030095 - 11 Aug 2025
Cited by 1 | Viewed by 4542
Abstract
The water–energy–food (WEF) nexus provides a critical framework for addressing the interconnected challenges of resource scarcity and sustainability in the face of global population growth and climate variability. This study investigates the application of a WEF nexus approach within the operation and management [...] Read more.
The water–energy–food (WEF) nexus provides a critical framework for addressing the interconnected challenges of resource scarcity and sustainability in the face of global population growth and climate variability. This study investigates the application of a WEF nexus approach within the operation and management of a hydroponic greenhouse unit in Central Greece, with the aim of enhancing the unit’s energy autonomy and resource sufficiency. Hydroponics, a soilless cultivation method, optimizes water and land use but relies heavily on energy inputs, necessitating integrated solutions. Through the case study approach, we analyze the unit’s resource dynamics per hectare of water (68 MWh equivalent from desalination), energy (125 MWh or 321 GJ/ha plus 74.5 GJ/ha for fertigation), and food production (~295 tons, which contains 50,250,000 kcal and corresponds to 210 GJ) and propose technical solutions: photovoltaic panels as greenhouse coverings and water rain harvesting regulated with a small reservoir. These innovations could reduce external energy dependency by 90–95% and water use by 25–35%. Energy efficiency is quantified using the energy ratio (ER) and net energy gain (NEG), while resilience is assessed via system reliability under resource variability. Conclusively, this study illustrates how a nexus-based approach can effectively upgrade systems into climate-resilient, resource-efficient models as the abundance or scarcity of one source affects the availability or limitation of the others. Overall, the approach presented in this study could also be used to safeguard the supply chains in megacities. Full article
Show Figures

Figure 1

35 pages, 13672 KB  
Article
Transboundary Water–Energy–Food Nexus Management in Major Rivers of the Aral Sea Basin Through System Dynamics Modelling
by Sara Pérez Pérez, Iván Ramos-Diez and Raquel López Fernández
Water 2025, 17(15), 2270; https://doi.org/10.3390/w17152270 - 30 Jul 2025
Cited by 2 | Viewed by 1640 | Correction
Abstract
Central Asia (CA) faces growing Water–Energy–Food (WEF) Nexus challenges, due to its complex transboundary water management, legacy Soviet-era water infrastructure, and increasing climate and socio-economic pressures. This study presents the development of a System Dynamics Model (SDM) to evaluate WEF interdependencies across the [...] Read more.
Central Asia (CA) faces growing Water–Energy–Food (WEF) Nexus challenges, due to its complex transboundary water management, legacy Soviet-era water infrastructure, and increasing climate and socio-economic pressures. This study presents the development of a System Dynamics Model (SDM) to evaluate WEF interdependencies across the Aral Sea Basin (ASB), including the Amu Darya and Syr Darya river basins and their sub-basins. Different downscaling strategies based on the area, population, or land use have been applied to process open-access databases at the national level in order to match the scope of the study. Climate and socio-economic assumptions were introduced through the integration of already defined Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs). The resulting SDM incorporates more than 500 variables interacting through mathematical relationships to generate comprehensive outputs to understand the WEF Nexus concerns. The SDM was successfully calibrated and validated across three key dimensions of the WEF Nexus: final water discharge to the Aral Sea (Mean Absolute Error, MAE, <5%), energy balance (MAE = 4.6%), and agricultural water demand (basin-wide MAE = 1.2%). The results underscore the human-driven variability of inflows to the Aral Sea and highlight the critical importance of transboundary coordination to enhance future resilience. Full article
Show Figures

Figure 1

26 pages, 2178 KB  
Article
Optimizing Agri-PV System: Systematic Methodology to Assess Key Design Parameters
by Kedar Mehta and Wilfried Zörner
Energies 2025, 18(14), 3877; https://doi.org/10.3390/en18143877 - 21 Jul 2025
Cited by 5 | Viewed by 2976
Abstract
Agrivoltaic (Agri-PV) systems face the critical challenge of balancing photovoltaic energy generation with crop productivity, yet systematic approaches to quantifying the trade-offs between these objectives remain scarce. In this study, we identify nine essential design indicators: panel tilt angle, elevation, photovoltaic coverage ratio, [...] Read more.
Agrivoltaic (Agri-PV) systems face the critical challenge of balancing photovoltaic energy generation with crop productivity, yet systematic approaches to quantifying the trade-offs between these objectives remain scarce. In this study, we identify nine essential design indicators: panel tilt angle, elevation, photovoltaic coverage ratio, shading factor, land equivalent ratio, photosynthetically active radiation (PAR) utilization, crop yield stability index, water use efficiency, and return on investment. We introduce a novel dual matrix Analytic Hierarchy Process (AHP) to evaluate their relative significance. An international panel of eighteen Agri-PV experts, encompassing academia, industry, and policy, provided pairwise comparisons of these indicators under two objectives: maximizing annual energy yield and sustaining crop output. The high consistency observed in expert responses allowed for the derivation of normalized weight vectors, which form the basis of two Weighted Influence Matrices. Analysis of Total Weighted Influence scores from these matrices reveal distinct priority sets: panel tilt, coverage ratio, and elevation are most influential for energy optimization, while PAR utilization, yield stability, and elevation are prioritized for crop productivity. This methodology translates qualitative expert knowledge into quantitative, actionable guidance, clearly delineating both synergies, such as the mutual benefit of increased elevation for energy and crop outcomes, and trade-offs, exemplified by the negative impact of high photovoltaic coverage on crop yield despite gains in energy output. By offering a transparent, expert-driven decision-support tool, this framework enables practitioners to customize Agri-PV system configurations according to local climatic, agronomic, and economic contexts. Ultimately, this approach advances the optimization of the food energy nexus and supports integrated sustainability outcomes in Agri-PV deployment. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

20 pages, 1111 KB  
Article
Assessing Policy Consistency and Synergy in China’s Water–Energy–Land–Food Nexus for Low-Carbon Transition
by Xiaonan Zhu, Cheng Zhou and Clare Richardson-Barlow
Land 2025, 14(7), 1431; https://doi.org/10.3390/land14071431 - 8 Jul 2025
Cited by 3 | Viewed by 1652
Abstract
The need for integrated governance of water–energy–land–food (WELF) systems has become paramount in achieving sustainable low-carbon transitions, yet policy consistency across these interdependent sectors remains critically underexplored. This study presents the first systematic assessment of policy consistency and synergy within China’s WELF framework, [...] Read more.
The need for integrated governance of water–energy–land–food (WELF) systems has become paramount in achieving sustainable low-carbon transitions, yet policy consistency across these interdependent sectors remains critically underexplored. This study presents the first systematic assessment of policy consistency and synergy within China’s WELF framework, employing an innovative mixed-methods approach that combines a modified Policy Modeling Consistency (PMC) Index with Content Analysis Methodology (CAM). Policy consistency follows a clear hierarchy: energy (PMC = 9.06, ‘Perfect’), water (8.26, ‘Good’), land (7.03, ‘Acceptable’), and food systems (6.91, ‘Acceptable’), with land–food policies exhibiting critical gaps in multifunctional design. Policy synergy metrics further reveal pronounced sectoral disparities: energy (PS = 0.89) and water (0.81) policies demonstrate strong alignment with central government objectives, whereas land (0.68) and food (0.64) systems exhibit constrained integration capacities due to uncoordinated policy architectures and competing sectoral priorities. Building on these findings, we propose three key interventions: (1) institutional restructuring through the establishment of an inter-ministerial coordination body with binding authority to align WELF sector priorities and enforce consistent and synergy targets, (2) the strategic rebalancing of policy instruments by reallocating fiscal incentives toward nexus-optimizing projects while developing innovative market-based mechanisms for cross-sectoral resource exchange, and (3) adaptive governance implementation through regional policy pilots, dynamic feedback systems, and capacity-building networks to enable context-sensitive WELF transitions while maintaining strategic consistency and synergy. These recommendations directly address the structural deficiencies in WELF governance fragmentation and incentive misalignment identified through our rigorous analysis, while simultaneously advancing theoretical discourse and offering implementable policy solutions for achieving integrated low-carbon transition. Full article
Show Figures

Figure 1

19 pages, 1441 KB  
Article
Water–Energy–Land–Food Nexus to Assess the Environmental Impacts from Coal Mining
by Reginaldo Geremias and Naoki Masuhara
Land 2025, 14(7), 1360; https://doi.org/10.3390/land14071360 - 26 Jun 2025
Viewed by 1368
Abstract
The water–energy–land–food (WELF) nexus is an established framework that allows for a more holistic, systemic and integrated analysis of resources and territorial planning. The main objective of this study was to apply the WELF nexus approach to assess the environmental impacts from coal [...] Read more.
The water–energy–land–food (WELF) nexus is an established framework that allows for a more holistic, systemic and integrated analysis of resources and territorial planning. The main objective of this study was to apply the WELF nexus approach to assess the environmental impacts from coal mining. Data on the water resource, electricity sector, food production and land occupation in the coal region of the Urussanga River basin (Brazil) were described and compared with the area without the coal industry (Canoas/Pelotas basin, Brazil). Indicators evaluating reliability, robustness, equilibrium and diversity (Shannon index-H) were used to evaluate the impacts of mining on the WELF system. The results indicate that coal provides socioeconomic development in the region; however, it has several negative environmental effects. WELF indicators showed that the Urussanga basin has less robustness in the subsystem of water consumption per capita (0.19), installed electrical capacity (0.01) and agricultural production per capita (0.22) compared to Canoas/Pelotas at 0.73, 1.0 and 1.0, respectively. The basin also presented lower diversity in the water consumption sector (H = 0.81) and in the variety of agricultural products (H = 1.58) compared to Canoas/Pelotas (H = 1.0; H = 1.69, respectively). It was concluded that coal mining can affect the WELF system globally, revealing the need to propose alternatives to prevent and mitigate its effects. Full article
(This article belongs to the Special Issue Water, Energy, Land, and Food (WELF) Nexus: An Ecosystems Perspective)
Show Figures

Figure 1

20 pages, 3309 KB  
Article
Water–Energy–Land–Food Nexus Performance and Regional Inequality Toward Low-Carbon Transition in China
by Qi Yao, Hailin Cao and Ruilian Zhang
Land 2025, 14(7), 1343; https://doi.org/10.3390/land14071343 - 24 Jun 2025
Cited by 1 | Viewed by 1160
Abstract
The transition to a low-carbon economy in China necessitates an integrated understanding of the interdependencies within the water–energy–land–food (WELF) nexus. This study evaluates the performance of the WELF nexus across Chinese provinces and examines regional disparities that may hinder or facilitate sustainable development [...] Read more.
The transition to a low-carbon economy in China necessitates an integrated understanding of the interdependencies within the water–energy–land–food (WELF) nexus. This study evaluates the performance of the WELF nexus across Chinese provinces and examines regional disparities that may hinder or facilitate sustainable development goals. Using a multi-dimensional performance index and spatial econometric analysis, we identified key synergies and trade-offs among resource systems under low-carbon policy scenarios. The results revealed significant regional inequalities in nexus efficiency, with economically developed regions exhibiting higher integration and resource optimization, while less-developed areas face persistent structural challenges. These disparities underscore the need for regionally tailored policy interventions that address localized constraints while promoting cohesive national strategies. Our findings provide critical insights for policymakers aiming to align resource management with China’s climate commitments and sustainable development agenda. Full article
Show Figures

Figure 1

23 pages, 36340 KB  
Article
Understanding Unsustainable Irrigation Practices in a Regionally Contested Large River Basin in Peninsular India Through the Lens of the Water–Energy–Food–Environment (WEFE) Nexus
by Bhawana Gupta and John S. Rowan
Water 2025, 17(11), 1644; https://doi.org/10.3390/w17111644 - 29 May 2025
Cited by 1 | Viewed by 2321
Abstract
Water management is a long-standing source of dispute between the riparian states of Karnataka and Tamil Nadu. Recently, these disputes have intensified due to impacts from climate change and Bangalore’s rapid growth to megacity status. Despite well-defined national water governance instruments, competition between [...] Read more.
Water management is a long-standing source of dispute between the riparian states of Karnataka and Tamil Nadu. Recently, these disputes have intensified due to impacts from climate change and Bangalore’s rapid growth to megacity status. Despite well-defined national water governance instruments, competition between state actors and limited access to reliable hydrometric data have led to a fragmented regulatory regime, allowing unchecked exploitation of surface and groundwater resources. Meanwhile, subsidised energy for groundwater pumping incentivises the unsustainable irrigation of high-value, water-intensive crops, resulting in overextraction and harm to aquatic ecosystems. Here, we employ a water–energy–food–environment (WEFE) nexus approach to examine the socio-political, economic, and environmental factors driving unsustainable irrigation practices in the Cauvery River Basin (CRB) of Southern India. Our methodology integrates spatially explicit analysis using digitised irrigation census data, theoretical energy modelling, and crop water demand simulations to assess groundwater use patterns and energy consumption for irrigation and their links with governance and economic growth. We analyse spatio-temporal irrigation patterns across the whole basin (about 85,000 km2) and reveal the correlation between energy access and groundwater extraction. Our study highlights four key findings. First, groundwater pumping during the Rabi (short-rain) season consumes 24 times more energy than during the Kharif (long-rain) season, despite irrigating 40% less land. Second, the increasing depth of borewells, driven by falling water table levels, is a major factor in rising energy consumption. Third, energy input is highest in regions dominated by paddy cultivation. Fourth, water pumping in the Cauvery region accounts for about 16% of India’s agricultural energy use, despite covering only 4% of the country’s net irrigated area. Our study reinforces the existing literature advocating for holistic, catchment-wide planning, aligned with all UN Sustainable Development Goals. Full article
Show Figures

Figure 1

18 pages, 6519 KB  
Article
A Serious Game to Promote Water–Energy–Land–Food–People (WELFP) Nexus Perception and Encourage Pro-Environmental and Pro-Social Urban Agriculture
by Sukanya Sereenonchai and Noppol Arunrat
Sustainability 2025, 17(9), 4148; https://doi.org/10.3390/su17094148 - 3 May 2025
Viewed by 2159
Abstract
Urban agriculture is key to sustainable city development, particularly through public engagement with the Water–Energy–Land–Food–People (WELFP) Nexus. This study examines the effectiveness of serious games in enhancing WELFP understanding and promoting pro-environmental and pro-social behaviors. A game-based learning model was developed using the [...] Read more.
Urban agriculture is key to sustainable city development, particularly through public engagement with the Water–Energy–Land–Food–People (WELFP) Nexus. This study examines the effectiveness of serious games in enhancing WELFP understanding and promoting pro-environmental and pro-social behaviors. A game-based learning model was developed using the Stimulus–Organism–Response (SOR) and Easy–Attractive–Social–Timely (EAST) frameworks, along with the Revised New Ecological Paradigm (NEP) Scale. The model simulates real-world urban agriculture challenges to foster participatory decision-making. A survey of 200 urban agriculture practitioners, analyzed via structural equation modeling (SmartPLS 4.0), found that perceived timeliness (PT) and perceived usefulness (PU) significantly influenced both the perceived sustainable livelihood value (PT: p = 0.000; PU: p = 0.006) and users’ attitudes toward the game (PT: p = 0.000; PU: p = 0.038). While enjoyment positively affected attitude (p = 0.002), it negatively impacted perceived value (p = 0.002), revealing a trade-off between fun and practical relevance. Perceived ease of use improved perceived value (p = 0.000) but did not affect attitude, suggesting emotional engagement matters more. Both attitude and perceived value strongly predicted users’ intention to engage with the game. Post-game reflections highlighted the need for cross-sector collaboration, strategic resource use, access to real-time data, and responsive crisis management. Participants also stressed the importance of public awareness, civic responsibility, and volunteerism in advancing community-driven sustainable agriculture. These findings highlight the need to balance engagement and educational depth in game-based learning for sustainability. Full article
(This article belongs to the Special Issue Challenges and Future Trends of Sustainable Environmental Education)
Show Figures

Figure 1

Back to TopTop