Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (176)

Search Parameters:
Keywords = water–energy–climate nexus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2029 KiB  
Article
A Deep Reinforcement Learning Framework for Cascade Reservoir Operations Under Runoff Uncertainty
by Jing Xu, Jiabin Qiao, Qianli Sun and Keyan Shen
Water 2025, 17(15), 2324; https://doi.org/10.3390/w17152324 - 5 Aug 2025
Viewed by 37
Abstract
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address [...] Read more.
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address inflow variability. This study introduces a novel deep reinforcement learning (DRL) framework that tightly couples probabilistic runoff forecasting with adaptive reservoir scheduling. We integrate a Long Short-Term Memory (LSTM) neural network to model runoff uncertainty and generate probabilistic inflow forecasts, which are then embedded into a Proximal Policy Optimization (PPO) algorithm via Monte Carlo sampling. This unified forecast–optimize architecture allows for dynamic policy adjustment in response to stochastic hydrological conditions. A case study on China’s Xiluodu–Xiangjiaba cascade system demonstrates that the proposed LSTM-PPO framework achieves superior performance compared to traditional baselines, notably improving power output, storage utilization, and spillage reduction. The results highlight the method’s robustness and scalability, suggesting strong potential for supporting resilient water–energy nexus management under complex environmental uncertainty. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

35 pages, 8044 KiB  
Article
Transboundary Water–Energy–Food Nexus Management in Major Rivers of the Aral Sea Basin Through System Dynamics Modelling
by Sara Pérez Pérez, Iván Ramos-Diez and Raquel López Fernández
Water 2025, 17(15), 2270; https://doi.org/10.3390/w17152270 - 30 Jul 2025
Viewed by 369
Abstract
Central Asia (CA) faces growing Water–Energy–Food (WEF) Nexus challenges, due to its complex transboundary water management, legacy Soviet-era water infrastructure, and increasing climate and socio-economic pressures. This study presents the development of a System Dynamics Model (SDM) to evaluate WEF interdependencies across the [...] Read more.
Central Asia (CA) faces growing Water–Energy–Food (WEF) Nexus challenges, due to its complex transboundary water management, legacy Soviet-era water infrastructure, and increasing climate and socio-economic pressures. This study presents the development of a System Dynamics Model (SDM) to evaluate WEF interdependencies across the Aral Sea Basin (ASB), including the Amu Darya and Syr Darya river basins and their sub-basins. Different downscaling strategies based on the area, population, or land use have been applied to process open-access databases at the national level in order to match the scope of the study. Climate and socio-economic assumptions were introduced through the integration of already defined Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs). The resulting SDM incorporates more than 500 variables interacting through mathematical relationships to generate comprehensive outputs to understand the WEF Nexus concerns. The SDM was successfully calibrated and validated across three key dimensions of the WEF Nexus: final water discharge to the Aral Sea (Mean Absolute Error, MAE, <5%), energy balance (MAE = 4.6%), and agricultural water demand (basin-wide MAE = 1.2%). The results underscore the human-driven variability of inflows to the Aral Sea and highlight the critical importance of transboundary coordination to enhance future resilience. Full article
Show Figures

Figure 1

26 pages, 2178 KiB  
Article
Optimizing Agri-PV System: Systematic Methodology to Assess Key Design Parameters
by Kedar Mehta and Wilfried Zörner
Energies 2025, 18(14), 3877; https://doi.org/10.3390/en18143877 - 21 Jul 2025
Viewed by 432
Abstract
Agrivoltaic (Agri-PV) systems face the critical challenge of balancing photovoltaic energy generation with crop productivity, yet systematic approaches to quantifying the trade-offs between these objectives remain scarce. In this study, we identify nine essential design indicators: panel tilt angle, elevation, photovoltaic coverage ratio, [...] Read more.
Agrivoltaic (Agri-PV) systems face the critical challenge of balancing photovoltaic energy generation with crop productivity, yet systematic approaches to quantifying the trade-offs between these objectives remain scarce. In this study, we identify nine essential design indicators: panel tilt angle, elevation, photovoltaic coverage ratio, shading factor, land equivalent ratio, photosynthetically active radiation (PAR) utilization, crop yield stability index, water use efficiency, and return on investment. We introduce a novel dual matrix Analytic Hierarchy Process (AHP) to evaluate their relative significance. An international panel of eighteen Agri-PV experts, encompassing academia, industry, and policy, provided pairwise comparisons of these indicators under two objectives: maximizing annual energy yield and sustaining crop output. The high consistency observed in expert responses allowed for the derivation of normalized weight vectors, which form the basis of two Weighted Influence Matrices. Analysis of Total Weighted Influence scores from these matrices reveal distinct priority sets: panel tilt, coverage ratio, and elevation are most influential for energy optimization, while PAR utilization, yield stability, and elevation are prioritized for crop productivity. This methodology translates qualitative expert knowledge into quantitative, actionable guidance, clearly delineating both synergies, such as the mutual benefit of increased elevation for energy and crop outcomes, and trade-offs, exemplified by the negative impact of high photovoltaic coverage on crop yield despite gains in energy output. By offering a transparent, expert-driven decision-support tool, this framework enables practitioners to customize Agri-PV system configurations according to local climatic, agronomic, and economic contexts. Ultimately, this approach advances the optimization of the food energy nexus and supports integrated sustainability outcomes in Agri-PV deployment. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 1316 KiB  
Review
Groundwater Markets at a Crossroads: A Review of Energy Transitions, Digital Innovations, and Policy Pathways
by Amar Razzaq, Hancheng Liu and Dan Yang
Water 2025, 17(14), 2079; https://doi.org/10.3390/w17142079 - 11 Jul 2025
Viewed by 446
Abstract
Informal groundwater markets, where farmers with wells sell surplus water to neighbors, are a widespread adaptive response to water scarcity, particularly in South Asia where they are most prevalent and well-documented. This review (1990–2025) examines the evolving patterns of these markets by synthesizing [...] Read more.
Informal groundwater markets, where farmers with wells sell surplus water to neighbors, are a widespread adaptive response to water scarcity, particularly in South Asia where they are most prevalent and well-documented. This review (1990–2025) examines the evolving patterns of these markets by synthesizing global literature and viewing them through the lens of three transformative trends: energy transition (especially solar pumps), digital innovations (e.g., blockchain and IoT), and new policy pathways. We synthesize literature to evaluate market structures, contract forms, efficiency and equity outcomes, environmental impacts, and the influence of energy policies and digital tools. The review assesses whether these informal trades fulfill their promise of enhancing water productivity and equity or if new challenges are creating pitfalls. Key objectives include documenting historical evolution, analyzing market performance, discussing externalities like aquifer depletion, examining policy interactions, reviewing digital pilots, exploring social inclusion, comparing governance frameworks, identifying research gaps linked to SDGs, and proposing a policy roadmap for harnessing benefits while ensuring sustainability. Full article
Show Figures

Figure 1

20 pages, 3309 KiB  
Article
Water–Energy–Land–Food Nexus Performance and Regional Inequality Toward Low-Carbon Transition in China
by Qi Yao, Hailin Cao and Ruilian Zhang
Land 2025, 14(7), 1343; https://doi.org/10.3390/land14071343 - 24 Jun 2025
Cited by 1 | Viewed by 415
Abstract
The transition to a low-carbon economy in China necessitates an integrated understanding of the interdependencies within the water–energy–land–food (WELF) nexus. This study evaluates the performance of the WELF nexus across Chinese provinces and examines regional disparities that may hinder or facilitate sustainable development [...] Read more.
The transition to a low-carbon economy in China necessitates an integrated understanding of the interdependencies within the water–energy–land–food (WELF) nexus. This study evaluates the performance of the WELF nexus across Chinese provinces and examines regional disparities that may hinder or facilitate sustainable development goals. Using a multi-dimensional performance index and spatial econometric analysis, we identified key synergies and trade-offs among resource systems under low-carbon policy scenarios. The results revealed significant regional inequalities in nexus efficiency, with economically developed regions exhibiting higher integration and resource optimization, while less-developed areas face persistent structural challenges. These disparities underscore the need for regionally tailored policy interventions that address localized constraints while promoting cohesive national strategies. Our findings provide critical insights for policymakers aiming to align resource management with China’s climate commitments and sustainable development agenda. Full article
Show Figures

Figure 1

22 pages, 6810 KiB  
Article
Provincial-Level Carbon-Reduction Potential for Agricultural Irrigation in China
by Yuncheng Xu
Sustainability 2025, 17(12), 5501; https://doi.org/10.3390/su17125501 - 14 Jun 2025
Viewed by 464
Abstract
Globally, agricultural irrigation accounts for the majority of freshwater use and 15% of annual agricultural greenhouse gas emissions, highlighting its critical mitigation potential amid climate change. While localized Chinese studies have analyzed the water–energy–carbon nexus, nationwide assessments of irrigation carbon-reduction potential, integrating crop [...] Read more.
Globally, agricultural irrigation accounts for the majority of freshwater use and 15% of annual agricultural greenhouse gas emissions, highlighting its critical mitigation potential amid climate change. While localized Chinese studies have analyzed the water–energy–carbon nexus, nationwide assessments of irrigation carbon-reduction potential, integrating crop water requirements, water use, and energy consumption, remain limited due to scarce longitudinal panel data. This study fills this gap by evaluating provincial-level potentials in China (2004–2020) using national/provincial statistical data on crop areas, irrigation water, energy use, and climate parameters. Findings reveal pronounced spatial–temporal variations: Henan, Heilongjiang, and Shandong exhibit the highest crop water demands (driven by rice/maize/wheat), while Heilongjiang, Jiangsu, and Guangdong show substantial water-saving opportunities. Xinjiang has the largest amount of irrigation-related carbon emissions, whereas the northeastern provinces offer the greatest reduction potential. A positive correlation between irrigation-carbon efficiency and groundwater utilization underscores the need for improved groundwater management. By linking crop water requirements to emission reductions through a nationally representative dataset, this study provides empirical evidence for region-specific strategies to enhance water-use efficiency and reduce irrigation’s environmental footprint. The findings inform policymakers on balancing agricultural productivity with sustainability goals, addressing both local water scarcity and global decarbonization imperatives. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

19 pages, 1638 KiB  
Systematic Review
Integrating Sustainable Development and Disaster Mitigation into Climate Policies to Support Water Security in Africa
by Sola Ojo, Solomon Asamoah, Eike Albrecht and Bachar Ibrahim
Earth 2025, 6(2), 57; https://doi.org/10.3390/earth6020057 - 11 Jun 2025
Viewed by 1005
Abstract
Africa’s water security is inextricable from the recent patterns of climate variability. Effective formulation and implementation of climate policies require efficient integration of disaster mitigation and sustainable development to eliminate maladaptation and enhance water security. However, practical implementation is still lacking in many [...] Read more.
Africa’s water security is inextricable from the recent patterns of climate variability. Effective formulation and implementation of climate policies require efficient integration of disaster mitigation and sustainable development to eliminate maladaptation and enhance water security. However, practical implementation is still lacking in many African countries. This study aims to examine practical measures and strategies for the integration of sustainable development and disaster mitigation into climate policies to enhance water security in Africa. A systematic bibliometric and thematic analysis was conducted using 95 peer-reviewed articles within the period 2010 to 2025 from the Scopus database. Software and frameworks such as VOSviewer and the Preferred Reporting Items for Systematic Reviews (PRISMA) were employed to analyze publication trends, co-authorship networks, keyword co-occurrence, and themes. The study revealed current research themes such as nature-based solutions for water security, climate-resilient infrastructure and technologies, and practical measures, such as eco-based adaptation and water energy food nexus, as some components of climate policy integration that can enhance water security in Africa. The study offers key policy recommendations for policymakers in the implementation of integrated climate policies adequate and effective enough to deal with water security issues in Africa. Full article
Show Figures

Figure 1

23 pages, 36340 KiB  
Article
Understanding Unsustainable Irrigation Practices in a Regionally Contested Large River Basin in Peninsular India Through the Lens of the Water–Energy–Food–Environment (WEFE) Nexus
by Bhawana Gupta and John S. Rowan
Water 2025, 17(11), 1644; https://doi.org/10.3390/w17111644 - 29 May 2025
Viewed by 828
Abstract
Water management is a long-standing source of dispute between the riparian states of Karnataka and Tamil Nadu. Recently, these disputes have intensified due to impacts from climate change and Bangalore’s rapid growth to megacity status. Despite well-defined national water governance instruments, competition between [...] Read more.
Water management is a long-standing source of dispute between the riparian states of Karnataka and Tamil Nadu. Recently, these disputes have intensified due to impacts from climate change and Bangalore’s rapid growth to megacity status. Despite well-defined national water governance instruments, competition between state actors and limited access to reliable hydrometric data have led to a fragmented regulatory regime, allowing unchecked exploitation of surface and groundwater resources. Meanwhile, subsidised energy for groundwater pumping incentivises the unsustainable irrigation of high-value, water-intensive crops, resulting in overextraction and harm to aquatic ecosystems. Here, we employ a water–energy–food–environment (WEFE) nexus approach to examine the socio-political, economic, and environmental factors driving unsustainable irrigation practices in the Cauvery River Basin (CRB) of Southern India. Our methodology integrates spatially explicit analysis using digitised irrigation census data, theoretical energy modelling, and crop water demand simulations to assess groundwater use patterns and energy consumption for irrigation and their links with governance and economic growth. We analyse spatio-temporal irrigation patterns across the whole basin (about 85,000 km2) and reveal the correlation between energy access and groundwater extraction. Our study highlights four key findings. First, groundwater pumping during the Rabi (short-rain) season consumes 24 times more energy than during the Kharif (long-rain) season, despite irrigating 40% less land. Second, the increasing depth of borewells, driven by falling water table levels, is a major factor in rising energy consumption. Third, energy input is highest in regions dominated by paddy cultivation. Fourth, water pumping in the Cauvery region accounts for about 16% of India’s agricultural energy use, despite covering only 4% of the country’s net irrigated area. Our study reinforces the existing literature advocating for holistic, catchment-wide planning, aligned with all UN Sustainable Development Goals. Full article
Show Figures

Figure 1

34 pages, 1336 KiB  
Review
Building Climate-Resilient Food Systems Through the Water–Energy–Food–Environment Nexus
by Aurup Ratan Dhar
Environments 2025, 12(5), 167; https://doi.org/10.3390/environments12050167 - 19 May 2025
Viewed by 2547
Abstract
Climate change disrupts global food systems by affecting water, energy, ecosystems, and agricultural productivity. Building climate resilience demands integrated approaches that recognize interdependencies among water, energy, food, and environmental (WEF-E) systems. This review synthesizes current research on how the WEF-E nexus can guide [...] Read more.
Climate change disrupts global food systems by affecting water, energy, ecosystems, and agricultural productivity. Building climate resilience demands integrated approaches that recognize interdependencies among water, energy, food, and environmental (WEF-E) systems. This review synthesizes current research on how the WEF-E nexus can guide climate adaptation strategies. It highlights interdisciplinary solutions—such as solar-powered irrigation, agrivoltaics, agroforestry, conservation agriculture, and nature-based water management—that enhance resource efficiency, stabilize yields, and reduce environmental degradation. Effective implementation requires governance innovation, stakeholder participation, and coherent cross-sector policies. The paper also outlines research priorities, including the development of resilience metrics, modeling tools, and inclusive decision-making mechanisms. Emphasizing both adaptation and mitigation, the WEF-E nexus offers a transformative lens for sustainable, equitable, and climate-resilient food systems. As climate pressures intensify, advancing this integrated framework presents both an urgent necessity and a strategic opportunity to align food security with environmental stewardship. Full article
Show Figures

Figure 1

27 pages, 4144 KiB  
Article
The Food Water Energy Nexus in Agriculture: Understanding Regional Challenges and Practices to Sustainability
by Ei Ngwe Zin Mai, Norikazu Inoue and Yoshihiro Uenishi
Sustainability 2025, 17(10), 4428; https://doi.org/10.3390/su17104428 - 13 May 2025
Viewed by 1017
Abstract
This study explores global research trends, regional challenges, and methodological approaches in food–water–energy (FWE) nexus research within agricultural contexts from 2000 to 2024. A bibliometric analysis of 929 articles indexed in the Web of Science and Scopus was conducted. A sharp increase in [...] Read more.
This study explores global research trends, regional challenges, and methodological approaches in food–water–energy (FWE) nexus research within agricultural contexts from 2000 to 2024. A bibliometric analysis of 929 articles indexed in the Web of Science and Scopus was conducted. A sharp increase in research output has been observed after 2014, with the United States and China identified as dominant contributors. European countries have been recognized as key connectors in international research networks. Thematic evolution indicates a transition from foundational concepts to more advanced approaches, incorporating machine learning, optimization techniques, and circular economy strategies. Regional disparities in research capacity and thematic focus have been highlighted, influenced by differing resource constraints and socio-economic conditions. The energy dimension of the nexus has consistently been identified as a cross-cutting challenge, primarily due to increasing energy demands in agriculture. Methodological preferences have been found to vary across regions: scenario analysis is emphasized in North America, optimization models are commonly applied in East Asia, and stakeholder-centered approaches are more prevalent in developing regions. These findings suggest a need for enhanced international collaboration, greater methodological diversity, and stronger engagement with underrepresented regions, particularly South and Southeast Asia and Africa. Strengthening the FWE nexus framework through inclusive and adaptive research strategies is essential for promoting sustainable agricultural management under increasing global resource pressures. Full article
Show Figures

Figure 1

22 pages, 8673 KiB  
Article
Analysis of the Projected Climate Impacts on the Interlinkages of Water, Energy, and Food Nexus Resources in Narok County, Kenya, and Vhembe District Municipality, South Africa
by Nosipho Zwane, Joel O. Botai, Siyabonga H. Nozwane, Aphinda Jabe, Christina M. Botai, Lucky Dlamini, Luxon Nhamo, Sylvester Mpandeli, Brilliant Petja, Motochi Isaac and Tafadzwanashe Mabhaudhi
Water 2025, 17(10), 1449; https://doi.org/10.3390/w17101449 - 11 May 2025
Viewed by 879
Abstract
The current changing climate requires the development of water–energy–food (WEF) nexus-oriented systems capable of mainstreaming climate-smart innovations into resource management. This study demonstrates the cross-sectoral impacts of climate change on interlinked sectors of water, energy, and food in Narok County, Kenya, and Vhembe [...] Read more.
The current changing climate requires the development of water–energy–food (WEF) nexus-oriented systems capable of mainstreaming climate-smart innovations into resource management. This study demonstrates the cross-sectoral impacts of climate change on interlinked sectors of water, energy, and food in Narok County, Kenya, and Vhembe District, South Africa. This study used projected hydroclimatic extremes across past, present, and future scenarios to examine potential effects on the availability and accessibility of these essential resources. The projected temperature and rainfall are based on nine dynamically downscaled Coupled Model Intercomparison Project Phase 5 (CMIP 5) of the Global Climate Models (GCMs). The model outputs were derived from two IPCC “Representative Concentration Pathways (RCPs)’’, the RCP 4.5 “moderate scenario”, and RCP 8.5 “business as usual scenario”, also defined as the addition of 4.5 W/m2 and 8.5 W/m2 radiative forcing in the atmosphere, respectively, by the year 2100. For the climate change projections, outputs from the historical period (1976–2005) and projected time intervals spanning the near future, defined as the period starting from 2036 to 2065, and the far future, spanning from 2066 to 2095, were considered. An ensemble model to increase the skill, reliability, and consistency of output was formulated from the nine models. The statistical bias correction based on quantile mapping using seven ground-based observation data from the South African Weather Services (SAWS) for Limpopo province and nine ground-based observation data acquired from the Trans-African Hydro-Meteorological Observatory (TAHMO) for Narok were used to correct the systematic biases. Results indicate downscaled climate change scenarios and integrate a modelling framework designed to depict the perceptions of future climate change impacts on communities based on questionnaires and first-hand accounts. Furthermore, the analysis points to concerted efforts of multi-stakeholder engagement, the access and use of technology, understanding the changing business environment, integrated government and private sector partnerships, and the co-development of community resilience options, including climate change adaptation and mitigation in the changing climate. The conceptual climate and WEF resource modelling framework confirmed that future climate change will have noticeable interlinked impacts on WEF resources that will impact the livelihoods of vulnerable communities. Building the resilience of communities can be achieved through transformative WEF nexus solutions that are inclusive, sustainable, equitable, and balance adaptation and mitigation goals to ensure a just and sustainable future for all. Full article
Show Figures

Figure 1

18 pages, 8727 KiB  
Article
The Impacts of Water Policies and Hydrological Uncertainty on the Future Energy Transition of the Power Sector in Shanxi Province, China
by Xingtong Chen, Jijian Lian and Qizhong Guo
Energies 2025, 18(9), 2281; https://doi.org/10.3390/en18092281 - 29 Apr 2025
Viewed by 318
Abstract
Water scarcity under climate change and increasingly stringent water conservation policies may trigger energy security concerns. The current study develops an optimization model to investigate the impacts of water conservation policies and hydrological uncertainties on the regional energy transition process in Shanxi Province, [...] Read more.
Water scarcity under climate change and increasingly stringent water conservation policies may trigger energy security concerns. The current study develops an optimization model to investigate the impacts of water conservation policies and hydrological uncertainties on the regional energy transition process in Shanxi Province, China. The dual-control policies on total water consumption and water intensity are systematically examined for their differential constraints and stimulative effects on various power generation types. Hydrological time series analysis methods are employed to project future water resource variations in Shanxi Province and evaluate their implications for power system optimization. The results indicate that (1) total water constraint policies are more stringent than water intensity constraint policies; (2) changes in water resource availability impose greater restrictions on coal power development than those imposed by current water conservation policies; and (3) when total water resources decrease by approximately 43.5% compared with 2020 levels, Shanxi Province may face electricity shortages. These findings suggest that water conservation policy formulation should be coordinated with regional power sector development planning, while also considering potential energy security risks posed by potential future reductions in water resources. Full article
Show Figures

Figure 1

39 pages, 9409 KiB  
Article
Sustainable Water Optimization Tool (SUWO): An Optimization Framework for the Water–Energy–Food–Ecosystem Nexus
by Salim Yaykiran and Alpaslan Ekdal
Water 2025, 17(9), 1280; https://doi.org/10.3390/w17091280 - 25 Apr 2025
Viewed by 777
Abstract
Sustainable water management requires integrated approaches balancing competing demands and environmental sustainability. This study introduces the Sustainable Water Optimization Tool (SUWO), an open-source, Python-based simulation-optimization framework for basin-scale surface-water-resources management. SUWO employs the water–energy–food–ecosystem (WEF-E) nexus approach, utilizing a multi-objective genetic algorithm (MOGA) [...] Read more.
Sustainable water management requires integrated approaches balancing competing demands and environmental sustainability. This study introduces the Sustainable Water Optimization Tool (SUWO), an open-source, Python-based simulation-optimization framework for basin-scale surface-water-resources management. SUWO employs the water–energy–food–ecosystem (WEF-E) nexus approach, utilizing a multi-objective genetic algorithm (MOGA) to generate Pareto-optimal solutions and facilitate a trade-off analysis among water uses through simulations of reservoir operations, hydro-energy production, irrigation, and flow regulation. SUWO integrates scenario analysis with multi-criteria decision making (MCDM), enabling the evaluation of various management, climate, and environmental scenarios. The framework was applied to the Sakarya River Basin (SRB) in Türkiye, a rapidly developing region pressured by water infrastructure development, hydroelectric power plants (HEPPs), and irrigation expansion. The SUWO-SRB model showed that while Non-dominated Sorting Genetic Algorithm II (NSGA-II) generally exhibited superior performance, NSGA-III presented a competitive alternative. The optimization results were analyzed across four management scenarios under varying hydrological conditions and environmental management classes (EMCs) for the near future. The model results highlight WEF-E nexus trade-offs. Maximizing energy production often impacts irrigation and the ecosystem, while prioritizing sustainable irrigation can reduce energy output. Dry conditions reduce hydropower and irrigation capacity, emphasizing water scarcity vulnerabilities. Ecological deviation negatively correlates with anthropogenic factors. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

4 pages, 361 KiB  
Proceeding Paper
Multidimensional and Multiscale Evaluation Framework Considering Water–Energy–Food–Ecosystem Nexus
by Leonidas Sotirios Kyrgiakos, Dimitra Despoina Tosiliani, Vasileios Angelopoulos, Veronica Bonomelli, Georgios Kleftodimos, Marios Vasileiou, Christina Kleisiari, Asimina Oikonomou, Paolo Prosperi, Hatem Belhouchette and George Vlontzos
Proceedings 2025, 117(1), 12; https://doi.org/10.3390/proceedings2025117012 - 21 Apr 2025
Viewed by 322
Abstract
The agricultural sector in the Mediterranean Basin is the largest consumer of water, using 70% of freshwater resources for crop irrigation, which accounts for 85% of the region’s agricultural output. With climate change and population growth expected to reduce water availability, energy management [...] Read more.
The agricultural sector in the Mediterranean Basin is the largest consumer of water, using 70% of freshwater resources for crop irrigation, which accounts for 85% of the region’s agricultural output. With climate change and population growth expected to reduce water availability, energy management also poses a significant challenge, as 7% of commercial energy is used for freshwater supply. The DIONYSUS project aims to develop practical adaptation solutions for efficient resource use through innovative business models, focusing on four demonstration sites in Egypt, Greece, Morocco, and Italy. It seeks to promote a transition to a Green Economy by engaging stakeholders and utilizing a Cross-Sectoral Nexus adaptation tool. Full article
Show Figures

Figure 1

23 pages, 2621 KiB  
Article
Analysing the Water–Energy Nexus Considering Rainwater Harvesting in Buildings
by Tânia Mara Sebben Oneda and Enedir Ghisi
Water 2025, 17(7), 1037; https://doi.org/10.3390/w17071037 - 31 Mar 2025
Viewed by 504
Abstract
Rainwater harvesting has been widely discussed globally due to major concerns regarding climate change and water scarcity. This paper aims to analyse and evaluate rainwater harvesting in buildings and its relationship with the water–energy nexus. Five types of buildings were analysed: public, industrial, [...] Read more.
Rainwater harvesting has been widely discussed globally due to major concerns regarding climate change and water scarcity. This paper aims to analyse and evaluate rainwater harvesting in buildings and its relationship with the water–energy nexus. Five types of buildings were analysed: public, industrial, commercial, single-family houses, and multi-family residential buildings within the Cubatão do Norte river watershed in Joinville, Brazil. Using simulations in the Netuno programme, the potential for potable water savings was calculated. This potential was compared to the energy consumption for potable water treatment by the municipality. The average potential for potable water savings was the following: 28.18% for public buildings, 50.83% for industrial buildings, 34.12% for commercial buildings, 23.12% for single-family houses, and 18.55% for multi-family residential buildings. After analysing the energy savings for the entire watershed, the average savings were 245 kWh/day for all public sector buildings, 209 kWh/day for all industrial sector buildings, 8 kWh/day for all commercial sector buildings, 25 kWh/day for all single-family houses, and 15 kWh/day for all multi-family residential buildings. Over a year, energy savings can range from 135,426 kWh to 240,900 kWh in all the buildings studied in Joinville. Finally, further studies on the water–energy nexus are needed to make cities more resilient and sustainable in terms of using resources. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Graphical abstract

Back to TopTop