Provincial-Level Carbon-Reduction Potential for Agricultural Irrigation in China
Abstract
1. Introduction
2. Data and Methods
2.1. Measuring Annual Crop Water Requirement
2.2. Measuring Annual Water-Saving Potential
2.3. Measuring Annual Carbon-Reduction Potential
2.4. Datasets
2.4.1. Meteorological Data
2.4.2. Statistics Data
2.4.3. Groundwater Table Data
3. Results
3.1. Crop Production in China
3.2. Evapotranspiration and Precipitation
3.3. Annual Crop Water Requirement
3.4. Water-Saving Potential
3.5. Carbon-Reduction Potential in Irrigation
4. Discussion
4.1. Analysis of Irrigation-Carbon-Emission Intensity
4.2. Analysis of Irrigation-Carbon-Emission Efficiency
4.3. Water-Saving and Carbon-Reduction in the Regions of China in 2020
4.4. Study Limitations and Future Research Directions
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Water-saving potential | |
Irrigation water use | |
Effective precipitation | |
Volume of potential irrigation water use | |
Non-water-saving | |
Water-saving | |
Sprinkler | |
Micro-irrigation | |
Low-pressure pipe-irrigation | |
Other water-saving irrigation | |
Surface water | |
Groundwater | |
Water use |
Appendix A
Crop | Plant Date | ||||||||
---|---|---|---|---|---|---|---|---|---|
Beans | 1 May | 121/122 | 20 | 30 | 40 | 20 | 0.5 | 1.05 | 0.9 |
Cereals | 1 May | 121/122 | 30 | 30 | 60 | 30 | 0.3 | 1.15 | 0.4 |
Cotton | 15 April | 105/106 | 30 | 50 | 60 | 55 | 0.35 | 1.175 | 0.6 |
Maize | 15 June | 166/167 | 20 | 35 | 40 | 30 | 0.7 | 1.2 | 0.475 |
Medicine | 1 June | 151/152 | 30 | 40 | 40 | 25 | 0.6 | 1.15 | 0.8 |
OtherCrops | 1 June | 151/152 | 30 | 40 | 40 | 25 | 0.6 | 1.15 | 0.8 |
Peanut | 15 April | 105/106 | 35 | 45 | 35 | 25 | 0.4 | 1.15 | 0.6 |
Potato | 1 May | 121/122 | 25 | 30 | 45 | 30 | 0.5 | 1.15 | 0.75 |
Rapeseed | 15 March | 74/75 | 25 | 35 | 55 | 30 | 0.35 | 1.075 | 0.35 |
Rice | 1 May | 121/122 | 30 | 30 | 60 | 30 | 1.05 | 1.2 | 0.75 |
Sugar beet | 1 April | 91/92 | 50 | 40 | 50 | 40 | 0.35 | 1.2 | 0.7 |
Sugarcane | 1 Feburary | 32 | 30 | 50 | 180 | 60 | 0.4 | 1.25 | 0.75 |
Vegetables | 1 June | 151/152 | 30 | 40 | 40 | 25 | 0.6 | 1.15 | 0.8 |
Wheat | 1 November | 305/306 | 30 | 140 | 40 | 30 | 0.4 | 1.15 | 0.325 |
References
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Duan, W.; Zou, S.; Chen, Y.; Huang, W.; Rosa, L. Global energy use and carbon emissions from irrigated agriculture. Nat. Commun. 2024, 15, 3084. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.; Gabrielli, P. Achieving net-zero emissions in agriculture: A review. Environ. Res. Lett. 2023, 18, 63002. [Google Scholar] [CrossRef]
- Mehta, P.; Siebert, S.; Kummu, M.; Deng, Q.; Ali, T.; Marston, L.; Xie, W.; Davis, K.F. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat. Water 2024, 2, 254–261. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H.; Huang, H.; Li, X. The carbon emission reduction effect of agricultural policy—Evidence from china. J. Clean. Prod. 2023, 406, 137005. [Google Scholar] [CrossRef]
- Zou, X.; Li, Y.E.; Li, K.; Cremades, R.; Gao, Q.; Wan, Y.; Qin, X. Greenhouse gas emissions from agricultural irrigation in china. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 295–315. [Google Scholar] [CrossRef]
- Liang, X.; Gong, Q.; Li, S.; Huang, S.; Guo, G. Regional agricultural sustainability assessment in china based on a developed model. Environ. Dev. Sustain. 2022, 25, 8729–8752. [Google Scholar] [CrossRef]
- Kang, S. Ten years of agricultural water-saving in china: Achievements, challenges and measures. China Water Resour. 2024, 10, 1–9. [Google Scholar]
- Feng, M.; Chen, Y.; Duan, W.; Zhu, Z.; Wang, C.; Hu, Y. Water-energy-carbon emissions nexus analysis of crop production in the tarim river basin, northwest china. J. Clean. Prod. 2023, 396, 136566. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Y.; Xu, X.; Sun, H.; Li, F.; Wang, Q. Characteristics of the water-energy-carbon fluxes of irrigated pear (Pyrus bretschneideri Rehd) orchards in the north china plain. Agric. Water Manag. 2013, 128, 140–148. [Google Scholar] [CrossRef]
- Zhu, R.; Zhao, R.; Li, X.; Hu, X.; Jiao, S.; Xiao, L.; Xie, Z.; Sun, J.; Wang, S.; Yang, Q.; et al. The impact of irrigation modes on agricultural water-energy-carbon nexus. Sci. Total Environ. 2023, 860, 160493. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, S.; Wong, F.L.; Qin, S.; Wang, Y.; Yang, D.; Lam, H.M. Drivers of carbon flux in drip irrigation maize fields in northwest china. Carbon. Balance Manag. 2021, 16, 12. [Google Scholar] [CrossRef]
- Xiang, W.; Yang, X.; Bian, D.; Pan, Z.; Chen, H.; Chen, Y.; Li, M. Evaluation and prediction of water-energy-carbon nexus efficiency in china based on a new multiregional input-output perspective. J. Environ. Manag. 2023, 339, 117786. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Bin, P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in china. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Fu, Y.; Wang, Y. Analysis of the carbon effect of high-standard basic farmland based on the whole life cycle. Sci. Rep. 2024, 14, 3361. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, B.; Anex, R.; Wang, Y.; Kendall, A.D.; Anctil, A.; Haacker, E.M.K.; Hyndman, D.W. Trends in water use, energy consumption, and carbon emissions from irrigation: Role of shifting technologies and energy sources. Environ. Sci. Technol. 2020, 54, 15329–15337. [Google Scholar] [CrossRef]
- Wood, W.W.; Hyndman, D.W. Groundwater depletion: A significant unreported source of atmospheric carbon dioxide. Earths Future 2017, 5, 1133–1135. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, Z.; Mueller, N.D.; Driscoll, A.W.; Hernandez, R.R.; Grodsky, S.M.; Sloat, L.L.; Chester, M.V.; Zhu, Y.G.; Lobell, D.B. Sustainable irrigation and climate feedbacks. Nat. Food 2023, 4, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. Water Resour. Dev. Manag. Serv. 1998, 300, D05109. [Google Scholar]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1948, 1032, 120–145. [Google Scholar]
- Muratoglu, A.; Bilgen, G.K.; Angin, I.; Kodal, S. Performance analyses of effective rainfall estimation methods for accurate quantification of agricultural water footprint. Water Res. 2023, 238, 120011. [Google Scholar] [CrossRef]
- Xu, H.; Wu, M. A first estimation of county-based green water availability and its implications for agriculture and nioenergy production in the united states. Water 2018, 10, 148. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Liu, J.; Zhang, Y.; Chau, S.; Bhattarai, N.; Wang, Y.; Li, Y.; Connor, T.; Li, Y. Impacts of irrigated agriculture on food-energy-water–CO2 nexus across metacoupled systems. Nat. Commun. 2020, 11, 5837. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Ni, G.; Cong, Z. Spatial distribution characteristics of irrigation water requirement for main crops in china. Trans. CSAE 2009, 25, 6–12. [Google Scholar]
- GB/T 50363-2018; Technical standard for water-saving irrigation project. Ministry of Housing and Urban-Rural Development: Beijing, China, 2018.
- Pellegrini, P.; Fernández, R.J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. Sci. USA 2018, 115, 2335–2340. [Google Scholar] [CrossRef]
- Brown, G.O. The history of the darcy-weisbach equation for pipe flow resistance. In Environmental and Water Resources History; American Society of Civil Engineers: Reston, VA, USA, 2002. [Google Scholar]
- Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W. Water savings potentials of irrigation systems: Global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 2015, 19, 3073–3091. [Google Scholar] [CrossRef]
- Fan, Y.; Li, H.; Miguez-Macho, G. Global patterns of groundwater table depth. Science 2013, 339, 940–943. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, W. Spatial and temporal variation and convergence in the efficiency of high-standard farmland construction: Evidence in china. J. Clean. Prod. 2024, 452, 142200. [Google Scholar] [CrossRef]
- Rajan, A.; Ghosh, K.; Shah, A. Carbon footprint of india’s groundwater irrigation. Carbon. Manag. 2020, 11, 265–280. [Google Scholar] [CrossRef]
- Karimi, P.; Qureshi, A.S.; Bahramloo, R.; Molden, D. Reducing carbon emissions through improved irrigation and groundwater management: A case study from iran. Agric. Water Manag. 2012, 108, 52–60. [Google Scholar] [CrossRef]
- Jamali, M.; Soufizadeh, S.; Yeganeh, B.; Emam, Y. A comparative study of irrigation techniques for energy flow and greenhouse gas (GHG) emissions in wheat agroecosystems under contrasting environments in south of iran. Renew. Sustain. Energy Rev. 2021, 139, 110704. [Google Scholar] [CrossRef]
- Qureshi, A.S. Reducing carbon emission through improved irrigation management: A case study from pakistan. Irrig. Drain. 2014, 63, 132–138. [Google Scholar] [CrossRef]
- Siyal, A.W.; Gerbens-Leenes, P.W.; Nonhebel, S. Energy and carbon footprints for irrigation water in the lower indus basin in pakistan, comparing water supply by gravity fed canal networks and groundwater pumping. J. Clean. Prod. 2021, 286, 125489. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Martínez-Alvarez, V.; Maestre-Valero, J.F.; Gallego-Elvira, B. Influence of the water source on the carbon footprint of irrigated agriculture: A regional study in south-eastern spain. Agronomy 2021, 11, 351. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Mohammadi Shad, Z. Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.; Yang, H.; Ciais, P.; Wada, Y. Global water scarcity assessment incorporating green water in crop production. Water Resour. Res. 2022, 58, e2020WR028570. [Google Scholar] [CrossRef]
Irrigation Type | Subscript | (m) | (m) | |
---|---|---|---|---|
Sprinkler | Spri | 0.80 | 30.60 | 7.04 |
Micro-irrigation | Micro | 0.85 | 10.20 | 7.04 |
Pipe irrigation (low-pressure) | Pipe | 0.80 | 4.18 | 7.04 |
Other (water-saving) | OWS | 0.50 (surface) 0.80 (groundwater) | 0.00 | 7.04 |
Non-water-saving | NWS | Equation (8) | 0.00 | 7.04 |
Province | (m) | Province | (m) | Province | (m) | Province | (m) |
---|---|---|---|---|---|---|---|
Anhui | 18.09 | Hainan | 21.65 | Jilin | 12.43 | Shanxi | 41.22 |
Beijing | 38.83 | Hebei | 43.78 | Liaoning | 20.65 | Sichuan | 84.67 |
Chongqing | 69.52 | Heilongjiang | 8.28 | Neimenggu | 16.51 | Tianjin | 8.31 |
Fujian | 52.50 | Henan | 22.90 | Ningxia | 41.99 | Xinjiang | 35.14 |
Gansu | 46.01 | Hubei | 43.78 | Qinghai | 34.28 | Xizang | 51.95 |
Guangdong | 29.63 | Hunan | 42.04 | Shaanxi | 63.27 | Yunnan | 80.79 |
Guanxi | 45.34 | Jiangsu | 3.47 | Shandong | 13.72 | Zhejiang | 47.78 |
Guizhou | 68.14 | Jiangxi | 33.37 | Shanghai | 0.66 |
Regions | Provinces | GDP Per Capita | |||
---|---|---|---|---|---|
2004 | 2020 | 2004 | 2020 | ||
Eastern | Beijing, Tianjin, Hebei, Jiangsu, Zhejiang, Shanghai, Fujian, Shandong, Guangdong, Hainan | CNY 19.3k | CNY 93.1k | 42.9% | 67.7% |
Central | Shanxi, Anhui, Jiangxi, Henan, Hubei, Hunan | CNY 8.8k | CNY 60.5k | 21.2% | 30.9% |
Western | Neimenggu, Guangxi, Sichuan, Guizhou, Yunnan, Xizang, Shaanxi, Gansu, Ningxia, Xinjiang, Chongqing, Qinghai | CNY 7.9k | CNY 55.6k | 47.5% | 71.6% |
Northeastern | Heilongjiang, Jilin, Liaoning | CNY 12.2k | CNY 51.8k | 36.1% | 41.1% |
Regions | (103 m3/ha) | (km3) | (kg CO2/ha) | (Mt CO2) | (g CO2/m3) | (%) |
---|---|---|---|---|---|---|
China | 4.12 | 288.1 | 104.1 | 7.21 | 28.9 | 15.4 |
Eastern | 4.19 | 80.7 | 75.0 | 1.44 | 21.9 | 10.3 |
Central | 3.51 | 69.8 | 63.3 | 1.26 | 22.0 | 12.6 |
Western | 4.51 | 92.0 | 119.6 | 2.44 | 31.4 | 15.7 |
Northeastern | 4.39 | 42.6 | 213.0 | 2.07 | 48.5 | 38.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y. Provincial-Level Carbon-Reduction Potential for Agricultural Irrigation in China. Sustainability 2025, 17, 5501. https://doi.org/10.3390/su17125501
Xu Y. Provincial-Level Carbon-Reduction Potential for Agricultural Irrigation in China. Sustainability. 2025; 17(12):5501. https://doi.org/10.3390/su17125501
Chicago/Turabian StyleXu, Yuncheng. 2025. "Provincial-Level Carbon-Reduction Potential for Agricultural Irrigation in China" Sustainability 17, no. 12: 5501. https://doi.org/10.3390/su17125501
APA StyleXu, Y. (2025). Provincial-Level Carbon-Reduction Potential for Agricultural Irrigation in China. Sustainability, 17(12), 5501. https://doi.org/10.3390/su17125501