Building Climate-Resilient Food Systems Through the Water–Energy–Food–Environment Nexus
Abstract
:1. Introduction
2. Methods
Bibliometric Analysis and Literature Selection Summary
3. The Water–Energy–Food–Environment Nexus as a Framework for Resilience
4. Climate Change Impacts and Interconnected Challenges at the WEF-E Nexus
5. Strategies for Climate-Resilient Food Systems via the WEF-E Nexus
5.1. Enhancing Water Security and Efficiency in Agriculture
5.2. Sustainable Energy Integration for Food Systems
5.3. Climate-Smart Agricultural Practices and Diversification
5.4. Ecosystem Conservation and Landscape Approaches
5.5. Integrated Governance and Policy for Nexus Resilience
6. Future Directions and Actionable Research Agenda
6.1. Developing Metrics and Tools to Measure Nexus Resilience
6.2. Improving Understanding of Systemic Nexus Dynamics and Thresholds
6.3. Bridging the Implementation Gap Between Nexus Plans and Practice
6.4. Integrating Resilience Thinking with Other Development Frameworks
6.5. Exploring Novel Technologies and Nature-Based Solutions
6.6. Geographic and Context-Specific Research
6.7. Integrating the WEF-E Nexus into Education and Capacity Building
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADB | Asian Development Bank |
CGIAR | Consultative Group on International Agricultural Research |
e.g., | exempli gratia (for example) |
etc. | et cetera (and others) |
FAO | Food and Agriculture Organization of the United Nations |
GHG | Greenhouse gas |
IPCC | Intergovernmental Panel on Climate Change |
IRENA | International Renewable Energy Agency |
IWMI | International Water Management Institute |
NGO | Non-governmental organization |
PAYG | Pay-as-you-go |
SADC | Southern African Development Community |
SDGs | Sustainable Development Goals |
UNEP | United Nations Environment Programme |
WEF | Water–Energy–Food |
WEF-E | Water–Energy–Food–Environment |
°C | Degree Celsius |
References
- Hogeboom, R.J.; Borsje, B.W.; Deribe, M.M.; van der Meer, F.D.; Mehvar, S.; Meyer, M.A.; Özerol, G.; Hoekstra, A.Y.; Nelson, A.D. Resilience Meets the Water–Energy–Food Nexus: Mapping the Research Landscape. Front. Environ. Sci. 2021, 9, 630395. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of Extreme Weather Disasters on Global Crop Production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; Sloat, L.L.; Garcia, A.S.; Davis, K.F.; Ali, T.; Xie, W. Crop Harvests for Direct Food Use Insufficient to Meet the UN’s Food Security Goal. Nat. Food 2022, 3, 367–374. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Ritchie, H.; Rosado, P.; Roser, M. Environmental Impacts of Food Production. Available online: https://ourworldindata.org/environmental-impacts-of-food#:~:text=Data%20ourworldindata.org%20%20One,industry%20make%20a%20bigger (accessed on 9 April 2025).
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Food Security; Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change: Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2019. [Google Scholar]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for Keeping the Food System within Environmental Limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Ingram, J. A Food Systems Approach to Researching Food Security and Its Interactions with Global Environmental Change. Food Sec. 2011, 3, 417–431. [Google Scholar] [CrossRef]
- Tendall, D.M.; Joerin, J.; Kopainsky, B.; Edwards, P.; Shreck, A.; Le, Q.B.; Kruetli, P.; Grant, M.; Six, J. Food System Resilience: Defining the Concept. Glob. Food Secur. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the Energy, Water and Food Nexus: Towards an Integrated Modelling Approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Leck, H.; Simon, D. Fostering Multiscalar Collaboration and Co-Operation for Effective Governance of Climate Change Adaptation. Urban Stud. 2013, 50, 1221–1238. [Google Scholar] [CrossRef]
- Kertolli, E.; Prosperi, P.; Harbouze, R.; Moussadek, R.; Echchgadda, G.; Belhouchette, H. The Water–Energy–Food–Ecosystem Nexus in North Africa Dryland Farming: A Multi-Criteria Analysis of Climate-Resilient Innovations in Morocco. Agric. Food Econ. 2024, 12, 34. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A Systematic Review of Methods for Nexus Assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Mpandeli, S.; Naidoo, D.; Mabhaudhi, T.; Nhemachena, C.; Nhamo, L.; Liphadzi, S.; Hlahla, S.; Modi, A.T. Climate Change Adaptation through the Water-Energy-Food Nexus in Southern Africa. Int. J. Environ. Res. Public Health 2018, 15, 2306. [Google Scholar] [CrossRef]
- Rasul, G. Managing the Food, Water, and Energy Nexus for Achieving the Sustainable Development Goals in South Asia. Environ. Dev. 2016, 18, 14–25. [Google Scholar] [CrossRef]
- Conway, D.; Van Garderen, E.A.; Deryng, D.; Dorling, S.; Krueger, T.; Landman, W.; Lankford, B.; Lebek, K.; Osborn, T.; Ringler, C.; et al. Climate and Southern Africa’s Water–Energy–Food Nexus. Nat. Clim. Change 2015, 5, 837–846. [Google Scholar] [CrossRef]
- Weitz, N.; Strambo, C.; Kemp-Benedict, E.; Nilsson, M. Closing the Governance Gaps in the Water-Energy-Food Nexus: Insights from Integrative Governance. Glob. Environ. Change 2017, 45, 165–173. [Google Scholar] [CrossRef]
- Ringler, C.; Bhaduri, A.; Lawford, R. The Nexus across Water, Energy, Land and Food (WELF): Potential for Improved Resource Use Efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; van Velthuizen, H.; et al. Integrated Analysis of Climate Change, Land-Use, Energy and Water Strategies. Nat. Clim. Change 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Simpson, G.B.; Jewitt, G.P.W. The Development of the Water-Energy-Food Nexus as a Framework for Achieving Resource Security: A Review. Front. Environ. Sci. 2019, 7, 8. [Google Scholar] [CrossRef]
- Farmandeh, E.; Choobchian, S.; Karami, S. Conducting Water-Energy-Food Nexus Studies: What, Why, and How. Sci. Rep. 2024, 14, 27310. [Google Scholar] [CrossRef]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.A.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; Van Ogtrop, F.; Curnow, J.; et al. Sustainable Development and the Water–Energy–Food Nexus: A Perspective on Livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef]
- Endo, A.; Burnett, K.; Orencio, P.M.; Kumazawa, T.; Wada, C.A.; Ishii, A.; Tsurita, I.; Taniguchi, M. Methods of the Water-Energy-Food Nexus. Water 2015, 7, 5806–5830. [Google Scholar] [CrossRef]
- Flammini, A.; Puri, M.; Pluschke, L.; Dubois, O. Walking the Nexus Talk: Assessing the Water-Energy-Food Nexus in the Context of the Sustainable Energy for All Initiative; Environment and Natural Resources Management Working Paper; Climate, Energy and Tenure Division (NRC), Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Liu, J.; Yang, H.; Cudennec, C.; Gain, A.K.; Hoff, H.; Lawford, R.; Qi, J.; Strasser, L.D.; Yillia, P.T.; Zheng, C. Challenges in Operationalizing the Water–Energy–Food Nexus. Hydrol. Sci. J. 2017, 62, 1714–1720. [Google Scholar] [CrossRef]
- Giordano, M.; de Fraiture, C. Small Private Irrigation: Enhancing Benefits and Managing Trade-Offs. Agric. Water Manag. 2014, 131, 175–182. [Google Scholar] [CrossRef]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A Review of the Current State of Research on the Water, Energy, and Food Nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef]
- Mirzabaev, A.; Wu, J.; Evans, J.; Oliva, F.G.; Hussein, I.A.G.; Iqbal, M.M.; Kimutai, J.; Knowles, T.; Meza, F.; Nedjraoui, D.; et al. Desertification. In Climate Change and Land; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Bizikova, L.; Roy, D.; Swanson, D.; Venema, H.D.; McCandless, M. The Water–Energy–Food Security Nexus: Towards A Practical Planning and Decision Support Framework for Landscape Investment and Risk Management; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2013. [Google Scholar]
- Lakshmikantha, N.R.; Shah, R.; Srinivasan, V.; Mukherji, A. Hits and Misses: Water-Based Climate Change Adaptation Interventions for Agriculture in South Asia. Mitig. Adapt. Strateg. Glob. Change 2025, 30, 19. [Google Scholar] [CrossRef]
- Nhamo, L.; Ndlela, B.; Nhemachena, C.; Mabhaudhi, T.; Mpandeli, S.; Matchaya, G. The Water-Energy-Food Nexus: Climate Risks and Opportunities in Southern Africa. Water 2018, 10, 567. [Google Scholar] [CrossRef]
- Bhaduri, A.; Ringler, C.; Dombrowski, I.; Mohtar, R.; Scheumann, W. Sustainability in the Water–Energy–Food Nexus. Water Int. 2015, 40, 723–732. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Godfray, H.C.J.; Tilman, D.; Gleick, P.; Hoff, H.; Pahl-Wostl, C.; Xu, Z.; Chung, M.G.; Sun, J.; et al. Nexus Approaches to Global Sustainable Development. Nat. Sustain. 2018, 1, 466–476. [Google Scholar] [CrossRef]
- Mercure, J.-F.; Pollitt, H.; Edwards, N.R.; Holden, P.B.; Chewpreecha, U.; Salas, P.; Lam, A.; Knobloch, F.; Vinuales, J.E. Environmental Impact Assessment for Climate Change Policy with the Simulation-Based Integrated Assessment Model E3ME-FTT-GENIE. Energy Strategy Rev. 2018, 20, 195–208. [Google Scholar] [CrossRef]
- Döll, P.; Trautmann, T.; Gerten, D.; Schmied, H.M.; Ostberg, S.; Saaed, F.; Schleussner, C.-F. Risks for the Global Freshwater System at 1.5 °C and 2 °C Global Warming. Environ. Res. Lett. 2018, 13, 044038. [Google Scholar] [CrossRef]
- Jiménez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S. Freshwater Resources. In Climate Change 2014: Impacts, Adaptation, and Vulnerability-Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global Flood Risk under Climate Change. Nat. Clim. Change 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Cronin, J.; Anandarajah, G.; Dessens, O. Climate Change Impacts on the Energy System: A Review of Trends and Gaps. Clim. Change 2018, 151, 79–93. [Google Scholar] [CrossRef]
- Schaeffer, R.; Szklo, A.S.; Pereira de Lucena, A.F.; Moreira Cesar Borba, B.S.; Pupo Nogueira, L.P.; Fleming, F.P.; Troccoli, A.; Harrison, M.; Boulahya, M.S. Energy Sector Vulnerability to Climate Change: A Review. Energy 2012, 38, 1–12. [Google Scholar] [CrossRef]
- Myers, S.S.; Smith, M.R.; Guth, S.; Golden, C.D.; Vaitla, B.; Mueller, N.D.; Dangour, A.D.; Huybers, P. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu. Rev. Public Health 2017, 38, 259–277. [Google Scholar] [CrossRef]
- Kopeć, P. Climate Change—The Rise of Climate-Resilient Crops. Plants 2024, 13, 490. [Google Scholar] [CrossRef]
- Wattiaux, M.A.; Uddin, M.E.; Letelier, P.; Jackson, R.D.; Larson, R.A. Emission and Mitigation of Greenhouse Gases from Dairy Farms: The Cow, the Manure, and the Field. Appl. Anim. Sci. 2019, 35, 238–254. [Google Scholar] [CrossRef]
- Grassauer, F.; Arulnathan, V.; Pelletier, N. Towards a Net-Zero Greenhouse Gas Emission Egg Industry: A Review of Relevant Mitigation Technologies and Strategies, Current Emission Reduction Potential, and Future Research Needs. Renew. Sustain. Energy Rev. 2023, 181, 113322. [Google Scholar] [CrossRef]
- Paraschiv, S.; Paraschiv, L.S.; Serban, A. Increasing the Energy Efficiency of a Building by Thermal Insulation to Reduce the Thermal Load of the Micro-Combined Cooling, Heating and Power System. Energy Rep. 2021, 7, 286–298. [Google Scholar] [CrossRef]
- Ali, F.; Dawood, A.; Hussain, A.; Alnasir, M.H.; Khan, M.A.; Butt, T.M.; Janjua, N.K.; Hamid, A. Fueling the Future: Biomass Applications for Green and Sustainable Energy. Discov. Sustain. 2024, 5, 156. [Google Scholar] [CrossRef]
- Ogola, P.F.A.; Davidsdottir, B.; Fridleifsson, I.B. Opportunities for Adaptation-Mitigation Synergies in Geothermal Energy Utilization- Initial Conceptual Frameworks. Mitig. Adapt. Strateg. Glob. Change 2012, 17, 507–536. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel Assessment of Water Scarcity under Climate Change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, M.T.H.; Sheffield, J.; Wiberg, D.; Wood, E.F. Impacts of Recent Drought and Warm Years on Water Resources and Electricity Supply Worldwide. Environ. Res. Lett. 2016, 11, 124021. [Google Scholar] [CrossRef]
- Guo, Q.; Hasani, R. Assessing the Impact of Water Scarcity on Thermoelectric and Hydroelectric Potential and Electricity Price under Climate Change: Implications for Future Energy Management. Heliyon 2024, 10, e36870. [Google Scholar] [CrossRef]
- Janjua, S.; Hassan, I.; Muhammad, S.; Ahmed, S.; Ahmed, A. Water Management in Pakistan’s Indus Basin: Challenges and Opportunities. Water Policy 2021, 23, 1329–1343. [Google Scholar] [CrossRef]
- Lawless, K.L.; Garcia, M.; White, D.D. Institutional Analysis of Water Governance in the Colorado River Basin, 1922–2022. Front. Water 2024, 6, 1451854. [Google Scholar] [CrossRef]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water Competition between Cities and Agriculture Driven by Climate Change and Urban Growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Gupta, E. The Impact of Solar Water Pumps on Energy-Water-Food Nexus: Evidence from Rajasthan, India. Energy Policy 2019, 129, 598–609. [Google Scholar] [CrossRef]
- Karnib, A.; Elbendary, N.; Abouelhassan, W.; Dawoud, M. Sustainability Assessment of Solar-Powered Drip Irrigation for Sugarcane in Egypt: A Water–Energy–Food–Ecosystem Nexus Perspective. World Water Policy 2024, 1–17. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2021; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; ISBN 978-92-5-134329-6. [Google Scholar]
- Debele, S.E.; Leo, L.S.; Kumar, P.; Sahani, J.; Ommer, J.; Bucchignani, E.; Vranić, S.; Kalas, M.; Amirzada, Z.; Pavlova, I.; et al. Nature-Based Solutions Can Help Reduce the Impact of Natural Hazards: A Global Analysis of NBS Case Studies. Sci. Total Environ. 2023, 902, 165824. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. A Review of Hybrid Renewable Energy Systems: Solar and Wind-Powered Solutions: Challenges, Opportunities, and Policy Implications. Results Eng. 2023, 20, 101621. [Google Scholar] [CrossRef]
- OECD Infrastructure for a Climate-Resilient Future; Organisation for Economic Co-operation and Development: Paris, France, 2024.
- Dhillon, R.; Moncur, Q. Small-Scale Farming: A Review of Challenges and Potential Opportunities Offered by Technological Advancements. Sustainability 2023, 15, 15478. [Google Scholar] [CrossRef]
- Stringer, L.C.; Quinn, C.H.; Le, H.T.V.; Msuya, F.; Pezzuti, J.; Dallimer, M.; Afionis, S.; Berman, R.; Orchard, S.E.; Rijal, M.L. A New Framework to Enable Equitable Outcomes: Resilience and Nexus Approaches Combined. Earth’s Future 2018, 6, 902–918. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W. Water Savings Potentials of Irrigation Systems: Global Simulation of Processes and Linkages. Hydrol. Earth Syst. Sci. 2015, 19, 3073–3091. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.; Zhang, C.; Wang, G.; He, B.; Hao, B.; Han, Y.; Wang, B.; Bao, R.; Syed, T.N.; et al. A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints. Agriculture 2024, 14, 1141. [Google Scholar] [CrossRef]
- Uddin, M.T.; Dhar, A.R. Assessing the Impact of Water-Saving Technologies on Boro Rice Farming in Bangladesh: Economic and Environmental Perspective. Irrig. Sci. 2020, 38, 199–212. [Google Scholar] [CrossRef]
- Egea, G.; Castro-Valdecantos, P.; Gómez-Durán, E.; Munuera, T.; Domínguez-Niño, J.M.; Nortes, P.A. Impact of Irrigation Management Decisions on the Water Footprint of Processing Tomatoes in Southern Spain. Agronomy 2024, 14, 1863. [Google Scholar] [CrossRef]
- Bhavsar, D.; Limbasia, B.; Mori, Y.; Imtiyazali Aglodiya, M.; Shah, M. A Comprehensive and Systematic Study in Smart Drip and Sprinkler Irrigation Systems. Smart Agric. Technol. 2023, 5, 100303. [Google Scholar] [CrossRef]
- Kharrou, M.H.; Simonneaux, V.; Er-Raki, S.; Le Page, M.; Khabba, S.; Chehbouni, A. Assessing Irrigation Water Use with Remote Sensing-Based Soil Water Balance at an Irrigation Scheme Level in a Semi-Arid Region of Morocco. Remote Sens. 2021, 13, 1133. [Google Scholar] [CrossRef]
- Perry, C.; Steduto, P.; Karajeh, F. Does Improved Irrigation Technology Save Water? A Review of the Evidence; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Burney, J.; Woltering, L.; Burke, M.; Naylor, R.; Pasternak, D. Solar-Powered Drip Irrigation Enhances Food Security in the Sudano–Sahel. Proc. Natl. Acad. Sci. USA 2010, 107, 1848–1853. [Google Scholar] [CrossRef] [PubMed]
- Burney, J.A.; Naylor, R.L. Smallholder Irrigation as a Poverty Alleviation Tool in Sub-Saharan Africa. World Dev. 2012, 40, 110–123. [Google Scholar] [CrossRef]
- FAO. Solar Irrigation Potential in the Sahel; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- Bastakoti, R.; Raut, M.; Thapa, B.R. Groundwater Governance and Adoption of Solar-Powered Irrigation Pumps: Experiences from the Eastern Gangetic Plains; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Jamil, M.K.; Smolenaars, W.J.; Ahmad, B.; Dhaubanjar, S.; Immerzeel, W.W.; Lutz, A.; Akbar, G.; Ludwig, F.; Biemans, H. The Effect of Transitioning from Diesel to Solar Photovoltaic Energy for Irrigation Tube Wells on Annual Groundwater Extraction in the Lower Indus Basin, Pakistan. J. Agric. Food Res. 2025, 20, 101799. [Google Scholar] [CrossRef]
- Alam, M.F.; McClain, M.E.; Sikka, A.; Daniel, D.; Pande, S. Benefits, Equity, and Sustainability of Community Rainwater Harvesting Structures: An Assessment Based on Farm Scale Social Survey. Front. Environ. Sci. 2022, 10. [Google Scholar] [CrossRef]
- Jiménez, B.; Asano, T. Water Reuse: An International Survey of Current Practice, Issues and Needs; Iwa Pub: London, UK, 2008; Volume 7, ISBN 978-1-78040-188-1. [Google Scholar]
- Qadir, M.; Sharma, B.R.; Bruggeman, A.; Choukr-Allah, R.; Karajeh, F. Non-Conventional Water Resources and Opportunities for Water Augmentation to Achieve Food Security in Water Scarce Countries. Agric. Water Manag. 2007, 87, 2–22. [Google Scholar] [CrossRef]
- Marin, P.; Tal, S.; Yeres, J.; Ringskog, K. Water Global Practice. In Water Management in Israel: Key Innovations and Lessons Learned for Water-Scarce Countries; World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- Wichelns, D.; Drechsel, P.; Qadir, M. Wastewater: Economic Asset in an Urbanizing World; Springer: Dordrecht, The Netherlands, 2015; ISBN 978-94-017-9544-9. [Google Scholar]
- Qin, Y.; Horvath, A. Use of Alternative Water Sources in Irrigation: Potential Scales, Costs, and Environmental Impacts in California. Environ. Res. Commun. 2020, 2, 055003. [Google Scholar] [CrossRef]
- Kefi, M.; Kalboussi, N.; Rapaport, A.; Harmand, J.; Gabtni, H. Model-Based Approach for Treated Wastewater Reuse Strategies Focusing on Water and Its Nitrogen Content “A Case Study for Olive Growing Farms in Peri-Urban Areas of Sousse, Tunisia”. Water 2023, 15, 755. [Google Scholar] [CrossRef]
- Intriago, J.C.; López-Gálvez, F.; Allende, A.; Vivaldi, G.A.; Camposeo, S.; Nicolás Nicolás, E.; Alarcón, J.J.; Pedrero Salcedo, F. Agricultural Reuse of Municipal Wastewater through an Integral Water Reclamation Management. J. Environ. Manag. 2018, 213, 135–141. [Google Scholar] [CrossRef]
- Molden, D. (Ed.) Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Routledge: London, UK, 2013; ISBN 978-1-84977-379-9. [Google Scholar]
- Rasul, G.; Sharma, B. The Nexus Approach to Water–Energy–Food Security: An Option for Adaptation to Climate Change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef]
- Villholth, K.G. Groundwater Irrigation for Smallholders in Sub-Saharan Africa-a Synthesis of Current Knowledge to Guide Sustainable Outcomes. Water Int. 2013, 38, 369–391. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and Global Climate Change: The Role of Wetland Restoration in a Changing World. Wetl. Ecol Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Bartrons, M.; Trochine, C.; Blicharska, M.; Oertli, B.; Lago, M.; Brucet, S. Unlocking the Potential of Ponds and Pondscapes as Nature-Based Solutions for Climate Resilience and beyond: Hundred Evidences. J. Environ. Manag. 2024, 359, 120992. [Google Scholar] [CrossRef] [PubMed]
- Jurasinski, G.; Barthelmes, A.; Byrne, K.A.; Chojnicki, B.H.; Christiansen, J.R.; Decleer, K.; Fritz, C.; Günther, A.B.; Huth, V.; Joosten, H.; et al. Active Afforestation of Drained Peatlands Is Not a Viable Option under the EU Nature Restoration Law. Ambio 2024, 53, 970–983. [Google Scholar] [CrossRef]
- Davis, S.; Grainger, M.; Pfeifer, M.; Pattison, Z.; Stephens, P.; Sanderson, R. Restoring Riparian Habitats for Benefits to Biodiversity and Human Livelihoods: A Systematic Map Protocol for Riparian Restoration Approaches in the Tropics. Environ. Evid. 2025, 14, 2. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Dirwai, T.L.; Taguta, C.; Kanda, E.K.; Nhamo, L.; Cofie, O. Irrigation Development and Agricultural Water Management in Rwanda: A Systematic Review. In Enhancing Water and Food Security Through Improved Agricultural Water Productivity: New Knowledge, Innovations and Applications; Mabhaudhi, T., Chimonyo, V.G.P., Senzanje, A., Chivenge, P.P., Eds.; Springer Nature: Singapore, 2025; pp. 361–384. ISBN 978-981-96-1848-4. [Google Scholar]
- Rai, R.K.; Shyamsundar, P.; Nepal, M.; Bhatta, L.D. Financing Watershed Services in the Foothills of the Himalayas. Water 2018, 10, 965. [Google Scholar] [CrossRef]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the Effectiveness of Nature-Based Solutions for Climate Change Adaptation. Glob. Change Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef] [PubMed]
- Narayan, S.; Beck, M.W.; Wilson, P.; Thomas, C.J.; Guerrero, A.; Shepard, C.C.; Reguero, B.G.; Franco, G.; Ingram, J.C.; Trespalacios, D. The Value of Coastal Wetlands for Flood Damage Reduction in the Northeastern USA. Sci. Rep. 2017, 7, 9463. [Google Scholar] [CrossRef]
- Esraz-Ul-Zannat, M.; Dedekorkut-Howes, A.; Morgan, E.A. A Review of Nature-Based Infrastructures and Their Effectiveness for Urban Flood Risk Mitigation. WIREs Clim. Change 2024, 15, e889. [Google Scholar] [CrossRef]
- Simpson, G.B.; Jewitt, G.P.W.; Mabhaudhi, T.; Taguta, C.; Badenhorst, J. An African Perspective on the Water-Energy-Food Nexus. Sci. Rep. 2023, 13, 16842. [Google Scholar] [CrossRef] [PubMed]
- Karimov, A.K.; Amirova, I.; Karimov, A.A.; Tohirov, A.; Abdurakhmanov, B. Water, Energy and Carbon Tradeoffs of Groundwater Irrigation-Based Food Production: Case Studies from Fergana Valley, Central Asia. Sustainability 2022, 14, 1451. [Google Scholar] [CrossRef]
- Durga, N.; Schmitter, P.; Ringler, C.; Mishra, S.; Magombeyi, M.S.; Ofosu, A.; Pavelic, P.; Hagos, F.; Melaku, D.; Verma, S.; et al. Barriers to the Uptake of Solar-Powered Irrigation by Smallholder Farmers in Sub-Saharan Africa: A Review. Energy Strategy Rev. 2024, 51, 101294. [Google Scholar] [CrossRef]
- IEA; IRENA; UN; WB; WHO. Tracking SDG7: The Energy Progress Report 2018; International Energy Agency: Paris, France; International Renewable Energy Agency: Masdar City, United Arab Emirates; World Bank Group: Washington, DC, USA; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- IRENA; FAO. Renewable Energy and Agri-Food Systems: Towards the Sustainable Development Goals and the Paris Agreement; International Renewable Energy Agency: Masdar City, United Arab Emirates; Food and Agriculture Organization of the United Nations: Abu Dhabi, United Arab Emirates; Rome, Italy, 2021. [Google Scholar]
- Ugwoke, B.; Adeleke, A.; Corgnati, S.P.; Pearce, J.M.; Leone, P. Decentralized Renewable Hybrid Mini-Grids for Rural Communities: Culmination of the IREP Framework and Scale up to Urban Communities. Sustainability 2020, 12, 7411. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics Provide Mutual Benefits across the Food–Energy–Water Nexus in Drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Stallknecht, E.J.; Herrera, C.K.; Yang, C.; King, I.; Sharkey, T.D.; Lunt, R.R.; Runkle, E.S. Designing Plant–Transparent Agrivoltaics. Sci. Rep. 2023, 13, 1903. [Google Scholar] [CrossRef]
- Sekiyama, T.; Nagashima, A. Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments 2019, 6, 65. [Google Scholar] [CrossRef]
- Giri, N.C.; Mohanty, R.C. Agrivoltaic System: Experimental Analysis for Enhancing Land Productivity and Revenue of Farmers. Energy Sustain. Dev. 2022, 70, 54–61. [Google Scholar] [CrossRef]
- Sekaran, U.; Lai, L.; Ussiri, D.A.N.; Kumar, S.; Clay, S. Role of Integrated Crop-Livestock Systems in Improving Agriculture Production and Addressing Food Security-A Review. J. Agric. Food Res. 2021, 5, 100190. [Google Scholar] [CrossRef]
- Bond, T.; Templeton, M.R. History and Future of Domestic Biogas Plants in the Developing World. Energy Sustain. Dev. 2011, 15, 347–354. [Google Scholar] [CrossRef]
- Parawira, W. Biogas Technology in Sub-Saharan Africa: Status, Prospects and Constraints. Rev. Environ. Sci. Biotechnol. 2009, 8, 187–200. [Google Scholar] [CrossRef]
- Kabir, H.; Yegbemey, R.N.; Bauer, S. Factors Determinant of Biogas Adoption in Bangladesh. Renew. Sustain. Energy Rev. 2013, 28, 881–889. [Google Scholar] [CrossRef]
- Surendra, K.C.; Takara, D.; Hashimoto, A.G.; Khanal, S.K. Biogas as a Sustainable Energy Source for Developing Countries: Opportunities and Challenges. Renew. Sustain. Energy Rev. 2014, 31, 846–859. [Google Scholar] [CrossRef]
- Akbar, S.; Ahmed, S.; Khan, S.; Badshah, M. Anaerobic Digestate: A Sustainable Source of Bio-Fertilizer. In Sustainable Intensification for Agroecosystem Services and Management; Jhariya, M.K., Banerjee, A., Meena, R.S., Kumar, S., Raj, A., Eds.; Springer: Singapore, 2021; pp. 493–542. ISBN 978-981-16-3207-5. [Google Scholar]
- Takeshima, H.; Yamauchi, F.; Bawa, D.; Kamaldeen, S.O.; Edeh, H.O.; Hernandez, M. Solar-Powered Cold-Storages and Sustainable Food System Transformation: Evidence from Horticulture Markets Interventions in Northeast Nigeria; International Food Policy Research Institute: Washington, DC, USA, 2021. [Google Scholar]
- Terrapon-Pfaff, J.; Dienst, C.; König, J.; Ortiz, W. How Effective Are Small-Scale Energy Interventions in Developing Countries? Results from a Post-Evaluation on Project-Level. Appl. Energy 2014, 135, 809–814. [Google Scholar] [CrossRef]
- Hossain, A.; Babla, E.H.; Fida, A.H.; Saad, S.A.Y.; Chy, A.T.H.; Hossain, S. A Greener Approach to Food Preservation: Solar-Evaporative Cooling for Reducing Post-Harvest Losses in Bangladesh. In Proceedings of the 7th International Conference on Mechanical Engineering and Renewable Energy, Chattogram, Bangladesh, 16–18 November 2023. [Google Scholar]
- Ogunjirin, O.C.; Jekayinfa, S.O.; Olaniran, J.; Ogunjirin, O.A.; Omodara, M.A.; Akinyera, O.A.; Ogunbiyi, A.O. Development and Performance Evaluation of a Mobile Solar-Powered Cooling System for Post-Harvest Preservation of Oranges. J. Eng. Res. Rep. 2025, 27, 166–179. [Google Scholar] [CrossRef]
- Lefore, N.; Closas, A.; Schmitter, P. Solar for All: A Framework to Deliver Inclusive and Environmentally Sustainable Solar Irrigation for Smallholder Agriculture. Energy Policy 2021, 154, 112313. [Google Scholar] [CrossRef]
- We-Fi Women Climate Entrepreneurs: The Face of a Livable Planet; Women Entrepreneurs Finance Initiative: Washington, DC, USA, 2024.
- Yadav, P.; Heynen, A.P.; Palit, D. Pay-As-You-Go Financing: A Model for Viable and Widespread Deployment of Solar Home Systems in Rural India. Energy Sustain. Dev. 2019, 48, 139–153. [Google Scholar] [CrossRef]
- Meyer, E.L.; Overen, O.K.; Obileke, K.; Botha, J.J.; Anderson, J.J.; Koatla, T.A.B.; Thubela, T.; Khamkham, T.I.; Ngqeleni, V.D. Financial and Economic Feasibility of Bio-Digesters for Rural Residential Demand-Side Management and Sustainable Development. Energy Rep. 2021, 7, 1728–1741. [Google Scholar] [CrossRef]
- Hafferty, C.; Reed, M.S.; Brockett, B.F.T.; Orford, S.; Berry, R.; Short, C.; Davis, J. Engagement in the Digital Age: Understanding “What Works” for Participatory Technologies in Environmental Decision-Making. J. Environ. Manag. 2024, 365, 121365. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-Smart Agriculture for Food Security. Nat. Clim. Change 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Aggarwal, P.; Jarvis, A.; Campbell, B.; Zougmoré, R.; Khatri-Chhetri, A.; Vermeulen, S.; Loboguerrero, A.M.; Sebastian, L.; Kinyangi, J.; Bonilla-Findji, O.; et al. The Climate-Smart Village Approach: Framework of an Integrative Strategy for Scaling up Adaptation Options in Agriculture. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. The Adaptation and Mitigation Potential of Traditional Agriculture in a Changing Climate. Clim. Change 2017, 140, 33–45. [Google Scholar] [CrossRef]
- Lin, B.B. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. BioScience 2011, 61, 183–193. [Google Scholar] [CrossRef]
- Challinor, A.J.; Koehler, A.-K.; Ramirez-Villegas, J.; Whitfield, S.; Das, B. Current Warming Will Reduce Yields Unless Maize Breeding and Seed Systems Adapt Immediately. Nat. Clim. Change 2016, 6, 954–958. [Google Scholar] [CrossRef]
- Heisey, P.W.; Fuglie, K.O. Agricultural Research Investment and Policy Reform in High-Income Countries. Econ. Res. Serv. 2018, 249. [Google Scholar]
- Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; Minang, P.A.; Kowero, G. Agroforestry Solutions to Address Food Security and Climate Change Challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [Google Scholar] [CrossRef]
- Lasco, R.D.; Delfino, R.J.P.; Espaldon, M.L.O. Agroforestry Systems: Helping Smallholders Adapt to Climate Risks While Mitigating Climate Change. WIREs Clim. Change 2014, 5, 825–833. [Google Scholar] [CrossRef]
- Pramova, E.; Locatelli, B.; Djoudi, H.; Somorin, O.A. Forests and Trees for Social Adaptation to Climate Variability and Change. WIREs Clim. Change 2012, 3, 581–596. [Google Scholar] [CrossRef]
- Dobhal, S.; Kumar, R.; Bhardwaj, A.K.; Chavan, S.B.; Uthappa, A.R.; Kumar, M.; Singh, A.; Jinger, D.; Rawat, P.; Handa, A.K.; et al. Global Assessment of Production Benefits and Risk Reduction in Agroforestry During Extreme Weather Events under Climate Change Scenarios. Front. For. Glob. Change 2024, 7, 1379741. [Google Scholar] [CrossRef]
- Altieri, M.A.; Funes-Monzote, F.R.; Petersen, P. Agroecologically Efficient Agricultural Systems for Smallholder Farmers: Contributions to Food Sovereignty. Agron. Sustain. Dev. 2012, 32, 1–13. [Google Scholar] [CrossRef]
- Wezel, A.; Bellon, S.; Doré, T.; Francis, C.; Vallod, D.; David, C. Agroecology as a Science, a Movement and a Practice. A Review. Agron. Sustain. Dev. 2009, 29, 503–515. [Google Scholar] [CrossRef]
- Thierfelder, C.; Chivenge, P.; Mupangwa, W.; Rosenstock, T.S.; Lamanna, C.; Eyre, J.X. How Climate-Smart Is Conservation Agriculture (CA)?–Its Potential to Deliver on Adaptation, Mitigation and Productivity on Smallholder Farms in Southern Africa. Food Sec. 2017, 9, 537–560. [Google Scholar] [CrossRef]
- Thierfelder, C.; Wall, P.C. Effects of Conservation Agriculture on Soil Quality and Productivity in Contrasting Agro-Ecological Environments of Zimbabwe. Soil Use Manag. 2012, 28, 209–220. [Google Scholar] [CrossRef]
- Uddin, M.T.; Dhar, A.R.; Rahman, M.H. Improving Farmers’ Income and Soil Environmental Quality through Conservation Agriculture Practice in Bangladesh. Am. J. Agric. Biol. Sci. 2017, 12, 55–65. [Google Scholar] [CrossRef]
- Dhar, A.R.; Oita, A.; Matsubae, K. Food Nitrogen Footprint of the Indian Subcontinent toward 2050. Front. Nutr. 2022, 9, 899431. [Google Scholar] [CrossRef] [PubMed]
- Sanginga, N.; Woomer, P.L. (Eds.) Integrated Soil Fertility Management in Africa: Principles, Practices, and Developmental Process; Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture: Nairobi, Kenya, 2009; ISBN 978-92-9059-261-7. [Google Scholar]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing Nitrogen for Sustainable Development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Power, B.; Bogard, J.R.; Remans, R.; Fritz, S.; Gerber, J.S.; Nelson, G.; See, L.; Waha, K.; et al. Farming and the Geography of Nutrient Production for Human Use: A Transdisciplinary Analysis. Lancet Planet. Health 2017, 1, e33–e42. [Google Scholar] [CrossRef]
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban Agriculture in the Developing World: A Review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef]
- Uddin, M.T.; Dhar, A.R. Socioeconomic Analysis of Hydroponic Fodder Production in Selected Areas of Bangladesh: Prospects and Challenges. SAARC J. Agric. 2018, 16, 233–247. [Google Scholar] [CrossRef]
- Altieri, M.A.; and Toledo, V.M. The Agroecological Revolution in Latin America: Rescuing Nature, Ensuring Food Sovereignty and Empowering Peasants. J. Peasant. Stud. 2011, 38, 587–612. [Google Scholar] [CrossRef]
- Vinyeta, K.; Lynn, K. Exploring the Role of Traditional Ecological Knowledge in Climate Change Initiatives; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2013; p. PNW-GTR-879.
- Marrero, A.; Mattei, J. Reclaiming Traditional, Plant-Based, Climate-Resilient Food Systems in Small Islands. Lancet Planet. Health 2022, 6, e171–e179. [Google Scholar] [CrossRef]
- Locatelli, B.; Pavageau, C.; Pramova, E.; Di Gregorio, M. Integrating Climate Change Mitigation and Adaptation in Agriculture and Forestry: Opportunities and Trade-Offs. WIREs Clim. Change 2015, 6, 585–598. [Google Scholar] [CrossRef]
- Green Growth That Works: Natural Capital Policy and Finance Mechanisms from Around the World; Mandle, L., Ouyang, Z., Salzman, J.E., Daily, G., Eds.; Island Press: Washington, DC, USA, 2020; ISBN 978-1-64283-004-0. [Google Scholar]
- Smith, P.; Ashmore, M.R.; Black, H.I.J.; Burgess, P.J.; Evans, C.D.; Quine, T.A.; Thomson, A.M.; Hicks, K.; Orr, H.G. The Role of Ecosystems and Their Management in Regulating Climate, and Soil, Water and Air Quality. J. Appl. Ecol. 2013, 50, 812–829. [Google Scholar] [CrossRef]
- Thomas, S.; Dargusch, P.; Harrison, S.; Herbohn, J. Why Are There so Few Afforestation and Reforestation Clean Development Mechanism Projects? Land Use Policy 2010, 27, 880–887. [Google Scholar] [CrossRef]
- Vicarelli, M.; Sudmeier-Rieux, K.; Alsadadi, A.; Shrestha, A.; Schütze, S.; Kang, M.M.; Leue, M.; Wasielewski, D.; Mysiak, J. On the Cost-Effectiveness of Nature-Based Solutions for Reducing Disaster Risk. Sci. Total Environ. 2024, 947, 174524. [Google Scholar] [CrossRef] [PubMed]
- González-García, A.; Palomo, I.; Codemo, A.; Rodeghiero, M.; Dubo, T.; Vallet, A.; Lavorel, S. Co-Benefits of Nature-Based Solutions Exceed the Costs of Implementation. Cell Rep. Sustain. 2025, 2, 100336. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Kleine, M.; Mansourian, S.; Parrotta, J.; Madsen, P.; Kant, P.; Burns, J.; Bolte, A. Implementing Forest Landscape Restoration under the Bonn Challenge: A Systematic Approach. Ann. For. Sci. 2019, 76, 50. [Google Scholar] [CrossRef]
- Fischer, J.; Riechers, M.; Loos, J.; Martin-Lopez, B.; Temperton, V.M. Making the UN Decade on Ecosystem Restoration a Social-Ecological Endeavour. Trends Ecol. Evol. 2021, 36, 20–28. [Google Scholar] [CrossRef]
- Leclère, D.; Obersteiner, M.; Barrett, M.; Butchart, S.H.M.; Chaudhary, A.; De Palma, A.; DeClerck, F.A.J.; Di Marco, M.; Doelman, J.C.; Dürauer, M.; et al. Bending the Curve of Terrestrial Biodiversity Needs an Integrated Strategy. Nature 2020, 585, 551–556. [Google Scholar] [CrossRef]
- Vargas, D.C.M.; del Pilar Quiñones Hoyos, C.; Manrique, O.L.H. The Water-Energy-Food Nexus in Biodiversity Conservation: A Systematic Review around Sustainability Transitions of Agricultural Systems. Heliyon 2023, 9, e17016. [Google Scholar] [CrossRef] [PubMed]
- Pagiola, S.; Arcenas, A.; Platais, G. Can Payments for Environmental Services Help Reduce Poverty? An Exploration of the Issues and the Evidence to Date from Latin America. World Dev. 2005, 33, 237–253. [Google Scholar] [CrossRef]
- Tafoya, K.A.; Brondizio, E.S.; Johnson, C.E.; Beck, P.; Wallace, M.; Quirós, R.; Wasserman, M.D. Effectiveness of Costa Rica’s Conservation Portfolio to Lower Deforestation, Protect Primates, and Increase Community Participation. Front. Environ. Sci. 2020, 8, 580724. [Google Scholar] [CrossRef]
- Fulvio, F.D.; Snäll, T.; Lauri, P.; Forsell, N.; Mönkkönen, M.; Burgas, D.; Blattert, C.; Eyvindson, K.; Caicoya, A.T.; Vergarechea, M.; et al. Impact of the EU Biodiversity Strategy for 2030 on the EU Wood-Based Bioeconomy. Glob. Environ. Change 2025, 92, 102986. [Google Scholar] [CrossRef]
- Di Falco, S.; Perrings, C. Crop Biodiversity, Risk Management and the Implications of Agricultural Assistance. Ecol. Econ. 2005, 55, 459–466. [Google Scholar] [CrossRef]
- Jarvis, D.I.; Hodgkin, T.; Sthapit, B.R.; Fadda, C.; Lopez-Noriega, I. An Heuristic Framework for Identifying Multiple Ways of Supporting the Conservation and Use of Traditional Crop Varieties within the Agricultural Production System. Crit. Rev. Plant Sci. 2011, 30, 125–176. [Google Scholar] [CrossRef]
- Tittonell, P. Ecological Intensification of Agriculture-Sustainable by Nature. Curr. Opin. Environ. Sustain. 2014, 8, 53–61. [Google Scholar] [CrossRef]
- Akchaya, K.; Parasuraman, P.; Pandian, K.; Vijayakumar, S.; Thirukumaran, K.; Mustaffa, M.R.A.F.; Rajpoot, S.K.; Choudhary, A.K. Boosting Resource Use Efficiency, Soil Fertility, Food Security, Ecosystem Services, and Climate Resilience with Legume Intercropping: A Review. Front. Sustain. Food Syst. 2025, 9, 1527256. [Google Scholar] [CrossRef]
- Zhou, W.; Arcot, Y.; Medina, R.F.; Bernal, J.; Cisneros-Zevallos, L.; Akbulut, M.E.S. Integrated Pest Management: An Update on the Sustainability Approach to Crop Protection. ACS Omega 2024, 9, 41130–41147. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Rankoth, L.; Jose, S. Agroforestry and Biodiversity. Sustainability 2019, 11, 2879. [Google Scholar] [CrossRef]
- Sayer, J.; Sunderland, T.; Ghazoul, J.; Pfund, J.-L.; Sheil, D.; Meijaard, E.; Venter, M.; Boedhihartono, A.K.; Day, M.; Garcia, C.; et al. Ten Principles for a Landscape Approach to Reconciling Agriculture, Conservation, and Other Competing Land Uses. Proc. Natl. Acad. Sci. USA 2013, 110, 8349–8356. [Google Scholar] [CrossRef]
- Reed, J.; van Vianen, J.; Barlow, J.; Sunderland, T. Have Integrated Landscape Approaches Reconciled Societal and Environmental Issues in the Tropics? Land Use Policy 2017, 63, 481–492. [Google Scholar] [CrossRef]
- Ojha, H.R.; Ford, R.; Keenan, R.J.; Race, D.; Carias Vega, D.; Baral, H.; Sapkota, P. Delocalizing Communities: Changing Forms of Community Engagement in Natural Resources Governance. World Dev. 2016, 87, 274–290. [Google Scholar] [CrossRef]
- Reij, C.; Tappan, G.; Smale, M. Agroenvironmental Transformation in the Sahel: Another Kind of “Green Revolution”; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Shennan-Farpón, Y.; Mills, M.; Souza, A.; Homewood, K. The Role of Agroforestry in Restoring Brazil’s Atlantic Forest: Opportunities and Challenges for Smallholder Farmers. People Nat. 2022, 4, 462–480. [Google Scholar] [CrossRef]
- Schmitz, T.; Kihara, F. Investing in Ecosystems for Water Security: The Case of the Kenya Water Towers. In The Palgrave Handbook of Climate Resilient Societies; Brears, R.C., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 117–135. ISBN 978-3-030-42462-6. [Google Scholar]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global Assessment of Agricultural System Redesign for Sustainable Intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Benson, D.B.T.; Gain, A.K.; Rouillard, J.J. Water Governance in a Comparative Perspective: From IWRM to a “Nexus” Approach? Water Altern. 2015, 8, 756–773. [Google Scholar]
- Weitz, N.; Nilsson, M.; Davis, M. A Nexus Approach to the Post-2015 Agenda: Formulating Integrated Water, Energy, and Food SDGs. SAIS Rev. Int. Aff. 2014, 34, 37–50. [Google Scholar] [CrossRef]
- Adamos, G.; Caucci, S.; Charpentier, L.; Chediek, J.; Krol, D.; Laspidou, C. Exploring Nexus Policy Insights for Water-Energy-Food Resilient Communities. Sustain. Nexus Forum 2023, 31, 69–82. [Google Scholar] [CrossRef]
- Chaiya, C. Empowering Climate Resilience: A People-Centered Exploration of Thailand’s Greenhouse Gas Emissions Trading and Sustainable Environmental Development through Climate Risk Management in Community Forests. Heliyon 2025, 11, e41844. [Google Scholar] [CrossRef]
- Mushitsi, P.; San, N.M.; Nsabimana, A.S. Climate Change in Kenya: Understanding Major Threats and Government Policies for Resilience. Int. J. Environ. Clim. Change 2023, 13, 3741–3754. [Google Scholar] [CrossRef]
- Salmoral, G.; Zegarra, E.; Vázquez-Rowe, I.; González, F.; del Castillo, L.; Saravia, G.R.; Graves, A.; Rey, D.; Knox, J.W. Water-Related Challenges in Nexus Governance for Sustainable Development: Insights from the City of Arequipa, Peru. Sci. Total Environ. 2020, 747, 141114. [Google Scholar] [CrossRef] [PubMed]
- Tsinda, A.; Abbott, P.; Chenoweth, J.; Mucyo, S. Understanding the Political Economy Dynamics of the Water, Sanitation and Hygiene (WaSH) Sector in Rwanda. Int. J. Urban Sustain. Dev. 2021, 13, 265–278. [Google Scholar] [CrossRef]
- Birner, R.; Gupta, S.; Sharma, N. The Political Economy of Agricultural Policy Reform in India: Fertilizers and Electricity for Irrigation; International Food Policy Research Institute: Washington, DC, USA, 2011. [Google Scholar]
- Closas, A.; Rap, E. Solar-Based Groundwater Pumping for Irrigation: Sustainability, Policies, and Limitations. Energy Policy 2017, 104, 33–37. [Google Scholar] [CrossRef]
- Schut, M.; Klerkx, L.; Sartas, M.; Lamers, D.; Campbell, M.M.; Ogbonna, I.; Kaushik, P.; Atta-Krah, K.; Leeuwis, C. Innovation Platforms: Experiences with Their Institutional Embedding in Agricultural Research for Development. Exp. Agric. 2016, 52, 537–561. [Google Scholar] [CrossRef]
- Lima-Quispe, N.; Coleoni, C.; Rincón, W.; Gutierrez, Z.; Zubieta, F.; Nuñez, S.; Iriarte, J.; Saldías, C.; Purkey, D.; Escobar, M.; et al. Delving into the Divisive Waters of River Basin Planning in Bolivia: A Case Study in the Cochabamba Valley. Water 2021, 13, 190. [Google Scholar] [CrossRef]
- Schomers, S.; Matzdorf, B. Payments for Ecosystem Services: A Review and Comparison of Developing and Industrialized Countries. Ecosyst. Serv. 2013, 6, 16–30. [Google Scholar] [CrossRef]
- Pillay, K.; Mohanlal, S.; Dobson, B.; Adhikari, B. Evaluating Institutional Climate Finance Barriers in Selected SADC Countries. Clim. Risk Manag. 2025, 47, 100694. [Google Scholar] [CrossRef]
- Surminski, S.; Bouwer, L.M.; Linnerooth-Bayer, J. How Insurance Can Support Climate Resilience. Nat. Clim Change 2016, 6, 333–334. [Google Scholar] [CrossRef]
- Ceballos, F.; Robles, M. Demand Heterogeneity for Index-Based Insurance: The Case for Flexible Products. J. Dev. Econ. 2020, 146, 102515. [Google Scholar] [CrossRef]
- Ostrom, E. Polycentric Systems for Coping with Collective Action and Global Environmental Change. Glob. Environ. Change 2010, 20, 550–557. [Google Scholar] [CrossRef]
- Tesfaye, G.; Alamirew, T.; Kebede, A.; Zeleke, G. Institutional Functionality in Participatory Integrated Watershed Development of Tana Sub-Basin, Ethiopia. Land 2018, 7, 130. [Google Scholar] [CrossRef]
- Meyer, K.; Dalton, J.; Welling, R. Chapter 34-Regional Nexus Dialogues for Increased Investments in Water, Energy, and Food Security in Central Asia. In Safeguarding Mountain Social-Ecological Systems, Vol 2; Schneiderbauer, S., Fontanella Pisa, P., Shroder, J.F., Szarzynski, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 261–263. ISBN 978-0-443-32824-4. [Google Scholar]
- Yupanqui, C.; Dias, N.; Goodarzi, M.R.; Sharma, S.; Vagheei, H.; Mohtar, R. A Review of Water-Energy-Food Nexus Frameworks, Models, Challenges and Future Opportunities to Create an Integrated, National Security-Based Development Index. Energy Nexus 2025, 18, 100409. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-Energy-Food Nexus: Concepts, Questions and Methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Adu-Poku, A.; Siabi, E.K.; Otchere, N.O.; Effah, F.B.; Awafo, E.A.; Kemausuor, F.; Yazdanie, M. Impact of Drought on Hydropower Generation in the Volta River Basin and Future Projections under Different Climate and Development Pathways. Energy Clim. Change 2024, 5, 100169. [Google Scholar] [CrossRef]
- He, X.; Estes, L.; Konar, M.; Tian, D.; Anghileri, D.; Baylis, K.; Evans, T.P.; Sheffield, J. Integrated Approaches to Understanding and Reducing Drought Impact on Food Security across Scales. Curr. Opin. Environ. Sustain. 2019, 40, 43–54. [Google Scholar] [CrossRef]
- Correa-Cano, M.E.; Salmoral, G.; Rey, D.; Knox, J.W.; Graves, A.; Melo, O.; Foster, W.; Naranjo, L.; Zegarra, E.; Johnson, C.; et al. A Novel Modelling Toolkit for Unpacking the Water-Energy-Food-Environment (WEFE) Nexus of Agricultural Development. Renew. Sustain. Energy Rev. 2022, 159, 112182. [Google Scholar] [CrossRef]
- Pawłowski, K.P.; Czubak, W.; Zmyślona, J. Regional Diversity of Technical Efficiency in Agriculture as a Results of an Overinvestment: A Case Study from Poland. Energies 2021, 14, 3357. [Google Scholar] [CrossRef]
- Kolusu, S.R.; Shamsudduha, M.; Todd, M.C.; Taylor, R.G.; Seddon, D.; Kashaigili, J.J.; Ebrahim, G.Y.; Cuthbert, M.O.; Sorensen, J.P.R.; Villholth, K.G.; et al. The El Niño Event of 2015–2016: Climate Anomalies and Their Impact on Groundwater Resources in East and Southern Africa. Hydrol. Earth Syst. Sci. 2019, 23, 1751–1762. [Google Scholar] [CrossRef]
- Lyon, S.W.; King, K.; Polpanich, O.; Lacombe, G. Assessing Hydrologic Changes across the Lower Mekong Basin. J. Hydrol. Reg. Stud. 2017, 12, 303–314. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, D.; Ziegler, A.D.; Fu, B.; Zeng, Z. Impact of Amazonian Deforestation on Precipitation Reverses between Seasons. Nature 2025, 639, 102–108. [Google Scholar] [CrossRef]
- Żebrowski, P.; Couce-Vieira, A.; Mancuso, A. A Bayesian Framework for the Analysis and Optimal Mitigation of Cyber Threats to Cyber-Physical Systems. Risk Anal. 2022, 42, 2275–2290. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, E.; Todorović, A.; Blicharska, M.; Francisco, A.; Grabs, T.; Sušnik, J.; Teutschbein, C. An Introduction to Data-Driven Modelling of the Water-Energy-Food-Ecosystem Nexus. Environ. Model. Softw. 2024, 181, 106182. [Google Scholar] [CrossRef]
- Selje, T.; Islam, R.; Heinz, B. An Assessment of Agent-Based Modelling Tools for Community-Based Adaptation to Climate Change. Appl. Sci. 2024, 14, 11264. [Google Scholar] [CrossRef]
- Kinnunen, P.; Guillaume, J.H.A.; Taka, M.; D’Odorico, P.; Siebert, S.; Puma, M.J.; Jalava, M.; Kummu, M. Local Food Crop Production Can Fulfil Demand for Less than One-Third of the Population. Nat. Food 2020, 1, 229–237. [Google Scholar] [CrossRef]
- Mkumbukiy, A.; Loghmani-Khouzani, T.; Madani, K.; Guenther, E. Agrifood Systems’ Resilience for Sustainable Food Security amid Geopolitical Tensions: A Systematic Literature Review. Front. Sustain. Food Syst. 2025, 9, 1546851. [Google Scholar] [CrossRef]
- AlQuran, S.; Hayajneh, A.; ElShaer, H. Water, Energy and Food Security Nexus in Jordan, Lebanon and Tunisia: Assessment of Current Policies and Regulatory and Legal Framework; International Union for Conservation of Nature: Amman, Jordan, 2019. [Google Scholar]
- Bjornlund, V.; Bjornlund, H.; van Rooyen, A.F. Exploring the Factors Causing the Poor Performance of Most Irrigation Schemes in Post-Independence Sub-Saharan Africa. Int. J. Water Resour. Dev. 2020, 36, S54–S101. [Google Scholar] [CrossRef]
- Leck, H.; Conway, D.; Bradshaw, M.; Rees, J. Tracing the Water–Energy–Food Nexus: Description, Theory and Practice. Geogr. Compass 2015, 9, 445–460. [Google Scholar] [CrossRef]
- Hornum, S.T.; Bolwig, S. The Growth of Small-Scale Irrigation in Kenya: The Role of Private Firms in Technology Diffusion; United Nations Environment Programme and Technical University of Denmark: Copenhagen, Denmark, 2020. [Google Scholar]
- Newig, J.; Jahn, S.; Lang, D.J.; Kahle, J.; Bergmann, M. Linking Modes of Research to Their Scientific and Societal Outcomes. Evidence from 81 Sustainability-Oriented Research Projects. Environ. Sci. Policy 2019, 101, 147–155. [Google Scholar] [CrossRef]
- Benites-Lazaro, L.L.; Mello-Théry, N.A. Empowering Communities? Local Stakeholders’ Participation in the Clean Development Mechanism in Latin America. World Dev. 2019, 114, 254–266. [Google Scholar] [CrossRef]
- Lehmann, S. Implementing the Urban Nexus Approach for Improved Resource-Efficiency of Developing Cities in Southeast-Asia. City Cult. Soc. 2018, 13, 46–56. [Google Scholar] [CrossRef]
- Borgomeo, E.; Jägerskog, A.; Talbi, A.; Wijnen, M.; Hejazi, M.; Miralles-Wilhelm, F. The Water-Energy-Food Nexus in the Middle East and North Africa: Scenarios for a Sustainable Future; World Bank Group: Washington, DC, USA, 2018. [Google Scholar]
- Botreau, H.; Cohen, M.J. Chapter Two-Gender Inequality and Food Insecurity: A Dozen Years after the Food Price Crisis, Rural Women Still Bear the Brunt of Poverty and Hunger. In Advances in Food Security and Sustainability; Cohen, M.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 5, pp. 53–117. [Google Scholar]
- Gordon (Iñupiaq), H.S.J.; Ross, J.A.; Cheryl Bauer-Armstrong; Moreno, M.; Byington (Choctaw), R.; Bowman (Lunaape/Mohican), N. Integrating Indigenous Traditional Ecological Knowledge of Land into Land Management through Indigenous-Academic Partnerships. Land Use Policy 2023, 125, 106469. [Google Scholar] [CrossRef]
- Weitz, N.; Strambo, C.; Kemp-Benedict, E.; Nilsson, M. Governance in the Water-Energy-Food Nexus: Gaps and Future Research Needs; Stockholm Environment Institute: Stockholm, Sweden, 2017. [Google Scholar]
- Sarangi, P.K.; Pal, P.; Singh, A.K.; Sahoo, U.K.; Prus, P. Food Waste to Food Security: Transition from Bioresources to Sustainability. Resources 2024, 13, 164. [Google Scholar] [CrossRef]
- Muth, M.K.; Birney, C.; Cuéllar, A.; Finn, S.M.; Freeman, M.; Galloway, J.N.; Gee, I.; Gephart, J.; Jones, K.; Low, L.; et al. A Systems Approach to Assessing Environmental and Economic Effects of Food Loss and Waste Interventions in the United States. Sci. Total Environ. 2019, 685, 1240–1254. [Google Scholar] [CrossRef]
- Kurian, M. The Water-Energy-Food Nexus: Trade-Offs, Thresholds and Transdisciplinary Approaches to Sustainable Development. Environ. Sci. Policy 2017, 68, 97–106. [Google Scholar] [CrossRef]
- Thilakarathne, N.N.; Abu Bakar, M.S.; Abas, P.E.; Yassin, H. Internet of Things Enabled Smart Agriculture: Current Status, Latest Advancements, Challenges and Countermeasures. Heliyon 2025, 11, e42136. [Google Scholar] [CrossRef]
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Strategies to Achieve a Carbon Neutral Society: A Review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef]
- Sonneveld, B.G.J.S.; Merbis, M.D.; Alfarra, A.; Ünver, O.; Arnal, M.F. Nature-Based Solutions for Agricultural Water Management and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Ayarza, M.; Rao, I.; Vilela, L.; Lascano, C.; Vera-Infanzón, R. Chapter Three-Soil Carbon Accumulation in Crop-Livestock Systems in Acid Soil Savannas of South America: A Review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 173, pp. 163–226. [Google Scholar]
- Srivastava, A.K.; Rahimi, J.; Alsafadi, K.; Vianna, M.; Enders, A.; Zheng, W.; Demircan, A.; Dieng, M.D.B.; Salack, S.; Faye, B.; et al. Modelling Mixed Crop-Livestock Systems and Climate Impact Assessment in Sub-Saharan Africa. Sci. Rep. 2025, 15, 1399. [Google Scholar] [CrossRef]
- Sharma, G.; TelWala, Y.; Chettri, P. Integrating Nature-Based Solutions for Water Security in Fragile Mountain Ecosystems: Lessons from Dhara Vikas in Sikkim, India. Nat. Based Solut. 2024, 6, 100169. [Google Scholar] [CrossRef]
- Blackmore, I.; Rivera, C.; Waters, W.F.; Iannotti, L.; Lesorogol, C. The Impact of Seasonality and Climate Variability on Livelihood Security in the Ecuadorian Andes. Clim. Risk Manag. 2021, 32, 100279. [Google Scholar] [CrossRef]
- Miralles-Wilhelm, F. Development and Application of Integrative Modeling Tools in Support of Food-Energy-Water Nexus Planning-A Research Agenda. J. Environ. Stud. Sci. 2016, 6, 3–10. [Google Scholar] [CrossRef]
- Mohtar, R.H. The WEF Nexus Journey. Front. Sustain. Food Syst. 2022, 6, 820305. [Google Scholar] [CrossRef]
- ICSU. A Guide to SDG Interactions: From Science to Implementation; International Council for Science: Paris, France, 2017. [Google Scholar]
- Horne, L.; Manzanares, A.; Babin, N.; Royse, E.A.; Arakawa, L.; Blavascunas, E.; Doner, L.; Druckenbrod, D.L.; Fairchild, E.; Jarchow, M.E.; et al. Alignment among Environmental Programs in Higher Education: What Food-Energy-Water Nexus Concepts Are Covered in Introductory Courses? J. Geosci. Educ. 2024, 72, 86–103. [Google Scholar] [CrossRef]
- Bogdanski, A.; Dubois, O.; Jamieson, C.; Krell, R. Making Integrated Food-Energy Systems Work for People and Climate: An Overview; Environment and Natural Resources Management Working Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Ahmed, M.; Maclean, J.; Gerpacio, R.V.; Sombilla, M.A. Food Security and Climate Change in the Pacific: Rethinking the Options; Asian Development Bank: Mandaluyong, Philippines, 2011. [Google Scholar]
- FAO. The Water-Energy-Food (WEF) Nexus: Building Resilience in the Caribbean. Available online: https://www.fao.org/in-action/fao-campus/training-activities/self-paced-courses/the-water-energy--food-(wef)-nexus--building-resilience-in-the-caribbean/en (accessed on 10 May 2025).
- ADB Water-Energy-Food Nexus Short Course. Available online: https://hub4r.adb.org/trainings/ihe-delft-institute-water-education/water-energy-food-nexus-short-course (accessed on 10 May 2025).
- Ardoin, N.M.; Bowers, A.W.; Gaillard, E. Environmental Education Outcomes for Conservation: A Systematic Review. Biol. Conserv. 2020, 241, 108224. [Google Scholar] [CrossRef]
- van Welie, M.J.; Romijn, H.A. NGOs Fostering Transitions towards Sustainable Urban Sanitation in Low-Income Countries: Insights from Transition Management and Development Studies. Environ. Sci. Policy 2018, 84, 250–260. [Google Scholar] [CrossRef]
- Decoppet, J.B.; Guzzo, D.; Traini, L.; Gambino, V.; Roncallo, F.; Bagnara, G.L. Designing Innovative Solutions for the Water, Energy and Food Nexus: A Comprehensive Review of Business Models for the WEF Nexus; RES4Africa Foundation Location: Rome, Italy, 2023. [Google Scholar]
- Özcan, Z.; Willaarts, B.; Klessova, S.; Caucci, S.; Prista, L.; Adamos, G.; Laspidou, C. From Nexus Thinking to Nexus Implementation in South Europe and beyond: Mutual Learning between Practitioners and Policymakers. Sustain. Nexus Forum 2024, 32, 6. [Google Scholar] [CrossRef]
- Emerson, K.; Nabatchi, T.; Balogh, S. An Integrative Framework for Collaborative Governance. J. Public Adm. Res. Theory 2012, 22, 1–29. [Google Scholar] [CrossRef]
Climate Challenge/Impact | Nexus-Based Adaptation/Mitigation Strategies | Future Priorities/Research Directions |
---|---|---|
Drought and water scarcity—Reduced water availability for crops and livestock; drying of rivers and reservoirs, affecting irrigation and hydropower. |
|
|
Temperature extremes (heatwaves and cold spells)—Heat stress on crops/animals; increased evapotranspiration and cooling needs. In cold regions, need for heating greenhouses and barns. |
|
|
Extreme rainfall and flooding—Crop damage, soil erosion, infrastructure (roads, power lines) damage; waterlogging of fields. |
|
|
High greenhouse gas (GHG) emissions from food systems—Agriculture’s contribution to climate change (carbon dioxide from fuel and deforestation, methane from livestock, nitrous oxide from soils) exacerbates future climate risks. |
|
|
Ecosystem degradation and biodiversity loss—Climate stress on ecosystems (wildfires, habitat shifts) combined with unsustainable farming undermines services (pollination, water regulation). |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhar, A.R. Building Climate-Resilient Food Systems Through the Water–Energy–Food–Environment Nexus. Environments 2025, 12, 167. https://doi.org/10.3390/environments12050167
Dhar AR. Building Climate-Resilient Food Systems Through the Water–Energy–Food–Environment Nexus. Environments. 2025; 12(5):167. https://doi.org/10.3390/environments12050167
Chicago/Turabian StyleDhar, Aurup Ratan. 2025. "Building Climate-Resilient Food Systems Through the Water–Energy–Food–Environment Nexus" Environments 12, no. 5: 167. https://doi.org/10.3390/environments12050167
APA StyleDhar, A. R. (2025). Building Climate-Resilient Food Systems Through the Water–Energy–Food–Environment Nexus. Environments, 12(5), 167. https://doi.org/10.3390/environments12050167