Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (864)

Search Parameters:
Keywords = waste fruit products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2047 KiB  
Article
Sustainable Management of Fruit By-Products Through Design Thinking: Development of an Innovative Food Product
by Sylwia Sady, Alfred Błaszczyk, Bogdan Pachołek, Anna Muzykiewicz-Szymańska, Anna Nowak, Justyna Syguła-Cholewińska, Tomasz Sawoszczuk, Stanisław Popek, Małgorzata Krzywonos, Agnieszka Piekara and Dominika Jakubowska
Sustainability 2025, 17(15), 7164; https://doi.org/10.3390/su17157164 (registering DOI) - 7 Aug 2025
Abstract
Sustainable development and the circular economy have become key challenges in the modern food sector, calling for innovative solutions that reduce waste and promote the efficient use of resources. The aim of this study was to develop a functional food product by utilizing [...] Read more.
Sustainable development and the circular economy have become key challenges in the modern food sector, calling for innovative solutions that reduce waste and promote the efficient use of resources. The aim of this study was to develop a functional food product by utilizing by-products from chokeberry processing, thereby contributing to circularity in food systems. The integration of design thinking with fermentation of chokeberry pomace is presented in this study as an approach to developing value-added food ingredients. Qualitative consumer research (focus group interviews, n = 36) identified preferences and expectations regarding functional foods containing by-products. Conducted by an interdisciplinary team, the project followed five stages, involving both qualitative and quantitative research. Liquid surface fermentation was performed using Aspergillus niger, selected for its proven ability to enhance the antioxidant capacity and polyphenol content of plant matrices. The optimal process was 2-day fermentation under controlled pH conditions with glucose supplementation, which significantly enhanced the quality and nutritional value of the final product. Antioxidant activity (ABTS, FRAP, CUPRAC assays), total polyphenols, anthocyanins, and proanthocyanidins were determined, showing significant increases compared to non-fermented controls. The outcome was the development of a dried, fermented chokeberry pomace product that meets consumer expectations and fulfils sustainability goals through waste reduction and innovative reuse of fruit processing by-products. Full article
(This article belongs to the Special Issue Innovative Technologies in Food Engineering Towards Sustainability)
32 pages, 1104 KiB  
Review
Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation
by Andrea Marcelli, Andrea Osimani and Lucia Aquilanti
Foods 2025, 14(15), 2704; https://doi.org/10.3390/foods14152704 - 31 Jul 2025
Viewed by 284
Abstract
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this [...] Read more.
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this category can reach up to 60%. Vegetable waste includes edible parts discarded during processing, packaging, distribution, and consumption, often comprising by-products rich in bioactive compounds such as polyphenols, carotenoids, dietary fibers, vitamins, and enzymes. The underutilization of these resources constitutes both an economic drawback and an environmental and ethical concern. Current recovery practices, including their use in animal feed or bioenergy production, contribute to a circular economy but are often limited by high operational costs. In this context, fermentation has emerged as a promising, sustainable approach for converting vegetable by-products into value-added food ingredients. This process improves digestibility, reduces undesirable compounds, and introduces probiotics beneficial to human health. The present review examines how fermentation can improve the nutritional, sensory, and functional properties of plant-based foods. By presenting several case studies, it illustrates how fermentation can effectively valorize vegetable processing by-products, supporting the development of novel, health-promoting food products with improved technological qualities. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Show Figures

Figure 1

20 pages, 1889 KiB  
Article
Suppression of Spotted Wing Drosophila, Drosophila suzukii (Matsumura), in Raspberry Using the Sterile Insect Technique
by Sebastian Hemer, Zeus Mateos-Fierro, Benjamin Brough, Greg Deakin, Robert Moar, Jessica P. Carvalho, Sophie Randall, Adrian Harris, Jimmy Klick, Michael P. Seagraves, Glen Slade, Michelle T. Fountain and Rafael A. Homem
Insects 2025, 16(8), 791; https://doi.org/10.3390/insects16080791 - 31 Jul 2025
Viewed by 326
Abstract
Drosophila suzukii is an invasive pest of many fruit crops worldwide. Employing the Sterile Insect Technique (SIT) could mitigate D. suzukii population growth and crop damage. This study evaluated the efficacy of SIT on commercial fruit, by (1) validating the quality of irradiated [...] Read more.
Drosophila suzukii is an invasive pest of many fruit crops worldwide. Employing the Sterile Insect Technique (SIT) could mitigate D. suzukii population growth and crop damage. This study evaluated the efficacy of SIT on commercial fruit, by (1) validating the quality of irradiated sterile males (male mating competitiveness, courtship, and flight performance) in the laboratory, and (2) assessing population suppression and fruit damage reduction in commercial raspberry fields. Treatment with SIT was compared to the grower’s standard chemical insecticide program throughout the season. The principal metrics of efficacy were trap counts of wild adult female D. suzukii in crops and larvae per fruit during harvesting. These metrics together with monitoring of border areas allowed targeting of high-pressure areas with higher releases of sterile males, to maximise efficacy for a given release number. The sterile male D. suzukii were as competitive as their fertile non-irradiated counterparts in laboratory mating competitiveness and flight performance studies while fertility egg-to-pupae recovery was reduced by 99%. In commercial raspberry crops, season-long releases of sterile males significantly suppressed the wild D. suzukii population, compared to the grower standard control strategy; with up to 89% reduction in wild female D. suzukii and 80% decrease in numbers of larvae per harvested fruit. Additionally, relative fruit waste (i.e., percentage of harvested fruits rejected for sale) at harvest was reduced for early, mid and late harvest crops, by up to 58% compared to the grower standard control. SIT has the potential to provide an effective and sustainable strategy for managing D. suzukii in raspberries, increasing marketable yield by reducing adult populations, fruit damage and waste fruit. SIT could therefore serve as a valuable tool for integrated pest management practices in berry production systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

26 pages, 16740 KiB  
Article
An Integrated Framework for Zero-Waste Processing and Carbon Footprint Estimation in ‘Phulae’ Pineapple Systems
by Phunsiri Suthiluk, Anak Khantachawana, Songkeart Phattarapattamawong, Varit Srilaong, Sutthiwal Setha, Nutthachai Pongprasert, Nattaya Konsue and Sornkitja Boonprong
Agriculture 2025, 15(15), 1623; https://doi.org/10.3390/agriculture15151623 - 26 Jul 2025
Viewed by 375
Abstract
This study proposes an integrated framework for sustainable tropical agriculture by combining biochemical waste valorization with spatial carbon footprint estimation in ‘Phulae’ pineapple production. Peel and eye residues from fresh-cut processing were enzymatically converted into rare sugar, achieving average conversion efficiencies of 35.28% [...] Read more.
This study proposes an integrated framework for sustainable tropical agriculture by combining biochemical waste valorization with spatial carbon footprint estimation in ‘Phulae’ pineapple production. Peel and eye residues from fresh-cut processing were enzymatically converted into rare sugar, achieving average conversion efficiencies of 35.28% for peel and 37.51% for eyes, with a benefit–cost ratio of 1.56 and an estimated unit cost of USD 0.17 per gram. A complementary zero-waste pathway produced functional gummy products using vinegar fermented from pineapple eye waste, with the preferred formulation scoring a mean of 4.32 out of 5 on a sensory scale with 158 untrained panelists. For spatial carbon modeling, the Bare Land Referenced Algorithm (BRAH) and Otsu thresholding were applied to multi-temporal Sentinel-2 and THEOS imagery to estimate plantation age, which strongly correlated with field-measured emissions (r = 0.996). This enabled scalable mapping of plot-level greenhouse gas emissions, yielding an average footprint of 0.2304 kg CO2 eq. per kilogram of fresh pineapple at the plantation gate. Together, these innovations form a replicable model that aligns tropical fruit supply chains with circular economy goals and carbon-related trade standards. The framework supports waste traceability, resource efficiency, and climate accountability using accessible, data-driven tools suitable for smallholder contexts. By demonstrating practical value addition and spatially explicit carbon monitoring, this study shows how integrated circular and geospatial strategies can advance sustainability and market competitiveness for the ‘Phulae’ pineapple industry and similar perennial crop systems. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

20 pages, 1299 KiB  
Article
A Consumer Perspective on the Valorization of Forest Fruit By-Products in a Dairy Product: Opportunity or Challenge?
by Mădălina Ungureanu-Iuga and Emanuela-Adina Nicula
Sustainability 2025, 17(14), 6611; https://doi.org/10.3390/su17146611 - 19 Jul 2025
Viewed by 356
Abstract
This study investigates the influence of monthly income level (low, medium, and high) on consumer behavior regarding a newly launched cream cheese product enriched with berry by-products. A panel of 345 participants was surveyed, and data were analyzed using the Kruskal–Wallis and Mann–Whitney [...] Read more.
This study investigates the influence of monthly income level (low, medium, and high) on consumer behavior regarding a newly launched cream cheese product enriched with berry by-products. A panel of 345 participants was surveyed, and data were analyzed using the Kruskal–Wallis and Mann–Whitney tests. Most consumers were environmentally aware, recognizing the impact of personal food waste and expressing support for food products incorporating by-products. Respondents also favored the use of renewable energy and reducing greenhouse gas emissions in the food industry. Higher income levels were associated with greater health awareness and increased acceptance of cream cheese with berry by-products, with the high-income group showing a greater willingness to pay a premium. Health benefits and the product’s natural character were the main advantages identified. Individuals with lower incomes were more open to trying unfamiliar foods when ingredient details were not provided, while higher-income respondents expressed greater hesitation and distrust toward new products. Willingness to try novel items decreased with income level. Statistically significant differences (p < 0.05) were found between income groups for label reading, support for mountain dairies, and the influence of product origin, health benefits, nutrient diversity, pricing concerns, and consumer confidence in purchasing cream cheese with berry by-products. These findings are important for understanding how income affects consumer perceptions and willingness to consume innovative, sustainable food products like berry-enriched cream cheese, highlighting key areas for targeted marketing and product development. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Figure 1

18 pages, 1029 KiB  
Article
Processing Fruits and Vegetables as a Way to Prevent Their Waste
by Ksenia Juszczak-Szelągowska, Iwona Kowalczuk, Dawid Olewnicki, Małgorzata Kosicka-Gębska and Dagmara Stangierska-Mazurkiewicz
Sustainability 2025, 17(14), 6610; https://doi.org/10.3390/su17146610 - 19 Jul 2025
Viewed by 383
Abstract
The aim of the current study was to determine the scale and underlying causes for the waste of raw and processed fruits and vegetables in Polish households. A survey was conducted on a representative sample of 1100 respondents. The collected empirical data were [...] Read more.
The aim of the current study was to determine the scale and underlying causes for the waste of raw and processed fruits and vegetables in Polish households. A survey was conducted on a representative sample of 1100 respondents. The collected empirical data were analyzed using statistical tools such as non-parametric tests, multiple regression methods, and logistic regression. This study assessed the level and determinants of waste of raw and processed fruits and vegetables, identified the reasons for this waste and their impact on its extent, and analyzed the effect of waste prevention methods (including processing) on the scale of product losses. This study showed that the scale of waste of processed fruits and vegetables in Polish consumer households is significantly lower than that of raw products. The level of waste for both raw and processed products vary depending on place of residence, education, income, household size, and, in the case of processed fruits and vegetables, also the age of respondents. The main reason for fruit and vegetable losses in households is missing the product’s expiration date. Logistic regression analysis showed that the most effective strategies for reducing the waste of raw fruits and vegetables include purchasing the right quantities and freezing them. In contrast, practices such as donating food to others or composting were linked to a statistically significant decrease in the likelihood of reducing waste. Full article
(This article belongs to the Special Issue Future Trends in Food Processing and Food Preservation Techniques)
Show Figures

Figure 1

8 pages, 263 KiB  
Communication
Stomatal Blocker Delays Strawberry Production
by Jie Xiang, Laura Vickers, James M. Monaghan and Peter Kettlewell
Int. J. Plant Biol. 2025, 16(3), 80; https://doi.org/10.3390/ijpb16030080 - 19 Jul 2025
Viewed by 172
Abstract
Strawberries have a short shelf-life leading to food loss and waste when production unexpectedly exceeds demand. PGRs may have potential to delay production and reduce food loss and waste, but no PGRs are available for delaying strawberry production. The aim of this preliminary [...] Read more.
Strawberries have a short shelf-life leading to food loss and waste when production unexpectedly exceeds demand. PGRs may have potential to delay production and reduce food loss and waste, but no PGRs are available for delaying strawberry production. The aim of this preliminary study was to investigate re-purposing a stomatal blocking film antitranspirant polymer as a PGR to temporarily delay production. Poly-1-p-menthene or water was applied during early fruit ripening in two glasshouse experiments, one on a June-bearer cultivar and one on an everbearer cultivar. Ripe strawberries were harvested during the next 23 days, the cumulative yield was recorded, and the production curves were fitted using polynomial regression in groups. The statistical analysis showed that cubic polynomial regression curves could be fitted separately to each treatment. Application of the blocker delayed the production of both cultivars by 1–2 days during the period of rapid berry production. The delay diminished and cumulative yield returned to the water-treated value by 13 and 18 days after application in the June-bearer and everbearer cultivars, respectively. At 23 days after application, the blocker gave 8% greater cumulative yield in the June-bearer, but not in the everbearer. It was concluded that, if a greater delay could be achieved, there may be potential to use stomatal blockers as PGRs in some cultivars of strawberry to delay production and reduce food loss and waste when unanticipated lower demand occurs. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

19 pages, 4374 KiB  
Article
Characterization of the Aqueous Phase from Pyrolysis of Açaí Seeds and Fibers (Euterpe oleracea Mart.)
by Erick Monteiro de Sousa, Kelly Christina Alves Bezerra, Renan Marcelo Pereira Silva, Gabriel Arthur da Costa Martins, Gabriel Xavier de Assis, Raise Brenda Pinheiro Ferreira, Lucas Pinto Bernar, Neyson Martins Mendonça, Carmen Gilda Barroso Tavares Dias, Douglas Alberto Rocha de Castro, Gabriel de Oliveira Rodrigues, Sergio Duvoisin Junior, Marta Chagas Monteiro and Nélio Teixeira Machado
Energies 2025, 18(14), 3820; https://doi.org/10.3390/en18143820 - 18 Jul 2025
Viewed by 346
Abstract
Açaí (Euterpe oleracea Mart.) is a native fruit of the Amazon, and its production chain is centered in the state of Pará. The processing of açaí fruits generates large amounts of solid waste, which can pose serious risks to the environment if not [...] Read more.
Açaí (Euterpe oleracea Mart.) is a native fruit of the Amazon, and its production chain is centered in the state of Pará. The processing of açaí fruits generates large amounts of solid waste, which can pose serious risks to the environment if not used and managed properly. The novelty of this research lies in the fact that until this moment, no research had been reported in the literature on the pyrolysis of açaí fibers and the chemical composition of the aqueous phase, making possible a broad set of applications including biogas production. The present research proposes a study of the pyrolysis of açaí seeds and fibers and the physicochemical and compositional characterization of the aqueous phase products. In this way, açaí processing residues were collected in the city of Belém, PA. The seeds and fibers were dried and impregnated with NaOH solutions, and subsequently subjected to pyrolysis on a laboratory scale. The liquid products from pyrolysis were characterized through acidity index analysis, FT-IR, and gas chromatography. The increase in the concentration of the impregnating agent led to an increase in bio-oil yield from both the seeds (ranging from 3.3% to 6.6%) and the fibers (ranging from 1.2% to 3.7%). The yield in the aqueous phase showed an inverse behavior, decreasing as the concentration of NaOH increased, both in the seeds (ranging from 41% to 37.5%) and the fibers (ranging from 33.7% to 21.2%). High acidity levels were found in the liquid products studied, which decreased as the concentration of the impregnating agent increased. The increase in the concentration of the impregnating agent (NaOH) influenced the chemical composition of the obtained liquid products, leading to a decrease in oxygenated compounds and an increase in nitrogenous compounds in both experimental matrices, which was also evidenced by the reduction in acidity. Full article
(This article belongs to the Special Issue Advanced Bioenergy, Biomass and Waste Conversion Technologies)
Show Figures

Figure 1

18 pages, 923 KiB  
Article
Optimizing Bioactive Compound Recovery from Chestnut Shells Using Pressurized Liquid Extraction and the Box–Behnken Design
by Magdalini Pazara, Georgia Provelengiadi, Martha Mantiniotou, Vassilis Athanasiadis, Iordanis Samanidis, Ioannis Makrygiannis, Ilias F. Tzavellas, Ioannis C. Martakos, Nikolaos S. Thomaidis and Stavros I. Lalas
Processes 2025, 13(7), 2283; https://doi.org/10.3390/pr13072283 - 17 Jul 2025
Viewed by 469
Abstract
Chestnut (Castanea sativa Mill.) is an edible nut recognized for its nutritional attributes, particularly its elevated levels of carbohydrates (starch) and proteins. Chestnuts are popular for their health-promoting properties and hold significant environmental and economic importance in Europe. During this study, after [...] Read more.
Chestnut (Castanea sativa Mill.) is an edible nut recognized for its nutritional attributes, particularly its elevated levels of carbohydrates (starch) and proteins. Chestnuts are popular for their health-promoting properties and hold significant environmental and economic importance in Europe. During this study, after the characterization of the fruit, attention was directed toward the valorization of chestnut shells, a predominant by-product of industrial chestnut processing that is typically discarded. Valuable bioactive compounds were extracted from the shells using Pressurized Liquid Extraction (PLE), a green, efficient, scalable method. Response surface methodology (RSM) was utilized to determine optimal extraction conditions, identified as 40% v/v ethanol as the solvent at a temperature of 160 °C for 25 min under a constant pressure of 1700 psi. High total polyphenol content (113.68 ± 7.84 mg GAE/g dry weight) and notable antioxidant activity—determined by FRAP (1320.28 ± 34.33 μmol AAE/g dw) and DPPH (708.65 ± 24.8 μmol AAE/g dw) assays—were recorded in the optimized extracts. Ultrahigh-performance liquid chromatography coupled with a hybrid trap ion mobility-quadrupole time-of-flight mass spectrometer (UHPLC-TIMS-QTOF-MS) was applied to further characterize the compound profile, enabling the identification of phenolic and antioxidant compounds. These findings highlight the possibility of using chestnut shell residues as a long-term resource to make valuable products for the food, medicine, cosmetics, and animal feed industries. This study contributes to the advancement of waste valorization strategies and circular bioeconomy approaches. Full article
(This article belongs to the Special Issue Research of Bioactive Synthetic and Natural Products Chemistry)
Show Figures

Figure 1

26 pages, 5423 KiB  
Article
Using System Thinking to Identify Food Wastage (FW) Leverage Points in Four Different Food Chains
by Annelies Verspeek-van der Stelt, Frederike Praasterink, Evelot Westerink-Duijzer, Ayella Spaapen, Woody Maijers and Antien Zuidberg
Sustainability 2025, 17(14), 6523; https://doi.org/10.3390/su17146523 - 16 Jul 2025
Viewed by 310
Abstract
About one third of all food produced for human consumption is lost or wasted, leading to societal, economic and environmental challenges. This study identifies the most important food wastage (FW) leverage points and their interrelations with specific food chains. Semi-structured interviews were conducted [...] Read more.
About one third of all food produced for human consumption is lost or wasted, leading to societal, economic and environmental challenges. This study identifies the most important food wastage (FW) leverage points and their interrelations with specific food chains. Semi-structured interviews were conducted across four different food chains (milk, poultry, potatoes and greenhouse-grown fruit and vegetables) from primary production to food service. The outcomes of the interviews were summarized via a systems approach and validated during co-creation sessions. A total of twenty-two FW leverage points were identified across the food chains, consisting of four major hotspots, six patterns of behaviours, six structures and six mental models. Common transformative leverage points across all food chains were damaged products, oversupply, regulations and standards that limit product use and a lack of prioritization of FW reduction. Additionally, this study found that co-creation sessions with stakeholders from across the food chains could facilitate the formation of coalitions of willing companies, encouraging collaborative efforts to reduce FW. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

52 pages, 3535 KiB  
Review
Agricultural Waste-Derived Biopolymers for Sustainable Food Packaging: Challenges and Future Prospects
by Thivya Selvam, Nor Mas Mira Abd Rahman, Fabrizio Olivito, Zul Ilham, Rahayu Ahmad and Wan Abd Al Qadr Imad Wan-Mohtar
Polymers 2025, 17(14), 1897; https://doi.org/10.3390/polym17141897 - 9 Jul 2025
Cited by 1 | Viewed by 1178
Abstract
The widespread use of conventional plastic in food packaging has raised serious environmental issues due to its persistence and poor biodegradability. With growing concerns over plastic pollution and its long-term ecological impact, researchers are increasingly turning to natural, renewable sources for sustainable alternatives. [...] Read more.
The widespread use of conventional plastic in food packaging has raised serious environmental issues due to its persistence and poor biodegradability. With growing concerns over plastic pollution and its long-term ecological impact, researchers are increasingly turning to natural, renewable sources for sustainable alternatives. Agricultural waste, often discarded in large quantities, offers a valuable resource for producing biodegradable polymers. This review discusses the environmental burden caused by traditional plastics and explores how agricultural residues such as rice husks, corn cobs, and fruit peels can be converted into eco-friendly packaging materials. Various types of biopolymers sourced from agricultural waste, including cellulose, starch, plant and animal-based proteins, polyhydroxyalkanoates (PHA), and polylactic acid (PLA), are examined for their properties, benefits, and limitations in food packaging applications. Each material presents unique characteristics in terms of biodegradability, mechanical strength, and barrier performance. While significant progress has been made, several challenges remain, including cost-effective production, material performance, and compliance with food safety regulations. Looking ahead, innovations in material processing, waste management integration, and biopolymer formulation could pave the way for widespread adoption. This review aims to provide a comprehensive overview of current developments and future directions in the use of agricultural waste for sustainable packaging solutions, comparing their biodegradability and performance to conventional plastics. Full article
(This article belongs to the Special Issue Polymeric Materials for Food Packaging: Fundamentals and Applications)
Show Figures

Figure 1

13 pages, 1507 KiB  
Article
Sustainability and Innovation in Hospitality Management: Green Practices in Northeastern Hungary
by Tamás Misik and Zoltán Nagy
Sustainability 2025, 17(13), 6185; https://doi.org/10.3390/su17136185 - 5 Jul 2025
Viewed by 465
Abstract
Sustainability has also become an increasingly important issue as an international trend for the hospitality industry in recent times, with a positive message for both restaurant operators and consumers. Restaurants can become more sustainable in three main areas: (1) water and energy efficiency, [...] Read more.
Sustainability has also become an increasingly important issue as an international trend for the hospitality industry in recent times, with a positive message for both restaurant operators and consumers. Restaurants can become more sustainable in three main areas: (1) water and energy efficiency, (2) waste management, and (3) employees—social topics. This study examines the role of green practices and innovation in hospitality using three methods in parallel. In connection with a current tourism project, this paper describes some of the green practices for hospitality management in Hungary. Based on the survey, the most common sustainable practices are sourcing from local producers and using seasonal menus. The most popular food waste reduction strategies are Munch, nose-to-tail, and other food utilization options, totaling 65.0%. A total of 72.0% of consumers prefer the green restaurants. Our data show that sustainable operation is not just an environmental issue, but also increasingly a strategic business advantage. The findings are supported by the everyday practices of two of Dining Guide’s member restaurants, Iszkor and Sulyom in the Northeastern Hungary region. Both restaurants focus on locally sourced food and drink ingredients. Some dairy products, domestic fruit, and vegetables come from sustainable farming. For restaurants, adopting sustainable solutions can provide a long-term competitive advantage. Full article
(This article belongs to the Special Issue Heritage Preservation and Tourism Development)
Show Figures

Figure 1

22 pages, 2943 KiB  
Review
Cacao in the Circular Economy: A Review on Innovations from Its By-Products
by Liliana Esther Sotelo-Coronado, William Oviedo-Argumedo and Armando Alvis-Bermúdez
Processes 2025, 13(7), 2098; https://doi.org/10.3390/pr13072098 - 2 Jul 2025
Viewed by 710
Abstract
Cacao is a food of global interest. Currently, the industry primarily utilizes the seed, which represents between 21% and 23% of the total fruit weight. In 2023, global production reached 5.6 million tons of fermented dry cacao beans, while approximately 25.45 million tons [...] Read more.
Cacao is a food of global interest. Currently, the industry primarily utilizes the seed, which represents between 21% and 23% of the total fruit weight. In 2023, global production reached 5.6 million tons of fermented dry cacao beans, while approximately 25.45 million tons corresponded to cacao residues. The objective of this review was to compile and analyze alternatives for the utilization of cacao by-products. The methodology involved technological surveillance conducted in specialized databases between 2015 and 2025. Metadata were analyzed using VOSviewer software version 1.6.20. Priority was given to the most recent publications in high-impact indexed journals. Additionally, 284 patent documents were identified, from which 15 were selected for in-depth analysis. The reviewed articles and patents revealed a wide range of industrial applications for cacao by-products. Technologies including ultrasonic and microwave-assisted extraction, phenolic microencapsulation, cellulose nanocrystal isolation and targeted microbial fermentations maximize the recovery of polyphenols and antioxidants, optimize the production of high-value bioproducts such as citric acid and ethanol, and yield biodegradable precursors for packaging and bioplastics. The valorization of lignocellulosic by-products reduces pollutant discharge and waste management costs, enhances economic viability across the cacao value chain, and broadens functional applications in the food industry. Moreover, these integrated processes underpin circular economy frameworks by converting residues into feedstocks, thereby promoting sustainable development in producer communities and mitigating environmental impact. Collectively, they constitute a robust platform for the comprehensive utilization of cacao residues, fully aligned with bioeconomy objectives and responsible resource stewardship. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

27 pages, 2941 KiB  
Review
Valorization of Fruit Pomace by Enzymatic Treatment and Microbial Fermentation
by Nadiya Samad, Clinton E. Okonkwo, Mutamed Ayyash, Ali H. Al-Marzouqi, Oni Yuliarti and Afaf Kamal-Eldin
Fermentation 2025, 11(7), 376; https://doi.org/10.3390/fermentation11070376 - 29 Jun 2025
Viewed by 656
Abstract
Fruit pomace is a major processing byproduct abundant in fermentable sugars, dietary fibers, and phenolic and other bioactive compounds. This review provides a summary of the latest developments in fruit pomace enzymatic valorization and microbial fermentation, focusing on the enzymes and microbes used, [...] Read more.
Fruit pomace is a major processing byproduct abundant in fermentable sugars, dietary fibers, and phenolic and other bioactive compounds. This review provides a summary of the latest developments in fruit pomace enzymatic valorization and microbial fermentation, focusing on the enzymes and microbes used, technologies, bioconversion products, and applications. The extraction and structural transformation of dietary fibers, oligosaccharides, and phenolic and other bioactive compounds have been made easier by enzymatic treatments. Microbial fermentation of fruit pomace produces a range of compounds such as prebiotics, organic acids, and polyphenols. Solid-state fermentation and enzyme immobilization allow the scalability and efficiency of these processes. The combination of enzymatic valorization and microbial fermentation may provide a sustainable approach to turn fruit pomace from waste into value-added food ingredients. Full article
(This article belongs to the Special Issue Advances in Fermented Fruits and Vegetables)
Show Figures

Figure 1

17 pages, 982 KiB  
Article
Growth Performance, Carcass Quality and Gut Microbiome of Finishing Stage Pigs Fed Formulated Protein-Energy Nutrients Balanced Diet with Banana Agro-Waste Silage
by Lan-Szu Chou, Chih-Yu Lo, Chien-Jui Huang, Hsien-Juang Huang, Shen-Chang Chang, Brian Bor-Chun Weng and Chia-Wen Hsieh
Life 2025, 15(7), 1033; https://doi.org/10.3390/life15071033 - 28 Jun 2025
Viewed by 428
Abstract
This study evaluated the effects of fermented banana agro-waste silage (BAWS) in finishing diets for KHAPS pigs (Duroc × MeiShan hybrid). BAWS was produced via 30 days of anaerobic fermentation of disqualified banana fruit, pseudostem, and wheat bran, doubling crude protein content and [...] Read more.
This study evaluated the effects of fermented banana agro-waste silage (BAWS) in finishing diets for KHAPS pigs (Duroc × MeiShan hybrid). BAWS was produced via 30 days of anaerobic fermentation of disqualified banana fruit, pseudostem, and wheat bran, doubling crude protein content and generating short-chain fatty acids, as indicated by a satisfactory Flieg’s score. Thirty-six pigs were assigned to control (0%), 5%, or 10% BAWS diets formulated to meet NRC nutritional guidelines. Over a 70-day period, BAWS inclusion caused no detrimental effects on growth performance, carcass traits, or meat quality; a transient decline in early-stage weight gain and feed efficiency occurred in the 10% group, while BAWS-fed pigs demonstrated reduced backfat thickness and increased lean area. Fore gut microbiome analysis revealed reduced Lactobacillus and elevated Clostridium sensu stricto 1, Terrisporobacter, Streptococcus, and Prevotella, suggesting enhanced fiber and carbohydrate fermentation capacity. Predictive COG (clusters of orthologous groups)-based functional profiling showed increased abundance of proteins associated with carbohydrate transport (COG2814, COG0561, COG0765) and stress-response regulation (COG2207). These results support BAWS as a sustainable feed ingredient that maintains production performance and promotes fore gut microbial adaptation, with implications for microbiota-informed nutrition and stress resilience in swine. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

Back to TopTop