Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,860)

Search Parameters:
Keywords = waste fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 457 KiB  
Review
Cultivating Value from Waste: Creating Novel Food, Feed, and Industrial Applications from Bambara Groundnut By-Products
by Mercy Lungaho, Omena Bernard Ojuederie, Kehinde Titilope Kareem, Kafilat Abiodun Odesola, Jacob Olagbenro Popoola, Linus Owalum Onawo, Francis Aibuedefe Igiebor, Anthonia Uselu, Taofeek Tope Adegboyega and Beckley Ikhajiagbe
Sustainability 2025, 17(16), 7378; https://doi.org/10.3390/su17167378 - 15 Aug 2025
Viewed by 175
Abstract
Bambara groundnut (Vigna subterranea), a vital yet underutilized African legume, significantly boosts food security due to its nutritional value and adaptability to harsh climates and soils. However, its processing yields substantial waste like husks, shells, and haulms, which are often carelessly [...] Read more.
Bambara groundnut (Vigna subterranea), a vital yet underutilized African legume, significantly boosts food security due to its nutritional value and adaptability to harsh climates and soils. However, its processing yields substantial waste like husks, shells, and haulms, which are often carelessly discarded, causing environmental damage. This paper highlights the urgent need to valorize these waste streams to unlock sustainable growth and economic development. Given their lignocellulosic composition, Bambara groundnut residues are ideal for generating biogas and bioethanol. Beyond energy, these wastes can be transformed into various bio-based products, including adsorbents for heavy metal removal, activated carbon for water purification, and bioplastics. Their inherent nutritional content also allows for the extraction of valuable components like dietary fiber, protein concentrates, and phenolic compounds for food products or animal feed. The nutrient-rich organic matter can also be composted into fertilizer, improving soil fertility. These valorization strategies offer multiple benefits, such as reduced waste, less environmental contamination, and lower greenhouse gas emissions, alongside new revenue streams for agricultural producers. This integrated approach aligns perfectly with circular economy principles, promoting resource efficiency and maximizing agricultural utility. Despite challenges like anti-nutritional factors and processing costs, strategic investments in technology, infrastructure, and supportive policies can unlock Bambara groundnut’s potential for sustainable innovation, job creation, and enhanced food system resilience across Africa and globally. Ultimately, valorizing Bambara groundnut waste presents a transformative opportunity for sustainable growth and improved food systems, particularly within African agriculture. Full article
(This article belongs to the Special Issue RETASTE: Rethink Food Resources, Losses and Waste)
Show Figures

Figure 1

18 pages, 6425 KiB  
Article
Low-Carbon Concrete Reinforced with Waste Steel Rivet Fibers Utilizing Steel Slag Powder, and Processed Recycled Concrete Aggregate—Engineering Insights
by Dilan Dh. Awla, Bengin M. A. Herki and Aryan Far H. Sherwani
Fibers 2025, 13(8), 109; https://doi.org/10.3390/fib13080109 - 14 Aug 2025
Viewed by 62
Abstract
The construction industry is a major source of environmental degradation as it is responsible for a significant share of global CO2 emissions, especially from cement and aggregate consumption. This study fills the need for sustainable construction materials by developing and evaluating a [...] Read more.
The construction industry is a major source of environmental degradation as it is responsible for a significant share of global CO2 emissions, especially from cement and aggregate consumption. This study fills the need for sustainable construction materials by developing and evaluating a low-carbon fiber-reinforced concrete (FRC) made of steel slag powder (SSP), processed recycled concrete aggregates (PRCAs), and waste steel rivet fibers (WSRFs) derived from industrial waste. The research seeks to reduce dependency on virgin materials while maintaining high values of mechanical performance and durability in structural applications. Sixteen concrete mixes were used in the experimental investigations with control, SSP, SSP+RCA, and RCA, reinforced with various fiber dosages (0%, 0.2%, 0.8%, 1.4%) by concrete volume. Workability, density, compressive strength, tensile strength, and water absorption were measured according to the appropriate standards. Compressive and tensile strength increased in all mixes and the 1.4% WSRF mix had the best performance. However, it was found that a fiber content of 0.8% was optimal, which balanced the improvement in strength, durability, and workability by sustainable reuse of recycled materials and demolition waste. It was found by failure mode analysis that the transition was from brittle to ductile behavior as the fiber content increased. The relationship between compressive, tensile strength, and fiber content was visualized as a 3D response surface in order to support these mechanical trends. It is concluded in this study that 15% SSP, 40% PRCA, and 0.8% WSRF are feasible, specific solutions to improve concrete performance and advance the circular economy. Full article
33 pages, 2296 KiB  
Review
The Opportunities and Challenges of Biobased Packaging Solutions
by Ed de Jong, Ingrid Goumans, Roy (H. A.) Visser, Ángel Puente and Gert-Jan Gruter
Polymers 2025, 17(16), 2217; https://doi.org/10.3390/polym17162217 - 14 Aug 2025
Viewed by 189
Abstract
The outlook for biobased plastics in packaging applications is increasingly promising, driven by a combination of environmental advantages, technological innovation, and shifting market dynamics. Derived from renewable biological resources, these materials offer compelling benefits over conventional fossil-based plastics. They can substantially reduce greenhouse [...] Read more.
The outlook for biobased plastics in packaging applications is increasingly promising, driven by a combination of environmental advantages, technological innovation, and shifting market dynamics. Derived from renewable biological resources, these materials offer compelling benefits over conventional fossil-based plastics. They can substantially reduce greenhouse gas emissions, are often recyclable or biodegradable, and, in some cases, require less energy to produce. These characteristics position biobased plastics as a key solution to urgent environmental challenges, particularly those related to climate change and resource scarcity. Biobased plastics also demonstrate remarkable versatility. Their applications range from high-performance barrier layers in multilayer packaging to thermoformed containers, textile fibers, and lightweight plastic bags. Notably, all major fossil-based packaging applications can be substituted with biobased alternatives. This adaptability enhances their commercial viability across diverse sectors, including food and beverage, pharmaceutical, cosmetics, agriculture, textiles, and consumer goods. Several factors are accelerating growth in this sector. These include the increasing urgency of climate action, the innovation potential of biobased materials, and expanding government support through funding and regulatory initiatives. At the same time, consumer demand is shifting toward sustainable products, and companies are aligning their strategies with environmental, social, and governance (ESG) goals—further boosting market momentum. However, significant challenges remain. High production costs, limited economies of scale, and the capital-intensive nature of scaling biobased processes present economic hurdles. The absence of harmonized policies and standards across regions, along with underdeveloped end-of-life infrastructure, impedes effective waste management and recycling. Additionally, consumer confusion around the disposal of biobased plastics—particularly those labeled as biodegradable or compostable—can lead to contamination in recycling streams. Overcoming these barriers will require a coordinated, multifaceted approach. Key actions include investing in infrastructure, advancing technological innovation, supporting research and development, and establishing clear, consistent regulatory frameworks. Public procurement policies, eco-labeling schemes, and incentives for low-carbon products can also play a pivotal role in accelerating adoption. With the right support mechanisms in place, biobased plastics have the potential to become a cornerstone of a sustainable, circular economy. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 700 KiB  
Article
Mechanical Properties of Basalt Fiber-Reinforced Coal Gangue Coarse Aggregate-Fly Ash Geopolymer Concrete
by Zheng Yang and Xianzhang Ling
Buildings 2025, 15(16), 2860; https://doi.org/10.3390/buildings15162860 - 13 Aug 2025
Viewed by 158
Abstract
Excellent mechanical properties are a prerequisite for the widespread application of different types of concrete in practical engineering. However, when coal gangue (CG) is used as coarse aggregate (CA) and geopolymer cement is used as auxiliary cementitious material, while reducing the demand for [...] Read more.
Excellent mechanical properties are a prerequisite for the widespread application of different types of concrete in practical engineering. However, when coal gangue (CG) is used as coarse aggregate (CA) and geopolymer cement is used as auxiliary cementitious material, while reducing the demand for ordinary cement and industrial waste emissions, it has a negative impact on mechanical performance. Therefore, in response to the data gap in the study of mechanical properties of coal gangue coarse aggregate-fly ash geopolymer concrete (CG-FA-GPC), inspired by a large number of research results on fiber-reinforced concrete, this study uses basalt fiber (BF) as a reinforcing material to investigate the enhancing effect of BF on the mechanical properties of CG-FA-GPC. We selected compressive strength, flexural strength, splitting tensile strength, and stress–strain curve as evaluation indicators to compare and analyze the mechanical properties of ordinary concrete, CG-FA-GPC, and basalt fiber-reinforced coal gangue coarse aggregate-fly ash geopolymer concrete (BF-CG-FA-GPC), and to explore the reinforcement effect of BF. The results showed that with the increase in CG substitution rate, the compressive strength, flexural strength, and splitting tensile strength of CG-FA-GPC significantly decreased. A 100% CG substitution reduced the compressive strength, flexural strength, and splitting tensile strength of CG-FA-GPC by 34.5%, 43.4%, and 31.8%, respectively. The stress–strain curve reveals the dual effects of BF on the strength enhancement and deformation modification of CG-FA-GPC. With the increase in BF content, the three mechanical strengths of CG-FA-GPC show a pattern of first increasing and then decreasing, and the optimal BF content is 0.4% (volume fraction). This experiment lays the foundation for promoting research on the mechanical properties and durability of different fiber-reinforced CG-FA-GPC, advancing the feasibility of its large-scale engineering applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 3067 KiB  
Article
Beer Bagasse as Filler for Starch-Based Biocomposite Films for Food Packaging Applications
by Paula Gómez-Contreras, Maite Cháfer, Amparo Chiralt and Chelo González-Martínez
Biomass 2025, 5(3), 46; https://doi.org/10.3390/biomass5030046 - 12 Aug 2025
Viewed by 244
Abstract
Development of biodegradable packaging materials and valorization of agri-food waste are necessary to produce more sustainable materials while reducing the environmental impact. Starch-based biocomposite films reinforced with beer bagasse fractions with different purification degrees were developed and characterized in structural, mechanical, thermal and [...] Read more.
Development of biodegradable packaging materials and valorization of agri-food waste are necessary to produce more sustainable materials while reducing the environmental impact. Starch-based biocomposite films reinforced with beer bagasse fractions with different purification degrees were developed and characterized in structural, mechanical, thermal and optical properties. To this aim, 5% and 10% (w/w) of either beer bagasse (BB) or its lignocellulosic-rich fibers (LF), obtained by subcritical water extraction at temperatures between 110 and 170 °C, were incorporated into starch matrices. Elastic modulus and tensile strength values increased by up to eight-fold and 2.5-fold, respectively, compared to the control film. The incorporation of BB or LF significantly enhanced the mechanical resistance of the films. In general, the increment in the filler:polymer ratio significantly increased the EM values (p < 0.05), while decreasing the stretchability of the films around 80–85%, regardless of the type of filler. This effect suggests a good interfacial adhesion between the fillers and the polymeric matrix, as observed by FESEM. The biocomposite films exhibited a dark reddish appearance, reduced transparency, light blocking barrier capacity and remarkable antioxidant activity due to the presence of phenolic compounds in the fibers. The water vapor and oxygen barrier properties were better preserved when using the more purified LF obtained at 170 °C. Overall, starch films reinforced with beer bagasse fractions showed strong potential for the development of biodegradable food packaging materials. Full article
Show Figures

Figure 1

23 pages, 7022 KiB  
Article
Effect of the Integration of Alfa Natural Fibers and Demolition Waste on the Mechanical and Thermal Properties of Warm Mix Asphalt
by Haifa Chehata, Abir Jendoubi, Abderrahim Boudenne and Jamel Neji
Buildings 2025, 15(16), 2845; https://doi.org/10.3390/buildings15162845 - 12 Aug 2025
Viewed by 246
Abstract
This study investigates the impact of incorporating construction and demolition waste (CDW) aggregates and Alfa natural fibers on the performance characteristics of asphalt mixtures, with a focus on mixing temperature. Several formulations were developed and evaluated through multiphysics property measurements, including density, ultrasonic [...] Read more.
This study investigates the impact of incorporating construction and demolition waste (CDW) aggregates and Alfa natural fibers on the performance characteristics of asphalt mixtures, with a focus on mixing temperature. Several formulations were developed and evaluated through multiphysics property measurements, including density, ultrasonic pulse velocity, rutting resistance, thermal conductivity, and spectral reflectance. The results indicate that Alfa fibers enhance thermal resistance and spectral reflectance. Notably, incorporating 1% Alfa fiber and 20% CDW while reducing the mixing temperature to 150 °C significantly improves rutting resistance. These combined effects result in an optimized formulation that is more resistant to thermal stress during service, thereby enhancing its performance at elevated temperatures. These findings highlight the potential of integrating CDW and natural fibers into asphalt mixtures to develop environmentally friendly and thermally resilient materials, particularly for warming climate regions. Full article
(This article belongs to the Special Issue Advanced Studies in Asphalt Mixtures)
Show Figures

Figure 1

18 pages, 2295 KiB  
Article
The Potential of Waste-Derived Sorbents for Absorbing Petroleum Substances in Firefighting Operations
by Justyna Gniazdowska, Anna Rabajczyk, Tomasz Wilczyński and Daniel Małozięć
Materials 2025, 18(16), 3752; https://doi.org/10.3390/ma18163752 - 11 Aug 2025
Viewed by 255
Abstract
The development of industry and technology, despite making everyday life easier, generates large amounts of various wastes that negatively affect the environment. Unexpected leaks of substances such as oils, petroleum substances, and chemicals also contribute to the degradation of aquatic and terrestrial ecosystems. [...] Read more.
The development of industry and technology, despite making everyday life easier, generates large amounts of various wastes that negatively affect the environment. Unexpected leaks of substances such as oils, petroleum substances, and chemicals also contribute to the degradation of aquatic and terrestrial ecosystems. Long-term effects of environmental pollution require the development of advanced materials and technologies to collect and neutralize pollutants. Sorbents obtained from waste, including banana peels, coconut fibers, and polyurethane foams from recycling the thermal housing of refrigeration devices, allow a reduction in the amount of generated waste and the development of appropriate sorbents. This work focuses on comparing the sorption and neutralization properties of these materials for two types of oil, machine and diesel, and the possibility of using them in rescue and firefighting operations conducted by firefighters. The results obtained indicate that the viscose–cellulose sorbent and the polyurethane foam sorbent are characterized by better performance parameters than sorbents from coffee grounds or coconut fibers. The best parameters were obtained after the first 10 min of the sorbent–contaminant reaction, whereas in the case of contamination with machine oil, the absorption capacity was better than for diesel oil for each sorbent subjected to analysis. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

17 pages, 3356 KiB  
Article
Impact of Adaptive Process Control on Mechanical Properties of Plastic Parts and Process Robustness
by Tomasz Olszewski, Danuta Matykiewicz and Michał Jakubowicz
Appl. Sci. 2025, 15(16), 8829; https://doi.org/10.3390/app15168829 - 10 Aug 2025
Viewed by 230
Abstract
This work aimed to assess the influence of the iQ Weight Control System on the weight, dimensional stability, and mechanical properties of injection-molded samples. The properties of products made from glass fiber-reinforced polyamide and 50% regrind from post-production waste were evaluated. The mechanical [...] Read more.
This work aimed to assess the influence of the iQ Weight Control System on the weight, dimensional stability, and mechanical properties of injection-molded samples. The properties of products made from glass fiber-reinforced polyamide and 50% regrind from post-production waste were evaluated. The mechanical properties, such as impact strength and tensile strength, were measured to determine the material’s performance. Additionally, a spiral flow test was conducted to verify the process robustness and repeatability when producing with either virgin material or a blend of virgin and regrind material. The spiral flow test, which involves injecting the polymer melt into a spiral mold, provides insights into the processability and flow characteristics of the polymer under high shear rates. This test is crucial for assessing the consistency of the injection molding process and ensuring that the material maintains its properties across different production batches. Results demonstrated that, despite the viscosity reduction associated with regrind, the system successfully maintained a consistent shot weight, thereby stabilizing the amount of material injected into the mold cavity. The iQ Weight Control System activation led to an increase in impact strength from 9.50 kJ/m2 to 10.78 kJ/m2 for virgin samples and from 9.26 kJ/m2 to 9.73 kJ/m for a 50/50 virgin/regrind blend. Full article
(This article belongs to the Special Issue Mechanical Properties and Numerical Modeling of Advanced Materials)
Show Figures

Figure 1

15 pages, 1816 KiB  
Article
Biological Enzymatic Hydrolysis—Single Screw Co-Extrusion Treatment to Improve the Mechanical Properties of Biodegradable Straw Fiber Mulching Films
by Tao Jiang, Xing Wang, Haoyuan Yang, Chuang Gao, Mende Hongyang, Xinhang Xu, Shubai Cong, Yuanjun Sun, Tianzheng Pei, Bin Wang, Shuang Liu, Yu Wang, Rui Li, Haitao Chen and Longhai Li
Agronomy 2025, 15(8), 1923; https://doi.org/10.3390/agronomy15081923 - 9 Aug 2025
Viewed by 352
Abstract
Biodegradable agricultural films manufactured with straw serve as a viable substitute for plastic films, effectively addressing the issue of white pollution. However, existing biodegradable straw fiber films exhibit insufficient mechanical properties, primarily characterized by their susceptibility to fracture damage. To address this issue, [...] Read more.
Biodegradable agricultural films manufactured with straw serve as a viable substitute for plastic films, effectively addressing the issue of white pollution. However, existing biodegradable straw fiber films exhibit insufficient mechanical properties, primarily characterized by their susceptibility to fracture damage. To address this issue, a novel method for the preparation of film raw materials was proposed, which employs the synergistic treatment of bioenzymes and a single screw extruder, with the aim of enhancing the mechanical properties of the film. The method begins with the application of microbial agents to pretreat the straw, for improving its fiber morphology and inducing beneficial physicochemical structural changes. Subsequently, single screw extrusion technology is employed to further enhance the quality of the straw fibers and the mechanical performance of the film. The bio-mechanical pulp produced with this method demonstrated an increase in the crystallinity index (CrI) from 50.33% to 60.78%, while the degree of polymerization (DP) decreased from 866.51 to 749.60. Furthermore, the tensile strength, tear strength, and burst strength of the fiber covering film increased by 35.74%, 16.22%, and 11.65%, respectively, which meet the mechanical durability requirements for farmland mulching. This research effectively mitigates agricultural white pollution by converting agricultural waste straw into biodegradable mulch film, which promotes the recycling of straw resources. This study presents a novel method with significant potential application value for the production of bio-pulping in the paper industry. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

20 pages, 2007 KiB  
Article
Value-Added Recycling of Pre-Consumer Textile Waste: Performance Evaluation of Cotton Blend Knitted T-Shirts
by Muhammad Babar Ramzan, Sajida Ikram, Sheheryar Mohsin Qureshi, Muhammad Waqas Iqbal and Muhammad Qamar Khan
Recycling 2025, 10(4), 160; https://doi.org/10.3390/recycling10040160 - 8 Aug 2025
Viewed by 253
Abstract
This study investigates the effects of waste for value addition in form of use of textile waste to comfortable and durable garments based on blending recycled cotton fibers extracted from spinning, weaving, and cutting waste with virgin cotton in different ratios of 70:30, [...] Read more.
This study investigates the effects of waste for value addition in form of use of textile waste to comfortable and durable garments based on blending recycled cotton fibers extracted from spinning, weaving, and cutting waste with virgin cotton in different ratios of 70:30, 80:20, and 90:10 to produce yarns of 22/1 count, which are used to develop single jersey knitted T-Shirt, examining key properties such as mechanical and thermos-physiological properties. Grey fabric (unprocessed fabric) with a higher virgin cotton content and from spinning waste exhibited superior bursting strength, overall moisture management capacity, and thermal conductivity. In contrast, air permeability and water vapor permeability were highest in fabric made with weaving waste. After scouring and bleaching, the finished fabric (processed fabric) was compared with the grey fabrics. The results demonstrate that the finished fabric has slightly reduced bursting strength, water vapor permeability, and moisture management capacity while significantly enhancing air permeability and maintaining thermal conductivity. T-shirt properties were evaluated across various blend ratios and waste types over multiple washing cycles. Overall, the study demonstrates that recycled cotton fibers, particularly those from spinning waste, can be successfully produced into high-performance knitted t-shirts, offering a sustainable alternative to fully virgin cotton products without compromising performance significantly. Full article
Show Figures

Figure 1

20 pages, 7049 KiB  
Article
Coupled Bone–Muscle Degeneration in Chronic Pancreatitis: A Juvenile Porcine Model of Secondary Osteosarcopenia
by Siemowit Muszyński, Michał Świetlicki, Dorota Wojtysiak, Agnieszka Grzegorzewska, Piotr Dobrowolski, Małgorzata Świątkiewicz, Marcin B. Arciszewski, Iwona Puzio, Joanna Bonior, Agnieszka Tomczyk-Warunek, Maria Mielnik-Błaszczak and Ewa Tomaszewska
Int. J. Mol. Sci. 2025, 26(16), 7690; https://doi.org/10.3390/ijms26167690 - 8 Aug 2025
Viewed by 179
Abstract
Osteosarcopenia, characterized by concurrent bone loss and muscle wasting, significantly impacts mobility and quality of life. While age-related primary osteosarcopenia is well-studied, secondary osteosarcopenia (SOS) caused by chronic diseases remains poorly understood, particularly in young individuals. The present study aimed to comprehensively characterize [...] Read more.
Osteosarcopenia, characterized by concurrent bone loss and muscle wasting, significantly impacts mobility and quality of life. While age-related primary osteosarcopenia is well-studied, secondary osteosarcopenia (SOS) caused by chronic diseases remains poorly understood, particularly in young individuals. The present study aimed to comprehensively characterize musculoskeletal alterations associated with SOS using a juvenile porcine model of cerulein-induced chronic pancreatitis. Femoral bone analysis included densitometry, mechanical testing, histomorphometry, and serum bone turnover markers. The quadriceps femoris muscle was evaluated through histological analysis and gene expression profiling of antioxidant enzymes and apoptotic regulators. Animals with SOS showed significantly reduced femoral BMD compared to controls, with altered cortical geometry and compromised mechanical properties. Trabecular bone analysis revealed classic osteoporotic changes with decreased bone volume fraction. Negative changes were also observed in the growth plate morphology, indicating impaired endochondral ossification. Bone turnover markers indicated elevated bone resorption and altered formation. Muscle analysis demonstrated sarcopenic changes with selective atrophy of fast-twitch type II fibers and increased fiber density. At the molecular level, SOS muscles exhibited downregulated expression of CAT and CASP3, suggesting muscle atrophy predominantly mediated by oxidative stress and caspase-independent proteolysis rather than classical apoptosis. In conclusion, chronic pancreatitis in young pigs induces coupled bone and muscle degeneration consistent with secondary osteosarcopenia, demonstrating that muscle–bone crosstalk dysfunction occurs early in chronic inflammatory disease. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

32 pages, 5187 KiB  
Review
A Review of Mycelium Bio-Composites as Energy-Efficient Sustainable Building Materials
by Sina Motamedi, Daniel R. Rousse and Geoffrey Promis
Energies 2025, 18(16), 4225; https://doi.org/10.3390/en18164225 - 8 Aug 2025
Viewed by 218
Abstract
The increasing demand for sustainable building solutions has directed attention toward bio-based materials, among which mycelium bio-composites (MBCs) have emerged as promising alternatives to traditional insulation materials. Grown from fungal mycelium and lignocellulosic waste, MBCs offer low embodied energy, biodegradability, and effective hygrothermal [...] Read more.
The increasing demand for sustainable building solutions has directed attention toward bio-based materials, among which mycelium bio-composites (MBCs) have emerged as promising alternatives to traditional insulation materials. Grown from fungal mycelium and lignocellulosic waste, MBCs offer low embodied energy, biodegradability, and effective hygrothermal performance. This review assesses the current state of the art in MBC fabrication and hygrothermal properties, encompassing both laboratory-scale and industrial methods. MBCs demonstrate thermal conductivity values in the range of 0.036–0.06 W·m−1·K−1, moisture buffering capacity comparable to plant-fiber composites, and up to 70% lower embodied carbon than conventional materials. Key challenges are identified, including process standardization, scalability, and durability under real-world conditions. These composites also offer moisture buffering, compostability, and design flexibility. Moreover, recent advancements in additive manufacturing and microstructural optimization suggest a path toward broader adoption of MBCs in construction. By highlighting critical technical and scientific developments, this review identifies targeted research priorities, including the development of standardized fabrication protocols, quantitative lifecycle assessment of MBCs across varying climates, and strategies to scale up production while maintaining mechanical and hygrothermal consistency. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

18 pages, 3706 KiB  
Article
Controllable Preparation of TiO2/SiO2@Blast Furnace Slag Fiber Composites Based on Solid Waste Carriers and Study on Mechanism of Photocatalytic Degradation of Urban Sewage
by Xinwen Luo, Jinhu Wu, Guangqian Zhu, Xinyu Han, Junjian Zhao, Yaqiang Li, Yingying Li and Shaopeng Gu
Catalysts 2025, 15(8), 755; https://doi.org/10.3390/catal15080755 - 7 Aug 2025
Viewed by 342
Abstract
Photocatalytic composite materials (TiO2/SiO2/BFSF) were first fabricated using the sol–gel method of loading SiO2 and TiO2 on blast furnace slag fibers (BFSFs) in sequence and using them as a new carrier. Then, TG-DTA, XRD, BET, SEM-EDS, and [...] Read more.
Photocatalytic composite materials (TiO2/SiO2/BFSF) were first fabricated using the sol–gel method of loading SiO2 and TiO2 on blast furnace slag fibers (BFSFs) in sequence and using them as a new carrier. Then, TG-DTA, XRD, BET, SEM-EDS, and UV-Vis absorption spectra, as well as spectrophotometric measurements, were employed to analyze the physicochemical properties of TiO2. The influence of SiO2 coating, the number of impregnations in TiO2 sol, the calcination temperature, and the number of repeated usages on the activity of TiO2/SiO2/BFSF was researched by analyzing the degradation of methylene blue (MB) aqueous solution. The results show that SiO2 could increase the load of TiO2, impede the growth of TiO2 grains, and inhibit the recombination of electron–hole pairs, ultimately enhancing the photocatalytic activity of samples. The activity of TiO2/SiO2/BFSF first quickly increased and then slowly decreased with an increase in the loading times of TiO2 sol and calcination temperature. After three impregnations in TiO2 sol and calcining at 450 °C for 2.5 h, a uniform and compact anatase TiO2 thin film was deposited on the surface of TiO2/SiO2/BFSF, showing the strongest activity. When this sample was used to degrade MB aqueous solution for 180 min under ultraviolet light irradiation, the degradation proportion reached a maximum of 96%. After four reuses, the degradation ratio could still reach 67%. In addition, three potential photocatalytic mechanisms were proposed. Finally, the high-value-added application of blast furnace slag for preparing photocatalytic composite materials was achieved, successfully turning solid waste into “treasure”. Full article
(This article belongs to the Special Issue Enhanced Photocatalytic Activity over Ti, Zn, or Sn-Based Catalysts)
Show Figures

Figure 1

22 pages, 3743 KiB  
Article
Mechanical and Performance Characteristics of Warm Mix Asphalt Modified with Phase Change Materials and Recycled Cigarette Filters
by Zahraa Ahmed al-Mammori, Israa Mohsin Kadhim Al-Janabi, Ghadeer H. Abbas, Doaa Hazim Aziz, Fatin H. Alaaraji, Elaf Salam Abbas, Beshaer M. AL-shimmery, Tameem Mohammed Hashim, Ghanim Q. Al-Jameel, Ali Shubbar and Mohammed Salah Nasr
CivilEng 2025, 6(3), 41; https://doi.org/10.3390/civileng6030041 - 5 Aug 2025
Viewed by 375
Abstract
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric [...] Read more.
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric acid), as binder modifiers within warm mix asphalt (WMA) mixtures. Moving beyond the traditional focus on binder-only modifications, this research utilizes recycled cigarette filters (CFs) as a dual-purpose fiber additive, directly reinforcing the asphalt mixture while simultaneously transforming a major urban waste stream into valuable infrastructure. The performance of the developed WMA mixture has been evaluated in terms of stiffness behavior using an Indirect Tensile Strength Modulus (ITSM) test, permanent deformation using a static creep strain test, and rutting resistance using the Hamburg wheel-track test. Laboratory tests demonstrated that the incorporation of PCMs and recycled CFs into WMA mixtures led to remarkable improvements in stiffness, deformation resistance, and rutting performance. Modified mixes consistently outperformed the control, achieving up to 15% higher stiffness after 7 days of curing, 36% lower creep strain after 4000 s, and 64% reduction in rut depth at 20,000 passes. Cost–benefit analysis and service life prediction show that, despite costing USD 0.71 more per square meter with 5 cm thickness, the modified WMA mixture delivers much greater durability and rutting resistance, extending service life to 19–29 years compared to 10–15 years for the control. This highlights the value of these modifications for durable, sustainable pavements. Full article
Show Figures

Figure 1

17 pages, 415 KiB  
Review
Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends
by Paschalina Terzopoulou, Dimitris S. Achilias and Evangelia C. Vouvoudi
J. Compos. Sci. 2025, 9(8), 415; https://doi.org/10.3390/jcs9080415 - 4 Aug 2025
Viewed by 482
Abstract
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable [...] Read more.
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable polymers as matrix materials. The integration of waste wood particles into the production of WPCs addresses global environmental challenges, including plastic pollution and deforestation, by offering an alternative to conventional wood-based and petroleum-based products. Key topics covered in the review include raw material sources, fiber pre-treatments, compatibilizers, mechanical performance, water absorption behavior, thermal stability and end-use applications. Full article
Show Figures

Figure 1

Back to TopTop