Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = warm spray

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2281 KiB  
Article
Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries
by Min Liu, Boyuan Fan, Le Li, Jinmei Hao, Ruteng Wei, Hua Luo, Fei Shi, Zhiyuan Ren and Jun Wang
Foods 2025, 14(14), 2551; https://doi.org/10.3390/foods14142551 - 21 Jul 2025
Viewed by 376
Abstract
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the [...] Read more.
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the development and ripening processes of fruit; however, the specific molecular mechanism and the regulatory network between ethylene signaling and the anthocyanin biosynthesis pathway remain incompletely understood. In this study, 400 mg/L ethephon (ETH) solution was sprayed onto the surface of grape berries at the lag phase (EL-34), and the changes in anthocyanin-related genes and metabolites were explored through transcriptomic and metabolomic analysis. The results showed that ETH treatment increased Brix and pH in mature berries. In total, 35 individual anthocyanins were detected, in which 21 individual anthocyanins were enhanced by ETH treatment. However, the anthocyanin profile was not affected by exogenous ethylene. Transcriptomics analysis showed that there were a total of 825 and 1399 differentially expressed genes (DEGs) 12 h and 24 h after treatment. Moreover, key structural genes in the anthocyanin synthesis pathway were strongly induced, including VvPAL, VvCHS, VvF3H, VvF3′5′H, VvDFR and VvUFGT. At the maturity stage (EL-38), the expression levels of these genes were still higher in EHT-treated berries than in the control. ETH treatment also influenced the expression of genes related to hormone biosynthesis and signal transduction. The ethylene biosynthesis gene (VvACO), ethylene receptor genes (VvETR2, VvERS1 and VvEIN4), ABA biosynthesis gene (VvNCED2), and ABA receptor gene (VvPYL4) were up-regulated by ETH treatment, while the auxin biosynthesis gene (VvTAA3) and seven genes of the auxin-responsive protein were inhibited by exogenous ethylene. Meanwhile, ETH treatment promoted the expression of the sugar transporter gene (VvEDL16) and two sucrose synthase genes (VvSUS2 and VvSUS6). In EHT-treated berries, 19 MYB and 23 ERF genes were expressed differently compared with the control (p < 0.05). This study provides the theoretical foundation and technical support for the regulation of anthocyanin synthesis in non-climacteric fruit. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

21 pages, 7372 KiB  
Article
Elevational Distribution of Ants Across Seasons in a Subtropical Rainforest of Eastern Australia
by Pitoon Kongnoo, Chris J. Burwell, Benjamin D. Blanchard, Laksamee Punthuwat, Mark Jun M. Alcantara, Louise A. Ashton, Roger L. Kitching, Min Cao and Akihiro Nakamura
Forests 2025, 16(4), 664; https://doi.org/10.3390/f16040664 - 10 Apr 2025
Viewed by 2024
Abstract
Elevational gradients are widely studied to understand environmental variability and species distribution. Ants play vital roles in ecosystems and are frequently included in elevational biogeography studies. Despite their ecological importance and well-documented elevational patterns, little is known about their temporal variability across elevations. [...] Read more.
Elevational gradients are widely studied to understand environmental variability and species distribution. Ants play vital roles in ecosystems and are frequently included in elevational biogeography studies. Despite their ecological importance and well-documented elevational patterns, little is known about their temporal variability across elevations. We surveyed ground and arboreal ants in austral summer, autumn, spring, and winter in a subtropical rainforest of Lamington National Park, Queensland, Australia. Given their physiological and microhabitat differences, ground and arboreal ants may exhibit distinct spatiotemporal patterns. Using litter extraction for ground ants and bark spraying for arboreal ants, we collected 14,916 individuals from 124 species. Species richness and abundance were lowest in austral winter, particularly for arboreal ants. Both richness and abundance declined with elevation, and this pattern remained consistent across seasons. While seasonal and elevational differences significantly influenced species composition, seasonal variation did not cause major shifts in the elevational distribution of ground or arboreal ants. A total of 43 species were identified as indicators of specific elevations, with species such as Notoncus capitatus and Colobostruma biconvexa being specialists of low elevations, and undescribed Monomorium and Discothyrea species being specialists of high elevations. In contrast, only two species were identified as seasonal indicators, which were undescribed Tapinoma and Anonychomyrma species, specialists of the warm season. Our findings suggest that ants reduce activity in winter but maintain stable elevational distributions regardless of season or microhabitat use, making their distributions a reliable indicator of their climatic niches. Full article
Show Figures

Figure 1

17 pages, 3895 KiB  
Article
The Possibility of Intermittent Water Spray Implementation in a Non-Porous Indirect Evaporative Cooler
by Łukasz Stefaniak, Juliusz Walaszczyk, Michał Karpuk, Krzysztof Rajski and Jan Danielewicz
Energies 2025, 18(4), 882; https://doi.org/10.3390/en18040882 - 12 Feb 2025
Cited by 1 | Viewed by 748
Abstract
Evaporative cooling is a sustainable and energy-efficient technology based on water evaporation to achieve cooling. It uses air (R-729) and water (R-718) as refrigerants, so its effect on global warming is limited. Recent research focuses development of porous heat exchanger surfaces to be [...] Read more.
Evaporative cooling is a sustainable and energy-efficient technology based on water evaporation to achieve cooling. It uses air (R-729) and water (R-718) as refrigerants, so its effect on global warming is limited. Recent research focuses development of porous heat exchanger surfaces to be used in evaporative cooling technology with intermittent water spray. However, non-porous surfaces were not investigated. Here, we present the possibility of implementing intermittent water spray in a non-porous indirect evaporative cooler. The experimental results show that it increases the cooling capacity when compared to the constant water spray for chosen outdoor air parameters (20–30 °C and 40–50% relative humidity). Also, the time after the outlet air temperature achieves minimum value (4–6 min) is presented for a certain non-porous heat exchanger. The maximum cooling capacity obtained without spraying is 25–64% higher than the cooling capacity in steady-state conditions under constant water spraying. The regression model approach is employed to describe the observation. The results introduce a new path in evaporative cooling technology development. They also create the possibility of improving the effectiveness of existing systems by modifying only the water system management, without any changes in construction or replacing the heat exchanger. Full article
(This article belongs to the Special Issue Heat Transfer in Heat Exchangers)
Show Figures

Graphical abstract

20 pages, 8826 KiB  
Article
Coffee Leaf Rust Disease Detection and Implementation of an Edge Device for Pruning Infected Leaves via Deep Learning Algorithms
by Raka Thoriq Araaf, Arkar Minn and Tofael Ahamed
Sensors 2024, 24(24), 8018; https://doi.org/10.3390/s24248018 - 16 Dec 2024
Cited by 2 | Viewed by 1962
Abstract
Global warming and extreme climate conditions caused by unsuitable temperature and humidity lead to coffee leaf rust (Hemileia vastatrix) diseases in coffee plantations. Coffee leaf rust is a severe problem that reduces productivity. Currently, pesticide spraying is considered the most effective [...] Read more.
Global warming and extreme climate conditions caused by unsuitable temperature and humidity lead to coffee leaf rust (Hemileia vastatrix) diseases in coffee plantations. Coffee leaf rust is a severe problem that reduces productivity. Currently, pesticide spraying is considered the most effective solution for mitigating coffee leaf rust. However, the application of pesticide spray is still not efficient for most farmers worldwide. In these cases, pruning the most infected leaves with leaf rust at coffee plantations is important to help pesticide spraying to be more efficient by creating a more targeted, accessible treatment. Therefore, detecting coffee leaf rust is important to support the decision on pruning infected leaves. The dataset was acquired from a coffee farm in Majalengka Regency, Indonesia. Only images with clearly visible spots of coffee leaf rust were selected. Data collection was performed via two devices, a digital mirrorless camera and a phone camera, to diversify the dataset and test it with different datasets. The dataset, comprising a total of 2024 images, was divided into three sets with a ratio of 70% for training (1417 images), 20% for validation (405 images), and 10% for testing (202 images). Images with leaves infected by coffee leaf rust were labeled via LabelImg® with the label “CLR”. All labeled images were used to train the YOLOv5 and YOLOv8 algorithms through the convolutional neural network (CNN). The trained model was tested with a test dataset, a digital mirrorless camera image dataset (100 images), a phone camera dataset (100 images), and real-time detection with a coffee leaf rust image dataset. After the model was trained, coffee leaf rust was detected in each frame. The mean average precision (mAP) and recall for the trained YOLOv5 model were 69% and 63.4%, respectively. For YOLOv8, the mAP and recall were approximately 70.2% and 65.9%, respectively. To evaluate the performance of the two trained models in detecting coffee leaf rust on trees, 202 original images were used for testing with the best-trained weight from each model. Compared to YOLOv5, YOLOv8 demonstrated superior accuracy in detecting coffee leaf rust. With a mAP of 73.2%, YOLOv8 outperformed YOLOv5, which achieved a mAP of 70.5%. An edge device was utilized to deploy real-time detection of CLR with the best-trained model. The detection was successfully executed with high confidence in detecting CLR. The system was further integrated into pruning solutions for Arabica coffee farms. A pruning device was designed using Autodesk Fusion 360® and fabricated for testing on a coffee plantation in Indonesia. Full article
(This article belongs to the Special Issue Deep Learning for Intelligent Systems: Challenges and Opportunities)
Show Figures

Figure 1

18 pages, 2621 KiB  
Article
Analyses of Wheat Resistance to Fusarium Head Blight Using Different Inoculation Methods
by Shayan Syed, Andrius Aleliūnas, Morten Lillemo and Andrii Gorash
Agronomy 2024, 14(10), 2415; https://doi.org/10.3390/agronomy14102415 - 18 Oct 2024
Cited by 2 | Viewed by 1246
Abstract
Fusarium head blight is a devastating wheat disease that causes yield reduction and mycotoxins contamination, leading to multiple negative consequences for the economy, health, and food safety. Despite the tremendous efforts that have been undertaken over the last several decades to harness the [...] Read more.
Fusarium head blight is a devastating wheat disease that causes yield reduction and mycotoxins contamination, leading to multiple negative consequences for the economy, health, and food safety. Despite the tremendous efforts that have been undertaken over the last several decades to harness the disease, the problem remains a challenging issue. Due to global warming, its impact has become increasingly severe in Baltic and Nordic countries. The improvement of wheat resistance is hampered by complicated genetic inheritance, the scarcity of adapted resistant breeding materials, and difficulties in obtaining accurate and reproducible data due to the high interaction and dependency of the disease development on the environment. In this study, the resistance of 335 genotypes, 9 of which were of exotic origin and the remainder of which were adapted to the environments of Lithuania, Latvia, Estonia, or Norway, was studied in 8 trials using spray and point inoculation with spore suspensions and grain spawn inoculation under field and/or greenhouse conditions. The best linear unbiased estimates (BLUEs) of each genotype within the individual trials and the adjusted means across the trials were determined to reduce the environmental effects. Genotypes that exhibited excellent Type I or Type II resistance and overall resistance were identified. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

14 pages, 2668 KiB  
Article
Environmental and Economic Analysis of the Production of Oregano Oil Microparticles
by Hugo José Martins Carvalho, Filipe Hobi Bordon Sosa, Paula Quinteiro, Ana Cláudia Dias, Mario Antonio Torres-Acosta, João Henrique Picado Madalena Santos and Joyce Maria Gomes da Costa
Sustainability 2024, 16(18), 8038; https://doi.org/10.3390/su16188038 - 14 Sep 2024
Viewed by 2930
Abstract
The interest in using essential oils for biotechnological and biomedical applications has been increasing because of their unique properties, such as their roles as preservatives, antioxidants, antimicrobial agents, and therapeutic agents, with oregano oil being a notable example. However, the bioactivity and stability [...] Read more.
The interest in using essential oils for biotechnological and biomedical applications has been increasing because of their unique properties, such as their roles as preservatives, antioxidants, antimicrobial agents, and therapeutic agents, with oregano oil being a notable example. However, the bioactivity and stability of oregano oil can be compromised because of its volatile nature and external factors like exposure to light, heat, or oxygen. To protect oregano oil from these adverse effects and enhance its potential, microencapsulation has been employed. Nevertheless, studies evaluating the economic feasibility of this process are still limited. In this context, this study combines an environmental impact assessment by applying the life cycle assessment (LCA) methodology and an economic evaluation of three different scenarios (A, B, and C) for the production of oregano oil microparticles by a spray dryer. In Scenario A, only modified starch was used to prepare the emulsion; in Scenario B, the modified starch was replaced with gum arabic; and in Scenario C, the gum arabic, maltodextrin, and modified starch were combined. The results indicated that Scenario B presents the best environmental performance for all impact categories analyzed (global warming, fossil resource scarcity, mineral resource scarcity, terrestrial acidification, freshwater eutrophication, and marine eutrophication). However, the composting of bio-waste end-of-life presents better environmental performance for the other scenarios (A and C). In Scenario B, the process with the lowest production cost per gram of microcapsules is the most promising for meeting the demands of the aspects analyzed. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Figure 1

21 pages, 3752 KiB  
Article
Assessing the Impacts of Mulching-Induced Warming Effects on Machine-Picked Cotton Zones
by Yuanshuai Dai, Hui Zhang, Gang Li, Mingfeng Yang and Xin Lv
Atmosphere 2024, 15(6), 619; https://doi.org/10.3390/atmos15060619 - 21 May 2024
Cited by 1 | Viewed by 1216
Abstract
The 20th century saw notable fluctuations in global temperatures, which significantly impacted agricultural climate zones across the Earth. Focusing on Xinjiang, China, a leading region in machine-picked cotton production, we identified several key thermal indicators influencing the yield, including the sum of active [...] Read more.
The 20th century saw notable fluctuations in global temperatures, which significantly impacted agricultural climate zones across the Earth. Focusing on Xinjiang, China, a leading region in machine-picked cotton production, we identified several key thermal indicators influencing the yield, including the sum of active temperatures ≥ 10 °C, the mean temperature in July, the climatological growing season length, the April–May sum of active temperatures, the last frost day, and the defoliant spray time. Using meteorological data from 58 weather stations in Xinjiang, we examined the spatiotemporal trends of these indicators during the 1981–2020 period. Additionally, we attempted to determine the effects of plastic mulching on the sowing area and the zoning area of machine-picked cotton in different suitable zones based on these indicators. In conclusion, the overall thermal resources in Xinjiang are exhibiting an upward trend and show a distribution pattern of “more in the south of Xinjiang than in the north of Xinjiang, and more in the plains and basins than in the mountains”. Under the plastic-mulching mechanism, the zoning area of the suitable zone has increased by 15.7% (2.15 × 103 km2), suggesting that climate warming and the widespread application of mulching technology provide unexplored potential for the most suitable regions for machine-picked cotton in Xinjiang, while the 14.5% (0.26 × 103 km2) and 7.8% (0.17 × 103 km2) reductions in the unsuitable and less suitable zones, respectively, suggest that the planting areas of machine-picked cotton in both the less suitable and unsuitable zones, particularly with the existing regional planning, continue to demonstrate an irrational expansion. Therefore, to sustain Xinjiang’s cotton industry’s resilience and productivity, policymakers need to prioritize proactive land management and sustainable land allocation practices in response to changing climate patterns to optimize cotton production. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

18 pages, 4575 KiB  
Article
Changes in Biologically Active Compounds in Pinus sylvestris Needles after Lymantria monacha Outbreaks and Treatment with Foray 76B
by Vytautas Čėsna, Ieva Čėsnienė, Vaida Sirgedaitė-Šėžienė and Diana Marčiulynienė
Plants 2024, 13(2), 328; https://doi.org/10.3390/plants13020328 - 22 Jan 2024
Cited by 4 | Viewed by 2048
Abstract
Due to climate warming, the occurrence of Lymantria monacha outbreaks is predicted to become more frequent, causing repeated and severe damage to conifer trees. Currently, the most effective way to control the outbreaks is aerial spraying with the bioinsecticide Foray 76B. The present [...] Read more.
Due to climate warming, the occurrence of Lymantria monacha outbreaks is predicted to become more frequent, causing repeated and severe damage to conifer trees. Currently, the most effective way to control the outbreaks is aerial spraying with the bioinsecticide Foray 76B. The present study aimed to determine the impact of both: (i) L. monacha outbreaks and (ii) treatment with Foray 76B on tree resistance through the synthesis of polyphenols (TPC), flavonoids (TFC), photosynthetic pigments (chlorophyll a and b, carotenoids), lipid peroxidation (MDA), and soluble sugars (TSS) in Pinus sylvestris needles. Samples were collected from visually healthy (control), damaged/untreated, and damaged/Foray 76B-treated plots in 2020 and 2021 (following year after the outbreaks). The results revealed that L. monacha outbreaks contributed to the increase in TPC by 34.1% in 2020 and 26.7% in 2021. TFC negatively correlated with TPC, resulting in 17.6% and 11.1% lower concentrations in L. monacha-damaged plots in 2020 and 2021, respectively. A decrease in MDA was found in the damaged plots in both 2020 and 2021 (10.2% and 23.3%, respectively), which was associated with the increased synthesis of photosynthetic pigments in 2021. The research results also showed that in the following year after the outbreaks, the increase in the synthesis of photosynthetic pigments was also affected by the treatment with Foray 76B. Moreover, the increase in the synthesis of TPC and photosynthetic pigments in the damaged plots in 2021 illustrates the ability of pines to keep an activated defense system to fight biotic stress. Meanwhile, a higher synthesis of photosynthetic pigments in Foray 76B-treated plots indicates a possible effect of the treatment on faster tree growth and forest recovery after L. monacha outbreaks. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Graphical abstract

16 pages, 10995 KiB  
Article
Physical and Chemical Properties of High-Temperature Silicone-Based Polymer Coatings Applied on Different Surface Roughnesses
by Ivan Stojanović, Borna Škrlec, Marin Kurtela, Vesna Alar and Martina Odeljan
Coatings 2023, 13(12), 2100; https://doi.org/10.3390/coatings13122100 - 18 Dec 2023
Cited by 5 | Viewed by 3275
Abstract
High-temperature coatings play a crucial role in protecting surfaces exposed to extreme temperatures, corrosion, and other harsh environments. This paper focuses on the physical and chemical properties of solvent-borne and water-borne high-temperature silicone-based polymer coatings applied on two types of surface roughness of [...] Read more.
High-temperature coatings play a crucial role in protecting surfaces exposed to extreme temperatures, corrosion, and other harsh environments. This paper focuses on the physical and chemical properties of solvent-borne and water-borne high-temperature silicone-based polymer coatings applied on two types of surface roughness of carbon steel plates. The corrosion protection performance of the coatings was characterized using a salt spray chamber, humidity chamber, electrochemical impedance spectroscopy (EIS) measurements, and differential scanning calorimetry (DSC). The physical properties of high-temperature coatings were determined using the Shore D hardness method and cross-cut adhesion tests. This study investigates the effects of different surface preparation methods on coating adhesion, which is considered to be a crucial property of organic coatings for corrosion protection durability. The thermal stability of the coating was tested using furnace cyclic testing. The results show that high-temperature coatings in general exhibit excellent thermal stability, high adhesion strength, and good resistance to warm and humid environments, except in the conditions of a salty atmosphere. This study reveals that coating performance is affected by the composition and surface preparation method. This study can be useful for coating manufacturers and researchers interested in understanding the physical and chemical properties of high-temperature coatings and their applications in various environments. Full article
(This article belongs to the Special Issue Investigation on Corrosion Behaviour of Metallic Materials)
Show Figures

Figure 1

43 pages, 7225 KiB  
Review
Aerodynamic Characteristics of Wind Turbines Operating under Hazard Environmental Conditions: A Review
by Eleni Douvi and Dimitra Douvi
Energies 2023, 16(22), 7681; https://doi.org/10.3390/en16227681 - 20 Nov 2023
Cited by 7 | Viewed by 4334
Abstract
This paper provides a review of the aerodynamic behavior of horizontal axis wind turbines operating in hazardous environmental conditions. Over the past decade, renewable energy use has accelerated due to global warming, depleting fossil fuel reserves, and stricter environmental regulations. Among renewable options, [...] Read more.
This paper provides a review of the aerodynamic behavior of horizontal axis wind turbines operating in hazardous environmental conditions. Over the past decade, renewable energy use has accelerated due to global warming, depleting fossil fuel reserves, and stricter environmental regulations. Among renewable options, solar and wind energy have shown economic viability and global growth. Horizontal axis wind turbines offer promising solutions for sustainable energy demand. Since wind turbines operate in an open environment, their efficiency depends on environmental conditions. Hazard environmental conditions, such as icing, rainfall, hailstorms, dust or sand, insects’ collisions, increased humidity, and sea spray, result in degraded aerodynamic characteristics. The outcome of most studies has been that the airfoils’ lift is degraded, and at the same time, drag is increased when wind turbines operate under these conditions. The objective of this review is to improve our comprehension of these crucial aspects so they are taken into account when designing wind turbine blades, and it offers suggestions for future research paths. It serves as a valuable resource that can inspire researchers who are dedicated to enhancing the aerodynamic characteristics of horizontal axis wind turbines. Full article
(This article belongs to the Special Issue Advances in Fluid Dynamics and Wind Power Systems)
Show Figures

Figure 1

11 pages, 1303 KiB  
Article
Use of Insect Exclusion Row Cover and Reflective Silver Plastic Mulching to Manage Whitefly in Zucchini Production
by Thiago Rutz, Timothy Coolong, Rajagopalbabu Srinivasan, Alton Sparks, Bhabesh Dutta, Clarence Codod, Alvin M. Simmons and Andre Luiz Biscaia Ribeiro da Silva
Insects 2023, 14(11), 863; https://doi.org/10.3390/insects14110863 - 9 Nov 2023
Cited by 1 | Viewed by 2443
Abstract
The challenges that sweet potato whitefly (Bemisia tabaci) creates for vegetable production have increased in the southeastern U.S. Growers must use intensive insecticide spray programs to suppress extremely high populations during the fall growing season. Thus, the objective of this study [...] Read more.
The challenges that sweet potato whitefly (Bemisia tabaci) creates for vegetable production have increased in the southeastern U.S. Growers must use intensive insecticide spray programs to suppress extremely high populations during the fall growing season. Thus, the objective of this study was to evaluate the use of a reflective plastic mulch and an insect row cover as alternative methods to the current grower practices to manage whiteflies in zucchini (Cucurbita pepo) production. Field experiments were conducted with a two-level factorial experimental design of cover and plastic mulch treatments arranged in a randomized complete block design, with four replications in Georgia in 2020 and 2021, and in Alabama in 2021. Cover treatments consisted of an insect row cover installed on zucchini beds at transplanting and removed at flowering and a no-cover treatment, while plastic mulch treatments consisted of reflective silver plastic mulching and white plastic mulching. During all growing seasons, weather conditions were monitored, whitefly populations were sampled weekly, zucchini biomass accumulation was measured at five stages of crop development, and fruit yield was determined at harvesting. Warm and dry weather conditions early in the growing season resulted in increased whitefly populations, regardless of location and year. In general, the reflective silver plastic mulching reduced whitefly populations compared to the conventional white plastic by 87% in Georgia in 2020, 33% in Georgia in 2021, and 30% in Alabama in 2021. The insect row cover treatment reduced whitefly populations to zero until its removal. Consequently, zucchini plants grown with the insect row cover and reflective silver plastic mulching had an increased rate of biomass accumulation due to the lower insect pressure in all locations. Zucchini grown using silver reflective plastic mulch and row covers had an overall increase of 17% and 14% in total yield compared to white plastic mulch and no-cover treatments, respectively. Significant differences in yield among locations were likely due to severe whitefly pressure early in the fall season, and total yields in Georgia in 2020 (11,451 kg ha−1) were 25% lower than in Georgia in 2021 (15,177 kg ha−1) and in Alabama in 2021 (15,248 kg ha−1). In conclusion, silver plastic mulching and row covers reduced the whitefly population and increased biomass accumulation and total yield. These treatments can be considered ready-to-use integrated pest management practices for growers. Full article
(This article belongs to the Collection Integrated Pest Management Strategies for Horticultural Crops)
Show Figures

Figure 1

16 pages, 10763 KiB  
Article
Influence of Long-Term Storage and UV Light Exposure on Characteristics of Polyurethane Foams for Cryogenic Insulation
by Beatrise Sture, Vladimir Yakushin, Laima Vevere and Ugis Cabulis
Materials 2023, 16(22), 7071; https://doi.org/10.3390/ma16227071 - 7 Nov 2023
Cited by 5 | Viewed by 2128
Abstract
Rigid polyurethane (PUR) foams have been the most effective insulation material used in space launchers since the beginning of cryogenic fuel use, due to their outstanding thermal and mechanical properties. In this study, spray-applied PUR foams using different ratios of amine-based catalysts were [...] Read more.
Rigid polyurethane (PUR) foams have been the most effective insulation material used in space launchers since the beginning of cryogenic fuel use, due to their outstanding thermal and mechanical properties. In this study, spray-applied PUR foams using different ratios of amine-based catalysts were produced. Due to climate change, several restrictions have been made regarding the usage of blowing agents used for PUR foam production. Lately, hydrofluoroolefins (HFOs) have been suggested as an alternative for PUR foam production due to their low global warming potential (GWP) and ozone depletion potential (ODP), replacing the hydrofluorocarbons (HFCs) so far used. This change in blowing agents naturally altered the usage of catalysts. Reactive amine-based catalysts are less hazardous because of their low volatility and ability to react successfully with isocyanate or polyols. Spray-applied PUR foams with a potential application for cryogenic insulation were produced and tested for long-term storage, analyzing parameters such as the pH value of polyol composition, foaming kinetics (trise, tcream), etc. Athermal analysis (TG, DSC) was also applied to developed materials, as well as artificial ageing by exposing samples to UV light. It was discovered that PUR foams obtained using reactive amine-based catalysts, such as Polycat 203 and 218, have a higher integral heat capacity, but polyol mixtures containing these catalysts cannot exceed a storage time of more than 4 months. It was also observed from artificial ageing tests of PUR cryogenic insulation by exposure to UV light that the thickness of the degraded layer reached 0.8 mm (after 1000 h), but no significant destruction of cellular structure deeper in the material was observed. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Figure 1

31 pages, 3535 KiB  
Review
Citrus Canker: A Persistent Threat to the Worldwide Citrus Industry—An Analysis
by Subhan Ali, Akhtar Hameed, Ghulam Muhae-Ud-Din, Muhammad Ikhlaq, Muhammad Ashfaq, Muhammad Atiq, Faizan Ali, Zia Ullah Zia, Syed Atif Hasan Naqvi and Yong Wang
Agronomy 2023, 13(4), 1112; https://doi.org/10.3390/agronomy13041112 - 13 Apr 2023
Cited by 32 | Viewed by 14093
Abstract
Citrus canker (CC), caused by one of the most destructive subfamilies of the bacterial phytopathogen Xanthomonas citri subsp. Citri (Xcc), poses a serious threat to the significantly important citrus fruit crop grown worldwide. This has been the subject of ongoing epidemiological [...] Read more.
Citrus canker (CC), caused by one of the most destructive subfamilies of the bacterial phytopathogen Xanthomonas citri subsp. Citri (Xcc), poses a serious threat to the significantly important citrus fruit crop grown worldwide. This has been the subject of ongoing epidemiological and disease management research. Currently, five different forms have been identified of CC, in which Canker A (Xanthomonas citri subsp. citri) being the most harmful and infecting the majority of citrus cultivars. Severe infection symptoms include leaf loss, premature fruit drop, dieback, severe fruit blemishing or discoloration, and a decrease in fruit quality. The infection spreads rapidly through wind, rain splash, and warm and humid climates. The study of the chromosomal and plasmid DNA of bacterium has revealed the evolutionary pattern among the pathovars, and research on the Xcc genome has advanced our understanding of how the bacteria specifically recognize and infect plants, spread within the host, and propagates itself. Quarantine or exclusion programs, which prohibit the introduction of infected citrus plant material into existing stock, are still in use. Other measures include eliminating sources of inoculum, using resistant hosts, applying copper spray for protection, and implementing windbreak systems. The main focus of this study is to highlight the most recent developments in the fields of Xcc pathogenesis, epidemiology, symptoms, detection and identification, host range, spread, susceptibility, and management. Additionally, it presents an analysis of the economic impact of this disease on the citrus industry and suggests strategies to reduce its spread, including the need for international collaboration and research to reduce the impact of this disease on the global citrus industry. Full article
Show Figures

Figure 1

13 pages, 6295 KiB  
Review
Calcareous Tufa: Deposition and Erosion during Geological Times
by Giandomenico Fubelli and Francesco Dramis
Appl. Sci. 2023, 13(7), 4410; https://doi.org/10.3390/app13074410 - 30 Mar 2023
Cited by 4 | Viewed by 3373
Abstract
There is a general agreement in referring the deposition of calcareous tufa to climatic causes. Warm climates are believed to favor calcareous tufa formation due to higher concentrations of biogenic CO2 in soils, enhancing the dissolution rates of CaCO3 and the [...] Read more.
There is a general agreement in referring the deposition of calcareous tufa to climatic causes. Warm climates are believed to favor calcareous tufa formation due to higher concentrations of biogenic CO2 in soils, enhancing the dissolution rates of CaCO3 and the broader development of aquatic plants that remove CO2 from spring waters. Conversely, cold climates are considered less favorable because of the reduced biological activity of soils and the lesser development of aquatic plants. Dry climates are also considered unfavorable to the deposition of calcareous tufa due to scarcity of rainwater and the consequent reduction of water circulating in the ground and spring discharge contrary to humid climates, which, besides allowing abundant water infiltration and emergence, favor the spreading of vegetation cover, the development of biogenic processes in the soils, and the growth of aquatic plants. An additional factor controlling calcareous tufa deposition may be the temperature difference between the ground surface and the aquifer in connection with major climatic changes due to the low thermal conductivity of the limestone bedrock. With climate warming, the infiltrating water, made highly acidic when crossing the soil due to the elevated partial pressure of biogenic CO2 present therein, percolating through the progressively colder levels of the aquifer, induces a relevant dissolution of CaCO3, definitely higher than in normal conditions. At emergence, because of the higher surface temperatures, running water turbulence, photosynthetic activity of mosses and algae, and evaporation of spray droplets, the groundwater loses CO2, becoming oversaturated with CaCO3 and causing tufa deposition, even at a great distance from the spring. Opposite effects, such as the deposition of dissolved carbonate in the upper bedrock layers and the emergence of spring waters undersaturated with CaCO3, capable of further dissolution, are expected to occur with major climatic changes to cold conditions. This model appears to be confirmed by the deposition/erosion stages of calcareous tufa, which repeatedly occurred during the Holocene and the late Pleistocene in different parts of the world. Full article
(This article belongs to the Special Issue Feature Review Papers in "Earth Sciences and Geography" Section)
Show Figures

Figure 1

21 pages, 3114 KiB  
Article
Energy Budgeting and Carbon Footprints Estimation of Fodder Maize Varieties Sown under Different Nutrient Management Practices in Indo-Gangetic Plains of India
by Dinesh Kumar, Magan Singh, Sanjeev Kumar, Rajesh Kumar Meena, Rakesh Kumar, Malu Ram Yadav, Manish Kushwaha, Govind Makarana, Subhradip Bhattacharjee, Suryakanta Kashyap, Bisworanjita Biswal, Rajesh and Parveen Kumar
Agronomy 2023, 13(4), 981; https://doi.org/10.3390/agronomy13040981 - 26 Mar 2023
Cited by 9 | Viewed by 2939
Abstract
Inappropriate agricultural practices consume more input energy and emit higher greenhouse gases (GHGs) which cause global warming and climate change, thereby threatening environmental sustainability. To identify energy and carbon-efficient varieties and nutrient management practices, the present study was undertaken during the kharif season [...] Read more.
Inappropriate agricultural practices consume more input energy and emit higher greenhouse gases (GHGs) which cause global warming and climate change, thereby threatening environmental sustainability. To identify energy and carbon-efficient varieties and nutrient management practices, the present study was undertaken during the kharif season of 2018 and 2019 in a split-plot design with three varieties of fodder maize (African Tall, J-1006 and P-3396) and four nutrient management practices such as N0: Absolute control, N1: 100% recommended dose of fertilizers (RDF), N2: 75% RDF + plant growth promoting rhizobacteria (PGPR) + Panchagavya spray and N3: 50% RDF + 25% farmyard manure (FYM) + PGPR + Panchagavya spray). Results indicated that variety J-1006 and applying 75% RDF + PGPR + Panchagavya spray produced significantly higher dry fodder yield. Among the varieties, J-1006 recorded the highest total energy output (224,123 MJ ha−1), net energy (211,280 MJ ha−1), energy use efficiency (17.64), energy productivity (0.98 kg MJ−1), energy profitability (16.64), and lowest specific energy (1.03 MJ ha−1). Regarding nutrient management, 75% RDF + PGPR + Panchagavya spray fetched the highest total energy output (229,470 MJ ha−1) and net energy (215,482 MJ ha−1). However, energy use efficiency, energy productivity, and energy profitability were significantly higher with integrated nutrient management (N2 and N3) over 100% RDF. Concerning the carbon estimation, J-1006 resulted in a significantly higher carbon output (5479 kg CE ha−1), net carbon gain (5029 kg CE ha−1), carbon efficiency (12.46), carbon sustainability index (11.46), and significantly lower carbon footprint per unit yield (CFy) (131.3 kg CO2-e Mg−1). For nutrient management, the application of 75% RDF + PGPR + Panchagavya spray showed significantly higher carbon output (5609 kg CE ha−1) and net carbon gain (5112 kg CE ha−1). However, significantly higher carbon efficiency, carbon sustainability index, and lower CFy were reported with integrated nutrient management over 100% RDF. Overall, selecting the J-1006 variety and applying 75% RDF + PGPR + Panchagavya spray for fodder maize cultivation could be the most productive in terms of dry fodder production, energy, and carbon efficiency approach. Full article
Show Figures

Figure 1

Back to TopTop