Calcareous Tufa: Deposition and Erosion during Geological Times
Abstract
:1. Calcareous Tufa
2. Calcareous Tufa Deposition/Erosion and the CaCO3·CO2·H2O System
3. Types of Calcareous Tufa
- -
- stromatolithic tufa, including sequences of laminae (usually 1–10 mm in thickness) formed during short depositional intervals characterized by the presence of particular encrusting microorganisms (Figure 1);
- -
- microhermal tufa, consisting of strata lens whose fabric reveals the structure of constructing organisms (usually mosses or algae) encrusted in growth position;
- -
4. Calcareous Tufa Deposits and Landforms
5. Factors Controlling Calcareous Tufa Deposition/Erosion
6. Calcareous Tufa Deposition/Decline during Holocene
7. The Ground Thermal Gradient Model
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hynes, H.B.N. The Ecology of Running Waters; University Press: Liverpool, UK, 1978; p. 378. [Google Scholar]
- Chafetz, H.S.; Folk, R.L. Travertines: Depositional morphology and bacterial constructed constituents. J. Sediment. Petrol. 1984, 54, 289–316. [Google Scholar]
- Pentecost, A. Moss growth and travertine deposition: The significance of photosynthesis, evaporation and degassing of carbon dioxide. J. Bryol. 1996, 19, 229–234. [Google Scholar] [CrossRef]
- Preece, R.C.; Robinson, J.E. Molluscan and ostracod faunas from Post-glacial tufaceous deposits in County Offaly. Proc. R. Ir. Acad. Sect. B Biol. Geol. Chem. Sci. 1982, 82B, 115–131. [Google Scholar]
- Krolopp, E. The importance of mollusc fauna in the study of travertine deposits. Földtany Közlöny 2003, 134, 219–225. [Google Scholar]
- Pentecost, A. Travertine; Springer-Verlag: Berlin, Germany, 2005; p. 445. [Google Scholar]
- Gandin, A.; Capezzuoli, E. Travertine versus calcareous tufa: Distinctive petrologic features and stable isotopes analysis. Alp. Mediterr. Quat. 2008, 21, 2125–2136. [Google Scholar]
- Gullentops, F.; Mullenders, W. Age et formation de dépôts de tuf calcaire Holocène en Belgique. In Proceedings of the Symposium International de Géomorphologie, Liège, Belgium, 29 June–4 July 1969. [Google Scholar]
- Goudie, A.S.; Viles, H.A.; Pentecost, A. The late-Holocene tufa decline in Europe. Holocene 1993, 3, 181–186. [Google Scholar] [CrossRef]
- Frank, N.; Braum, M.; Hambach, U.; Mangini, A.; Wagner, G. Warm period growth of travertine during last Interglaciation in Southern Germany. Quat. Res. 2000, 54, 38–48. [Google Scholar] [CrossRef]
- Fubelli, G.; Soligo, M.; Tuccimei, P.; Bonasera, M.; Dramis, F. Calcareous tufa deposition in connection with Late Pleistocene abrupt warming events. J. Ecol. Nat. Resour. 2021, 5, 000236. [Google Scholar] [CrossRef]
- Schoeller, H. Les Eaux Souterraines; Masson and Cie: Paris, France, 1962; p. 642. [Google Scholar]
- Tillmans, J. Die Chemische Untersuchung von Wasser und Abwasser, 2nd ed.; Wilhelm Knapp: Halle, Germany, 1932; Volume 1, p. 252. [Google Scholar]
- Atkinson, T.C. Carbon dioxide in the atmosphere of the unsaturated zone: An important control of hardness in limestones. J. Hydrol. 1977, 35, 111–123. [Google Scholar] [CrossRef]
- Drake, J.J. The effect of soil activity on the chemistry of carbonate groundwaters. Water Resour. Res. 1980, 16, 381–386. [Google Scholar] [CrossRef]
- Roques, H. Observations physico-chemiques sur les eaux d alimentation de quelques concretions. Ann. Speleol. 1963, 18, 377–404. [Google Scholar]
- Moore, G.W. Introduction to the origin of limestone caves. Natl. Speleol. Soc. Bull. 1960, 22, 3–4. [Google Scholar]
- Bőgli, A. Mischungskorrosion-ein Beitrag zum Verkarstungs-problem. Erdlcunde 1964, 18, 83–92. [Google Scholar]
- Merz-Preiss, M.; Riding, R. Cyanobacterial tufa calcification in two freshwater streams: Ambient environment, chemicalthresholds and biological processes. Sediment. Geol. 1999, 126, 103–124. [Google Scholar] [CrossRef]
- Dramis, F.; Fubelli, G.; Calderoni, G.; Esu, D. Holocene aggradation/degradation of tufa dams in northern Ethiopia and central Italy: A paleoclimatic comparison between East Africa and Mediterranean Europe. Z. Geomorphol. 2014, 58, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Buccino, G.; D’Argenio, B.; Ferreri, B.; Brancaccio, L.; Ferreri, M.; Panichi CStanzione, D. I travertini della bassa valle del Tanagro (Campania). Studio geomorfologico, sedimentologico e geochimico. Boll. Della Soc. Geol. Ital. 1978, 97, 617–646. [Google Scholar]
- D’Argenio, B.; Ferreri, V.; Stanzione, D.; Brancaccio, L.; Ferreri, M. I travertini di Pontecagnano (Campania) geomorfologia, sedimentologia, geochimica. Boll. Della Soc. Geol. Ital. 1983, 102, 123–136. [Google Scholar]
- Ferreri, M. Criteri di analisi di facies e classificazione dei travertini pleistocenici dell’Italia meriodionale. Rend. Acc. Scienze. Fis. Mat. 1985, 52, 121–147. [Google Scholar]
- Pedley, H.M. Classification and environmental models of cool fresh-water tufas. Sediment. Geol. 1990, 68, 143–154. [Google Scholar] [CrossRef]
- Golubic, S.; Violante, C.; Ferreri, V.; D’Argenio, B. Algal control and early diagenesis in Quaternary travertine formation (Rocchetta a Volturno, Central Apennines). Boll. Della Soc. Paleontol. Ital. 1993, 1, 231–247. [Google Scholar]
- Riding, R. Classification of microbial carbonates. In Calcareous Algae and Stromatolites; Riding, R., Ed.; Springer: Berlin, Germany, 1991; pp. 21–51. [Google Scholar]
- Gradzinski, M.; Jach, R.; Stworzewicz, E. Origin of calcite-cemented Holocene slope breccias from the Dluga Valley (the Western Tatra Mountains). Ann. Soc. Geol. Pol. 2001, 71, 105–113. [Google Scholar]
- Choquette, P.N.; Pray, C. Geologic nomenclature and classification of porosity in sedimentary carbonates. Am. Assoc. Pet. Geol. Bull. 1970, 54, 207–250. [Google Scholar]
- Rodríguez-Berriguete, A.; Alonso-Zarza, A.M.; Martín-García, R. Diagenesis of continental carbonate country rocks underlying surficial travertine spring deposits. Quat. Int. 2017, 437, 4–14. [Google Scholar] [CrossRef]
- Kahle, C.F. Origin of subaerial Holocene calcareous crusts: Role of algae, fungi and sparmicritization. Sedimentology 1977, 24, 413–435. [Google Scholar] [CrossRef]
- Julia, R. Travertines. In Carbonate Depositional Environments; Scholle, P.A., Bebout, D.G., Moore, C.H., Eds.; AAPG: Tulsa, OK, USA, 1983; pp. 64–72. [Google Scholar]
- Viles, H.A.; Goudie, A.S. Tufas, travertines and allied carbonate deposits. Prog. Phys. Geogr. 1990, 14, 19–41. [Google Scholar] [CrossRef]
- Berakhi, O.; Brancaccio, L.; Calderoni, G.; Coltorti, M.; Dramis, F.; Umer, M. The Mai Maikden sedimentary sequence: A reference point for the environmental evolution of the Highlands of Northern Ethiopia. Geomorphology 1998, 23, 127–138. [Google Scholar] [CrossRef]
- Dramis, F.; Fubelli, G. Tufa dams in Tigray (Northern Ethiopia) as Late Pleistocene -Holocene climate proxies. In Landscapes and Landforms of Ethiopia; Billi, P., Ed.; Springer: Dordrecht, The Netherlands, 2015; pp. 201–211. [Google Scholar]
- Golubic, S. Cyclic and non cyclic mechanism in the formation of travertine. Verh. Int. Ver. Limnol. 1969, 17, 956–961. [Google Scholar]
- Calderoni, G.; Cilla, G.; Dramis, F.; Esu, D.; Magnatti, M.; Materazzi, M. La deposizione di travertino nelle aree prossimali dei fiumi Esino, Potenza e Chienti durante l’Olocene antico (Appennino Centrale Marchigiano). Quaternario 1996, 9, 481–492. [Google Scholar]
- Dramis, F.; Mohamed, U.; Calderoni, G.; Mitiku, H. Holocene climate phases from buried soils in Tigray (northern Ethiopia): Comparison with lake level fluctuations in the Main Ethiopian Rift. Quat. Res. 2003, 60, 274–283. [Google Scholar] [CrossRef]
- Fubelli, G.; Dramis, F.; Calderoni, G.; Cilla, G.; Materazzi, M.; Mazzini, I.; Soligo, M. Holocene aggradation/erosion of a tufa dam at Triponzo (Central Italy). Geogr. Fis. Din. Quat. 2013, 36, 259–266. [Google Scholar]
- Nicod, J. Facteurs physico-chimiques de 1’accumulation des formation travertineuses. Méditerranée 1986, 57, 161–164. [Google Scholar] [CrossRef]
- Weisrock, A. Variations climatiques et périodes de sédimentation carbonatée à l’holocène. L’âge des dépôts. Méditerranée 1986, 57, 165–167. [Google Scholar] [CrossRef]
- Pazdur, A.; Pazdur, M.F.; Starkel, L.; Szulc, J. Stable isotopes of Holocene calcareous tufa in southern Poland as paleoclimatic indicators. Quat. Res. 1988, 30, 177–189. [Google Scholar] [CrossRef]
- Brook, G.A.; Folkoff, M.E.; Box, E.O. A world model of soil carbon dioxide. Earh Surf. Processes Landf. 1983, 8, 79–88. [Google Scholar] [CrossRef]
- Hennig, G.J.; Grun, R.; Brunnacker, K. Speleothems, travertines and paleoclimates. Quat. Res. 1983, 20, 1–29. [Google Scholar] [CrossRef]
- Bonifay, E. Origine et age des formations travertineuses de la Vallee de l’Huveaune entre Roquevaire et Auriol (Bouches du Rhone). Méditerranée 1986, 57, 101–104. [Google Scholar] [CrossRef]
- Vaudour, J. Travertins holocenes et pression anthropique. Méditerranée 1986, 57, 165–167. [Google Scholar] [CrossRef]
- Allen, E.T. The agency of algae in the deposition of travertine and silica from thermal waters. Am. J. Sci. 1934, 28, 373–389. [Google Scholar] [CrossRef]
- Ordonez, S.; Gonzalez Martin, J.A.; Garda del Cura, M.A.; Pedley, H.M. Temperate and semi-arid tufas in the Pleistocene to recent fluvial barrage system in the Mediterranean area: The Ruidera Lakes Natural Park (Central Spain). Geomorphology 2005, 69, 332–350. [Google Scholar] [CrossRef]
- Viles, H.A.; Taylor, M.P.; Nicoll, K.; Neumann, S. Facies evidence of hydroclimatic regime shifts in tufa depositional sequences from the arid Naukluft Mountains, Namibia. Sediment. Geol. 2007, 195, 39–53. [Google Scholar] [CrossRef]
- Camuera, J.; Alonso-Zarza, A.M.; Rodriguez-Berriguete, A.; Melendez, A. Variations of fluvial tufa sub-environments in a tectonically active basin, Pleistocene Teruel Basin, NE Spain. Sedimentology 2012, 59, 502–526. [Google Scholar] [CrossRef] [Green Version]
- Geurts, M.A. Genèse et stratigraphie des travertins de fond de vallée en Belgique. Acta Geogr. Louvanensia 1976, 16, 66. [Google Scholar]
- Gascoyne, M.; Schwarcz, H.P.; Ford, D.C. Uranium series ages of speleothems from North West England: Correlation with Quaternary climate. Philos. Trans. R. Soc. Ser. B 1983, 301, 143–164. [Google Scholar]
- Preece, R.C.; Thorpe, P.M.; Robinson, J.E. Confirmation of an interglacial age for the Condat Tufa (Dordogne, France) from biostratigraphic and isotopic data. J. Quat. Sci. 1986, 1, 57–65. [Google Scholar] [CrossRef]
- Huntley, B.; Birks, H.J.B. An Atlas of Past and Present Pollen Maps for Europe: 0–13,000 Years Ago; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Lamb, H.; Gasse, F.; Benkaddour, A.; El Hamouti, N.; van der Kaars, S.; Perkins, W.; Pear Roberts, C.N. Relation between century scale Holocene arid intervals in tropical and temperate zones. Nature 1995, 373, 134–137. [Google Scholar] [CrossRef]
- Soligo, M.; Tuccimei, P.; Barberi, R.; Delitala, M.C.; Miccadei, E.; Taddeucci, A. U/Th dating of freshwater travertine from Middle Velino Valley (Central Italy): Paleoclimatic and geological implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 184, 147–161. [Google Scholar] [CrossRef]
- Dramis, F.; Materazzi, M.; Cilla, G. Influence of climatic changes on freshwater traverti ne deposition: A new hypothesis. Phys. Chem. Earth Part A Solid Earth Geod. 1999, 24, 893–897. [Google Scholar] [CrossRef]
- Vasseur, G.; Bernard, P.H.; Van de Meulebrouck, J.; Kast, Y.; Jolivet, J. Holocene paleotemperatures deduced from borehole temperature data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1983, 43, 237–259. [Google Scholar] [CrossRef]
- Kukkonen, I.T.; Čermák, V.; Hurtig, E. Vertical variation of heath flow density in the continental crust. Terra Nova 1993, 5, 389–398. [Google Scholar] [CrossRef]
- Emiliani, C. Pleistocene temperature variations in the Mediterranean. Quaternaria 1955, 2, 87–98. [Google Scholar]
- Thrailkill, I. Chemical and hydrologic factors in the excavation of limestone caves. Geol. Soc. Am. Bull. 1968, 79, 19–46. [Google Scholar] [CrossRef]
- Williams, P.J.; Smith, N.W. The Frozen Earth. Fundamentals of Geocryology; Cambridge University Press: Cambridge, UK, 1989; p. 306. [Google Scholar]
- Blanc, J.J. Geodynamique et histoire du karst. Application au Sud-Est de la France. Quaternaire 1997, 8, 91–105. [Google Scholar] [CrossRef]
- Muller, S.W. Permafrost or Permanently Frozen Ground and Related Engineering Problems; Special Report Nc 62; US Army: Washington, DC, USA, 1945; p. 36. [Google Scholar]
- Castany, J. Traité Pratique des Eaux Souterraines; Dunod: Paris, France, 1967; p. 652. [Google Scholar]
- Klimentov, P.P. General Hydrogeology; Mir Publishers: Moscow, Russia, 1983; p. 239. [Google Scholar]
- Benderitter, Y.; Roy, B.; Tabbagli, A. Flow characterisation through heat transfer evidence in a carbonate fractured medium: First approach. Water Resour. Res. 1993, 29, 3741–3747. [Google Scholar] [CrossRef]
- Jeannin, P.-Y.; Liedl, R.; Sauter, M. Some concepts about heat tranfer in karst systems. In Proceedings of the 12th International Congress of Speleology, La Chaux-de-Fonds, Switzerland, 10–17 August 1997; Volume 1, pp. 195–198. [Google Scholar]
- Labeyrie, L.; Cole, J.; Alverson, K.; Stocker, T. The history of climate dynamics in the late Quaternary. In Paleoclimate, Global Change and the Future; Global Change—The IGBP, Series; Alverson, K.D., Pedersen, T.F., Bradley, R.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Rohling, E.J.; Casford, J.S.L.; Abu-Zied, R.; Cooke, S.; Mercone, D.; Thomson, J.; Croudace, I.; Jorissen, F.J.; Brinkhuis, H.; Kal lmeyer, J.; et al. Rapid Holocene climate changes in the Eastern Mediterranean. In Droughts, Food and Culture: Ecological Change and Food Security in Africa’s Later Prehistory; Hassan, F., Ed.; Plenum Press: New York, NY, USA, 2002; pp. 35–47. [Google Scholar]
- Bond, G.C.; Showers, W.; Elliot, M.; Evans, M.; Lotti, R.; Hajdas, I.; Bonani, G.; Johnson, S. The North Atlantic’s 1–2 kyr climate rhythm: Relation to Heinrich events, Dansgaard/Oeschger cycles and the Little Ice Age. In Mechanisms of Global Change at Millennial Time Scales; Clark, P.U., Webb, R.S., Keigwin, L.D., Eds.; Geophysical Monograph 112, American Geophysical Union: Washington, DC, USA, 1999; pp. 59–76. [Google Scholar]
- Mayewski, P.A.; Rohling, E.E.; Stager, J.C.; Karlén, W.; Maasch, K.A.; Meeker, L.D.; Meyerson, E.A.; Gasse, F.; van Kreveld, S.; Holmgren, K.; et al. Holocene climate variability. Quat. Res. 2004, 62, 243–255. [Google Scholar] [CrossRef]
- Heinrich, H. Origin and consequences of cyclic Ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 1988, 29, 142–152. [Google Scholar] [CrossRef]
- Hodell, D.A.; Evans, H.F.; Channell, J.E.T.; Curtis, J.H. Phase relationships of North Atlantic ice-rafted debris and surface-deep climate proxies during the last glacial period. Quat. Sci. Rev. 2010, 29, 3875–3886. [Google Scholar] [CrossRef]
- Dansgaard, W.; Johnsen, S.; Clausen, H.; DahlJensen, D.; Gundestrup, N.; Hammer, C.U.; Hyldberg, J.P.; Steffesen, A.E.; Svelnbjomsdottlr, T.J.; Jouzel, T.; et al. Evidence for general instability of past climate from a 250 ka ice-core record. Nature 1993, 364, 218–220. [Google Scholar] [CrossRef]
- Vázquez-Urbez, M.; Arenas, C.; Pardo, G. A sedimentary facies model for stepped, fluvial tufa systems in the Iberian Range (Spain): The Quaternary Piedra and Mesa valleys. Sedimentology 2012, 59, 502–526. [Google Scholar] [CrossRef]
- Gillespie, R.; Street-Perrott, F.A.; Switzur, R. Post-glacial arid episodes in Ethiopia have implications for climate prediction. Nature 1983, 306, 680–683. [Google Scholar] [CrossRef]
- Gasse, F.; Van Campo, E. Abrupt post-glacial climate events in West Asia and North Africa monsoon domains. Earth Planet. Sci. Lett. 1994, 126, 435–456. [Google Scholar] [CrossRef]
- Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev. 2000, 19, 189–211. [Google Scholar] [CrossRef]
- Umer, M.; Legesse, D.; Gasse, F.; Bonnefille, R.; Lamb, H.F.; Leng, M.J.; Lamb, A.A. Late Quaternary climate changes in the Horn of Africa. In Past Climate Variability through Europe and Africa; Developments in Paleoenvironmental Research; Battarbee, R.W., Gasse, F., Stickley, C.E., Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 6, pp. 159–175. [Google Scholar]
- Drysdale, R.N.; Zanchetta, G.; Hellstrom, J.; Maas, R.; Fallick, A.; Pickett, M.; Cartwright, I.; Piccini, L. Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology 2006, 34, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Giraudi, C.; Mercuri, A.M.; Esu, D. Holocene palaeoclimate in the northern Sahara margin (Jefara Plain, northwestern Libya). Holocene 2013, 23, 339–352. [Google Scholar] [CrossRef]
- Emeis, K.C.; Richnow, H.H.; Kempe, S. Travertine formation in Plitvice National Park, Yugoslavia: Chemical versus biological control. Sedimentology 1987, 34, 595–609. [Google Scholar] [CrossRef]
- Baker, A.; Simms, M.J. Active deposition of calcareous tufa in Wessex, UK, and its implications for thergille lacustrim “la te-Holocene tufa decline”. Holocene 1998, 8, 359–365. [Google Scholar] [CrossRef]
- Büntgen, U.; Hellmann, L. The Little Ice Age in scientific perspective: Cold spells and caveats. J. Interdiscip. Hist. 2014, 44, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, P.; Rangabhashiyam, S.; Srivastava, K.K. Global Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; p. 442. [Google Scholar]
WARM PEAK 14 ka BP– DO-1 | COLD PEAK 24.4 ka BP—H2 | COLD PEAK 38.5 ka BP | 50.2 ± 3.7 ka BP—Spain |
14.0 ± 3.0 ka BP—USA | 25.0 ± 1.8 ka BP—Israel | WARM PEAK 38.8 ka BP | COLD PEAK 50.2 ka BP |
14.1 ± 0.5 ka BP—Ethiopia | 26.2 ± 1.3 ka BP—Spain | 38.9 ± 2.1 ka BP—Israel | WARM PEAK 50.5 ka BP |
14.2 ± 2.7 ka BP—Italy | WARM PEAK 27.5 ka BP– DO-3 | COLD PEAK 39.2 ka BP—H4 | 50.7 ± 2.5 ka BP—Israel |
15.4 ± 0.3 ka BP—Morocco | 27.7 ± 4.9 ka BP—Morocco | WARM PEAK 39.4 ka BP– DO-9 | COLD PEAK 51.4 ka BP |
15.7 ± 1.3 ka BP—Italy | COLD PEAK 28 ka BP | 40.5 ± 2.1 ka BP—Israel | 53.0 ± 2.0 ka BP—Spain |
15.8 ± 1.1 ka BP—Ethiopia | WARM PEAK 28.6 ka BP– DO-4 | COLD PEAK 40.5 ka BP | WARM PEAK 54.5 ka BP– DO-14 |
16.0 ± 0.7 ka BP—Spain | 28.7 ± 1.4 ka BP—Ethiopia | WARM PEAK 40.8 ka BP | 55.0 ± 6.0 ka BP—Italy |
16.1 ± 0.1 ka BP—USA | 29.4 ± 1.6 ka BP—Israel | 41.0 ± 2.0 ka BP—Spain | 55.0 ± 9.0 ka BP—Spain |
16.3 ± 1.7 ka BP—USA | COLD PEAK 29.5 ka BP | 41.8 ± 3.1 ka BP—Israel | 55.9 ± 9.1 ka BP (15) Morocco |
16.5 ± 1.5 ka BP—Italy | 29.9 ± 1.3 ka BP—Morocco | 42.0 ± 5.5 ka BP—Italy | COLD PEAK 56 ka BP |
16.6 ± 0.7 ka BP—USA | WARM PEAK 30 ka BP | 42.5 ± 6.0 ka BP—Morocco | WARM PEAK 56.8 ka BP– DO-15 |
16.8 ± 0.5 ka BP—Morocco | 30.2 ± 5.5 ka BP—Morocco | COLD PEAK 42.5 ka BP | 57.0 ± 5.5 ka BP Italy |
COLD PEAK 16.8 ka BP—H1 | 30.9 ± 0.5 ka BP—USA | WARM PEAK 43.4 ka BP– DO-11 | 57.3 ± 3.0 ka BP—USA |
16.9 ± 1.2 ka BP—USA | COLD PEAK 31 ka BP—H3 | 43.9 ± 1.5 ka BP—Spain | 57.4 ± 5.5 ka BP—Italy |
WARM PEAK 17.5 ka BP | 31.8 ± 1.1 ka BP—Ethiopia | 44.0 ± 1.0 ka BP—Spain | 57.5 ± 5.3 ka BP—Italy |
17.8 ± 0.1 ka BP—USA | WARM PEAK 32 ka BP– DO-5 | COLD PEAK 44.2 ka BP | COLD PEAK 57.5 ka BP |
17.8 ± 0.5 ka BP—Spain | 32.1 ± 1.3 ka BP—Morocco | 44.4 ± 1.0 ka BP—Ethiopia | WARM PEAK 58 ka BP |
17.9 ± 1.0 ka BP—Italy | COLD PEAK 32.2 ka BP | 45.0 ± 2.0 ka BP—USA | 58.5 ± 4.0 ka BP—Italy |
18.1 ± 0.1 ka BP—USA | 32.4 ± 0.6 ka BP—USA | WARM PEAK 45.5 ka BP | COLD PEAK 59 ka BP |
18.1 ± 0.2 ka BP—USA | 33.0 ± 5.0 ka BP—USA | 45.7 ± 1.6 ka BP Spain | WARM PEAK 59.5 ka BP– DO-16 |
18.1 ± 0.2 ka BP—USA | WARM PEAK 33.8 ka BP | 46.3 ± 3.0 ka BP—USA | COLD PEAK 60 ka BP—H6 |
18.4 ± 0.6 ka BP—USA | 33.9 ± 1.9 ka BP—Morocco | 46.0 ± 4.2 ka BP—Israel | WARM PEAK 59.9 ka BP– DO-17 |
19.0 ± 3.0 ka BP—Italy | 34.0 ± 3.0 ka BP—Italy | 46.0 ± 5.0 ka BP—Italy | COLD PEAK 60 ka BP |
19.0 ± 2.0 ka BP—Ethiopia | 34.3 ± 1.3 ka BP—Morocco | 46.0 ± 6.0 ka BP -Italy | 61.0 ± 1.3 ka BP—Spain |
19.3 ± 1.0 ka BP—Italy | 34.3 ± 2.2 ka BP Italy | COLD PEAK 45.8 ka BP | COLD PEAK 61.2 ka BP |
19.5 ± 1.0 ka BP—USA | 34.4 ± 1.3 ka BP—USA | 46.5 ± 2.9 ka BP—Israel | WARM PEAK 62.8 ka BP |
20.2 ± 0.1 ka BP—USA | COLD PEAK 34.4 ka BP | WARM PEAK 46.8 ka BP–DO-12 | COLD PEAK 63.5 ka BP |
20.3 ± 1.4 ka BP—Morocco | WARM PEAK 35 ka BP– DO-7 | 47.3 ± 3.6 ka BP—Israel | WARM PEAK 64.5 ka BP- DO-18 |
20.4 ± 0.1 ka BP—USA | 35.0 ± 3.0 ka BP—USA | 48.0 ± 3.0 ka BP—USA | 62.3 ± 3.0 ka BP—USA |
21.2 ± 1.7 ka BP—Spain | 35.0 ± 3.2 ka BP—Morocco | 48.0 ± 6.5 ka BP—Italy | 64.8 ± 4.5 ka BP—Italy |
COLD PEAK 21.2 ka BP | 35.2 ± 1.2 ka BP—Italy | 48.4 ± 0.7 ka BP—Morocco | 67.0 ± 5.6 ka BP—Italy |
21.6 ± 4.3 ka BP—Morocco | 35.5 ± 0.4 ka BP -Sweden | COLD PEAK 48.5 ka BP—H5 | 68.0 ± 1.0 ka BP—Hungary |
21.9 ± 0.3 ka BP—USA | 36.2 ± 1.0 ka BP—Morocco | WARM PEAK 48.8 ka BP– DO-13 | 68.0 ± 2.0 ka BP—Ethiopia |
22.5 ± 0.4 ka BP—Ethiopia | COLD PEAK 37 ka BP | 49.0 ± 2.0 ka BP—Israel | 68.0 ± 6.0 ka BP—Spain |
22.6 ± 1.3 ka BP—Israel | 37.4 ± 2.0 ka BP—Morocco | 49.0 ± 2.0 ka BP—USA | 69.2 ± 4.3 ka BP—Morocco |
WARM PEAK 22.8 ka BP– DO-2 | WARM PEAK 38 ka BP– DO-8 | 49.5 ± 5.0 ka BP—USA | 69.3 ± 2.2 ka BP—Morocco |
23.2 ± 1.3 ka BP—Italy | 38.2 ± 2.7 ka BP—Morocco | 49.8 ± 0.1 ka BP—Egypt | |
24.4 ± 1.6 ka BP—Italy | 38.4 ± 1.6 ka BP—Morocco | 50.0 ± 2.0 ka BP—USA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fubelli, G.; Dramis, F. Calcareous Tufa: Deposition and Erosion during Geological Times. Appl. Sci. 2023, 13, 4410. https://doi.org/10.3390/app13074410
Fubelli G, Dramis F. Calcareous Tufa: Deposition and Erosion during Geological Times. Applied Sciences. 2023; 13(7):4410. https://doi.org/10.3390/app13074410
Chicago/Turabian StyleFubelli, Giandomenico, and Francesco Dramis. 2023. "Calcareous Tufa: Deposition and Erosion during Geological Times" Applied Sciences 13, no. 7: 4410. https://doi.org/10.3390/app13074410
APA StyleFubelli, G., & Dramis, F. (2023). Calcareous Tufa: Deposition and Erosion during Geological Times. Applied Sciences, 13(7), 4410. https://doi.org/10.3390/app13074410