Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = vortex shedding modes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1900 KiB  
Article
Time Series Prediction of Aerodynamic Noise Based on Variational Mode Decomposition and Echo State Network
by Zhoufanxing Lei, Haiyang Meng, Jing Yang, Bin Liang and Jianchun Cheng
Appl. Sci. 2025, 15(14), 7896; https://doi.org/10.3390/app15147896 - 15 Jul 2025
Viewed by 213
Abstract
Time series prediction of aerodynamic noise is critical for oscillatory instabilities analyses in fluid systems. Due to the significant dynamical and non-stationary characteristics of aerodynamic noise, it is challenging to precisely predict its temporal behavior. Here, we propose a method combining variational mode [...] Read more.
Time series prediction of aerodynamic noise is critical for oscillatory instabilities analyses in fluid systems. Due to the significant dynamical and non-stationary characteristics of aerodynamic noise, it is challenging to precisely predict its temporal behavior. Here, we propose a method combining variational mode decomposition (VMD) and echo state network (ESN) to accurately predict the time series of aerodynamic noise induced by flow around a cylinder. VMD adaptively decomposes the noise signal into multiple modes through a constrained variational optimization framework, effectively separating distinct frequency-scale features between vortex shedding and turbulent fluctuations. ESN then employs a randomly initialized reservoir to map each mode into a high-dimensional dynamical system, and learns their temporal evolution by leveraging the reservoir’s memory of past states to predict their future values. Aerodynamic noise data from cylinder flow at a Reynolds number of 90,000 is generated by numerical simulation and used for model validation. With a rolling prediction strategy, this VMD-ESN method achieves accurate prediction within 150 time steps with a root-mean-square-error of only 3.32 Pa, substantially reducing computational costs compared to conventional approaches. This work enables effective aerodynamic noise prediction and is valuable in fluid dynamics, aeroacoustics, and related areas. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

33 pages, 5667 KiB  
Article
Modal Analyses of Flow and Aerodynamic Characteristics of an Idealized Ground Vehicle Using Dynamic Mode Decomposition
by Hamed Ahani and Mesbah Uddin
Vehicles 2025, 7(2), 47; https://doi.org/10.3390/vehicles7020047 - 19 May 2025
Viewed by 541
Abstract
This study investigates the connection between coherent structures in the flow around a vehicle and the aerodynamic forces acting on its body. Dynamic Mode Decomposition (DMD) was applied to analyze the flow field of a squareback Ahmed body at [...] Read more.
This study investigates the connection between coherent structures in the flow around a vehicle and the aerodynamic forces acting on its body. Dynamic Mode Decomposition (DMD) was applied to analyze the flow field of a squareback Ahmed body at ReH=7.7×105. DMD enabled the identification of coherent structures in the near and far wake by isolating their individual oscillation frequencies and spatial energy distributions. These structures were classified into three regimes based on their underlying mechanisms: symmetry breaking, bubble pumping, and large-scale vortex shedding in range of St0.2. The energy contributions of these flow regimes were quantified across different regions of the flow field and compared to the aerodynamic forces on the body. Additionally, the linear correlation between pressure and velocity components was examined using Pearson correlation coefficients of DMD spectral amplitudes. The locations of maximum and minimum correlation values, as well as their relationship to energy contributions, were identified and analyzed in detail. Full article
Show Figures

Figure 1

15 pages, 6118 KiB  
Article
Wind Performance of New and Existing Continuous Beam Bridges During Construction Stages
by Fulin Yang, Xinmin Zhang, Zeen Xie and Jianming Hao
Buildings 2025, 15(5), 791; https://doi.org/10.3390/buildings15050791 - 28 Feb 2025
Viewed by 711
Abstract
This study assesses the wind resistance and vortex-induced vibration (VIV) risks of the Dongzhou River Bridge in China reconstruction during critical construction stages. Computational Fluid Dynamics (CFD) simulations analyzed wind effects when the twin main girders were maximally separated, revealing asymmetric vortex shedding [...] Read more.
This study assesses the wind resistance and vortex-induced vibration (VIV) risks of the Dongzhou River Bridge in China reconstruction during critical construction stages. Computational Fluid Dynamics (CFD) simulations analyzed wind effects when the twin main girders were maximally separated, revealing asymmetric vortex shedding patterns influenced by upstream–downstream aerodynamic interactions. The upstream girder’s wake generated complex flow fields, increasing turbulence on the downstream girder and indicating elevated VIV susceptibility. A 1:50 scale aeroelastic model validated these findings through wind tunnel tests, confirming that CFD-predicted critical VIV wind speeds aligned with experimental observations. Tests identified a distinct “jump-like” vibration mode at specific wind speeds (35–40 m/s full-scale equivalent), characterized by abrupt amplitude escalation rather than gradual growth—a signature of unstable VIV resonance. However, measured amplitudes remained below the 61.5 mm full-scale equivalent safety threshold, confirming that vibrations posed no critical risk. While aerodynamic coupling between girders requires monitoring during cantilever construction, the study concludes that existing control measures ensure safe construction and operation without structural modifications. These results provide actionable guidelines for wind risk mitigation through construction sequencing and real-time wind speed restrictions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 13494 KiB  
Article
Linear Stability Analysis on Flow-Induced Vibration of an Elastically Mounted Rotating Cylinder
by Jianfeng Lu, Zhiyu Zhang and Xing Zhang
Fluids 2025, 10(3), 56; https://doi.org/10.3390/fluids10030056 - 21 Feb 2025
Viewed by 627
Abstract
In this paper, we present a linear stability analysis on flow-induced vibration of an elastically mounted cylinder subjected to forced rotation. Four series of cases, with different combinations of degrees of freedoms in oscillation and Reynolds number are investigated. For each series of [...] Read more.
In this paper, we present a linear stability analysis on flow-induced vibration of an elastically mounted cylinder subjected to forced rotation. Four series of cases, with different combinations of degrees of freedoms in oscillation and Reynolds number are investigated. For each series of cases, a wide range of reduced velocity at various rotation rates are considered. The variations of growth and frequency with reduced velocity for the leading modes are presented. Some phenomena observed in previous numerical studies are interpreted by using the results of linear stability analysis. The supressing of vortex shedding at moderate rotation rate is explained by the absence of unstable fluid mode. The amplitude enhancement in high range of rotaton rate is explained by the emergence of unstable elastic mode. The stability properties of the leading modes provide some new insight into the influences of forced rotation on flow-induced vibration. The results of the current study have important implications in the design of offshore structures and energy-havesting devices. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

27 pages, 12035 KiB  
Article
Numerical Study on Hydrodynamic Performance and Vortex Dynamics of Multiple Cylinders Under Forced Vibration at Low Reynolds Number
by Fulong Shi, Chuanzhong Ou, Jianjian Xin, Wenjie Li, Qiu Jin, Yu Tian and Wen Zhang
J. Mar. Sci. Eng. 2025, 13(2), 214; https://doi.org/10.3390/jmse13020214 - 23 Jan 2025
Cited by 1 | Viewed by 938
Abstract
Flow around clustered cylinders is widely encountered in engineering applications such as wind energy systems, pipeline transport, and marine engineering. To investigate the hydrodynamic performance and vortex dynamics of multiple cylinders under forced vibration at low Reynolds numbers, with a focus on understanding [...] Read more.
Flow around clustered cylinders is widely encountered in engineering applications such as wind energy systems, pipeline transport, and marine engineering. To investigate the hydrodynamic performance and vortex dynamics of multiple cylinders under forced vibration at low Reynolds numbers, with a focus on understanding the interference characteristics in various configurations, this study is based on a self-developed radial basis function iso-surface ghost cell computing platform, which improves the implicit iso-surface interface representation method to track the moving boundaries of multiple cylinders, and employs a self-constructed CPU/GPU heterogeneous parallel acceleration technique for efficient numerical simulations. This study systematically investigates the interference characteristics of multiple cylinder configurations across various parameter domains, including spacing ratios, geometric arrangements, and oscillation modes. A quantitative analysis of key parameters, such as aerodynamic coefficients, dimensionless frequency characteristics, and vorticity field evolution, is performed. This study reveals that, for a dual-cylinder system, there exists a critical gap ratio between X/D = 2.5 and 3, which leads to an increase in the lift and drag coefficients of both cylinders, a reduction in the vortex shedding periodicity, and a disruption of the wake structure. For a three-cylinder system, the lift and drag coefficients of the two upstream cylinders decrease with increasing spacing. On the other hand, this increased spacing results in a rise in the drag of the downstream cylinder. In the case of a four-cylinder system, the drag coefficients of the cylinders located on either side of the flow direction are relatively high. A significant increase in the lift coefficient occurs when the spacing ratio is less than 2.0, while the drag coefficient of the downstream cylinder is minimized. The findings establish a comprehensive theoretical framework for the optimal configuration design and structural optimization of multicylinder systems, while also providing practical guidelines for engineering applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 20102 KiB  
Article
Numerical Study of Vortex-Induced Vibration Characteristics of a Long Flexible Marine Riser
by Jiahe Zou, Bo Zhou, Wenxin Yi, Conghong Lu, Hui Liu and Wenqing Luo
J. Mar. Sci. Eng. 2024, 12(11), 1892; https://doi.org/10.3390/jmse12111892 - 22 Oct 2024
Cited by 1 | Viewed by 1942
Abstract
In ocean engineering, interactions between ocean currents and risers lead to regular vortex shedding on both sides of the riser, causing structural deformation. When the frequency of vortex shedding approaches the natural frequency of the structure, resonance occurs, significantly increasing deformation. This phenomenon [...] Read more.
In ocean engineering, interactions between ocean currents and risers lead to regular vortex shedding on both sides of the riser, causing structural deformation. When the frequency of vortex shedding approaches the natural frequency of the structure, resonance occurs, significantly increasing deformation. This phenomenon is a critical cause of riser failure. Therefore, the dynamic response of flexible risers to vortex-induced vibrations (VIV) is crucial for their structural safety. This paper employs the finite-volume method to integrate over control volumes to solve for forces, such as pressure and shear stress, on the surface of the riser, while the finite-element method discretizes the continuous structural body into elements and nodes to solve for structural displacements and stresses. A strongly coupled method is utilized at each timestep to iteratively transfer load-displacement data between the fluid and structural fields, updating the boundary conditions of the fluid domain to achieve a bidirectional fluid–structure interaction simulation of vortex-induced vibrations in a seawater environment for flexible risers. The study finds that the three-dimensional flexible riser exhibits multi-frequency vibration phenomena and broadband vibration response characteristics under high flow velocity conditions. As the flow velocity increases, the vortex-shedding mode is observed to transition from the simple two single (2S) mode to the more complex pair + single (P + S) and two pair (2P) modes. In addition, the stiffness at the ends is enhanced by the fixed boundary conditions, and the coupling between the natural frequency of the ends and the vortex-shedding frequency triggers complex vortex-shedding phenomena in these regions. At higher flow velocities, these boundary effects result in more complex vortex-shedding modes and stronger vibration responses at both ends of the riser. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 7142 KiB  
Article
Research on the Flow-Induced Vibration of Cylindrical Structures Using Lagrangian-Based Dynamic Mode Decomposition
by Xueji Shi, Zhongxiang Liu, Tong Guo, Wanjin Li, Zhiwei Niu and Feng Ling
J. Mar. Sci. Eng. 2024, 12(8), 1378; https://doi.org/10.3390/jmse12081378 - 12 Aug 2024
Cited by 2 | Viewed by 1309
Abstract
An oscillating flow past a structure represents a complex, high-dimensional, and nonlinear flow phenomenon, which can lead to the failure of structures due to material fatigue or constraint relaxation. In order to better understand flow-induced vibration (FIV) and coupled flow fields, a numerical [...] Read more.
An oscillating flow past a structure represents a complex, high-dimensional, and nonlinear flow phenomenon, which can lead to the failure of structures due to material fatigue or constraint relaxation. In order to better understand flow-induced vibration (FIV) and coupled flow fields, a numerical simulation of a two-degrees-of-freedom FIV in a cylinder was conducted. Based on the Lagrangian-based dynamic mode decomposition (L-DMD) method, the vorticity field and motion characteristics of a cylinder were decomposed, reconstructed, and predicted. A comparison was made to the traditional Eulerian-based dynamic mode decomposition (E-DMD) method. The research results show that the first-order mode in the stable phase represents the mean flow field, showcasing the slander tail vortex structure during the vortex-shedding period and the average displacement in the in-line direction. The second mode predominantly captures the crossflow displacement, with a frequency of approximately 0.43 Hz, closely matching the corresponding frequency observed in the CFD results. The higher dominant modes mainly capture outward-spreading, smaller-scale vortex structures with detail displacement characteristics. The motion of the cylinder in the in-line direction was accompanied by symmetric vortex structures, while the motion of the cylinder in the crossflow direction was associated with anti-symmetric vortex structures. Additionally, crossflow displacement will cause a symmetrical vortex structure that spreads laterally along the axis behind the cylinder. Finally, when compared with E-DMD, the L-DMD method demonstrates a notable advantage in analyzing the nonlinear characteristics of FIV. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 16278 KiB  
Article
Dynamics and Wake Interference Mechanism of Long Flexible Circular Cylinders in Side-by-Side Arrangements
by Shuqi Chang, Luoning Zhang, Zhimeng Zhang and Chunning Ji
Energies 2024, 17(11), 2741; https://doi.org/10.3390/en17112741 - 4 Jun 2024
Viewed by 1148
Abstract
The vortex-induced vibrations of two side-by-side flexible cylinders in a uniform flow were studied using a three-dimensional direct numerical simulation at Reynolds number Re = 350 with an aspect ratio of 100, and a center-to-center spacing ratio of 2.5. A mixture of standing-traveling [...] Read more.
The vortex-induced vibrations of two side-by-side flexible cylinders in a uniform flow were studied using a three-dimensional direct numerical simulation at Reynolds number Re = 350 with an aspect ratio of 100, and a center-to-center spacing ratio of 2.5. A mixture of standing-traveling wave pattern was induced in the in-line (IL) vibration, while the cross-flow (CF) vibration displayed a standing-wave characteristic. The ninth vibration mode prominently occurred in both IL and CF directions, along with competition between multiple modes. Proximity effects from the neighboring cylinder caused the primary frequency to be consistent between IL and CF vibrations for each cylinder, deviating from the IL to CF ratio of 2:1 in isolated cylinder conditions. Repulsive mean lift coefficients were observed in both stationary and vibrating conditions for the two cylinders due to asymmetrical vortex shedding in this small gap. Comparatively, lift and drag coefficients were notably increased in the vibrating condition, albeit with a lower vortex shedding frequency. Positive energy transfer was predominantly excited along the span via vortex shedding from the cylinder itself and the neighboring one, leading to increasing lower-mode vibration amplitudes. The flip-flopping (FF) wake pattern was excited in the stationary and vibrating cylinders, causing spanwise vortex dislocations and wake transition over time, with the FF pattern being more regular in the stationary cylinder case. Full article
Show Figures

Figure 1

21 pages, 6501 KiB  
Article
Wake Structures and Hydrodynamic Characteristics of Flows around Two Near-Wall Cylinders in Tandem and Parallel Arrangements
by Xing Chang, Pandeng Yin, Jianjian Xin, Fulong Shi and Ling Wan
J. Mar. Sci. Eng. 2024, 12(5), 832; https://doi.org/10.3390/jmse12050832 - 16 May 2024
Cited by 3 | Viewed by 1964
Abstract
To clarify the hydrodynamic interference characteristics of flows around multiple cylinders under the wall effect, the two-dimensional (2D) flows around the near-wall single, two tandem and parallel cylinders are simulated under different gap ratios (0.15 ≤ G/D ≤ 3.0) and spacing [...] Read more.
To clarify the hydrodynamic interference characteristics of flows around multiple cylinders under the wall effect, the two-dimensional (2D) flows around the near-wall single, two tandem and parallel cylinders are simulated under different gap ratios (0.15 ≤ G/D ≤ 3.0) and spacing ratios (1.5 ≤ T/D ≤ 4.0) at a Reynolds number of Re = 6300. We also examine the wake patterns, the force coefficients, and the vortex-shedding frequency with emphases on the wall effect and effects of the two-cylinder interference. A critical wall gap of G/D = 0.6 is identified in the single-cylinder case where the wall can exert significant influences. The two near-wall tandem cylinders exhibit three wake states: stretching mode, attachment mode, and impinging mode. The force coefficients on the upstream cylinder are significantly affected by the wall for G/D ≤ 0.6. The downstream cylinder is mainly influenced by the upstream cylinder. For G/D > 0.6, the force coefficients on the two cylinders exhibit a similar variation trend. In the parallel arrangement, the two cylinders exhibit four wake states in different G/D and T/D ranges: double stretching mode, hetero-vortex scale mode, unilateral vortex mode, and free vortex mode. Moreover, the two parallel cylinders in the hetero-vortex scale or free vortex mode have two states: synchronous in-phase state and synchronous out-of-phase state. The mean drag coefficients on the two cylinders decrease, while the mean lift coefficients exhibit opposite variation trends, as the T/D grows. Full article
(This article belongs to the Special Issue Hydrodynamic Research of Marine Structures)
Show Figures

Figure 1

24 pages, 10039 KiB  
Article
Dynamical Behavior of Small-Scale Buoyant Diffusion Flames in Externally Swirling Flows
by Tao Yang, Yuan Ma and Peng Zhang
Symmetry 2024, 16(3), 292; https://doi.org/10.3390/sym16030292 - 2 Mar 2024
Cited by 1 | Viewed by 2153
Abstract
This study computationally investigates small-scale flickering buoyant diffusion flames in externally swirling flows and focuses on identifying and characterizing various distinct dynamical behaviors of the flames. To explore the impact of finite rate chemistry on flame flicker, especially in sufficiently strong swirling flows, [...] Read more.
This study computationally investigates small-scale flickering buoyant diffusion flames in externally swirling flows and focuses on identifying and characterizing various distinct dynamical behaviors of the flames. To explore the impact of finite rate chemistry on flame flicker, especially in sufficiently strong swirling flows, a one-step reaction mechanism is utilized for investigation. By adjusting the external swirling flow conditions (the intensity R and the inlet angle α), six flame modes in distinct dynamical behaviors were computationally identified in both physical and phase spaces. These modes, including the flickering flame, oscillating flame, steady flame, lifted flame, spiral flame, and flame with a vortex bubble, were analyzed from the perspective of vortex dynamics. The numerical investigation provides relatively comprehensive information on these flames. Under the weakly swirling condition, the flames retain flickering (the periodic pinch-off of the flame) and are axisymmetric, while the frequency nonlinearly increases with the swirling intensity. A relatively high swirling intensity can cause the disappearance of the flame pinch-off, as the toroidal vortex sheds around either the tip or the downstream of the flame. The flicker vanishes, but the flame retains axisymmetric in a small amplitude oscillation or a steady stay. A sufficiently high swirling intensity causes a small Damköhler number, leading to the lift-off of the flame (the local extinction occurs at the flame base). Under the same swirling intensity but large swirling angles, the asymmetric modes of the spiral and vortex bubble flames were likely to occur. With R and α increasing, these flames exhibit axisymmetric and asymmetric patterns, and their dynamical behaviors become more complex. To feature the vortical flows in flames, the phase portraits are established based on the velocity information of six positions along the axis of the flame, and the dynamical behaviors of various flames are presented and compared in the phase space. Observing the phase portraits and their differences in distinct modes could help identify the dynamical behaviors of flames and understand complex phenomena. Full article
(This article belongs to the Special Issue Symmetry in Aerospace Sciences and Applications)
Show Figures

Figure 1

15 pages, 6852 KiB  
Article
Vortex of a Symmetric Jet Structure in a Natural Gas Pipeline via Proper Orthogonal Decomposition
by Lihao Li, Jiaxing Lu, Haoyu Zhao and Yilong Qiu
Processes 2024, 12(2), 418; https://doi.org/10.3390/pr12020418 - 19 Feb 2024
Cited by 1 | Viewed by 1268
Abstract
The impact of particle addition jets on the flow field in natural gas pipelines was investigated, and the structural information of the flow field at different flow velocities in a symmetric jet flow was analyzed via numerical simulation. The results of coherent structures [...] Read more.
The impact of particle addition jets on the flow field in natural gas pipelines was investigated, and the structural information of the flow field at different flow velocities in a symmetric jet flow was analyzed via numerical simulation. The results of coherent structures in the high-pressure natural gas pipeline reveal vortex structures of varying sizes both upstream and downstream of the jet flow. To determine the spatial distribution of the main vortex structures in the flow field, proper orthogonal decomposition (POD) mode analysis was performed on the unsteady numerical results. Moreover, the detailed spatial characteristics of the coherent vortex structures represented by each mode were obtained. The results indicate that the large-scale vortex structures within the pipeline are balanced and stable, with their energy increasing as the jet flow velocity increases. Additionally, higher-order modes exhibit significant shedding of small-scale vortex structures downstream of the jet flow. In this research, coherent structures present in symmetric particle addition jets are provided, offering theoretical support for future investigations on the distribution of particle image velocimetry (PIV) flowmeters. Full article
(This article belongs to the Special Issue Production of Energy-Efficient Natural Gas Hydrate)
Show Figures

Figure 1

19 pages, 11336 KiB  
Article
The Reexamination of the Moisture–Vortex and Baroclinic Instabilities in the South Asian Monsoon
by Hongyu Chen, Tim Li and Jing Cui
Atmosphere 2024, 15(2), 147; https://doi.org/10.3390/atmos15020147 - 24 Jan 2024
Cited by 1 | Viewed by 1553
Abstract
Observational analyses reveal that a dominant mode in the South Asian Monsoon region in boreal summer is a westward-propagating synoptic-scale disturbance with a typical wavelength of 4000 km that is coupled with moistening and precipitation processes. The disturbances exhibit an eastward tilt during [...] Read more.
Observational analyses reveal that a dominant mode in the South Asian Monsoon region in boreal summer is a westward-propagating synoptic-scale disturbance with a typical wavelength of 4000 km that is coupled with moistening and precipitation processes. The disturbances exhibit an eastward tilt during their development before reaching their maximum activity center. A 2.5-layer model that extends a classic 2-level quasi-geostrophic model by including a prognostic lower-tropospheric moisture tendency equation and an interactive planetary boundary layer was constructed. The eigenvalue analysis of this model shows that the most unstable mode has a preferred zonal wavelength of 4000 km, a westward phase speed of 6 m s−1, an eastward tilt vertical structure, and a westward shift of maximum moisture/precipitation center relative to the lower-tropospheric vorticity center, all of which agree with the observations. Sensitivity experiments show that the moisture–vortex instability determines, to a large extent, the growth rate, while the baroclinic instability helps set up the preferred zonal scale. Ekman-pumping-induced vertical moisture advection prompts an in-phase component of perturbation moisture relative to the low-level cyclonic center, allowing the generation of available potential energy and perturbation growth, regardless of whether or not a low-level mean westerly is presented. In contrast to a previous study, the growth rate is reversely proportional to the convective adjustment time. The current work sheds light on understanding the moisture–vortex and the baroclinic instability in a monsoonal environment with a pronounced easterly vertical shear. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

14 pages, 2539 KiB  
Article
Investigation into the Effect of H2-Enriched Conditions on the Structure and Stability of Flames in a Low-Swirl Combustor Derived from Aero-Engine Design
by Sara Bonuso, Pasquale Di Gloria, Guido Marseglia, Ramón A. Otón Martínez, Ghazanfar Mehdi, Zubair Ali Shah, Antonio Ficarella and Maria Grazia De Giorgi
Aerospace 2024, 11(1), 43; https://doi.org/10.3390/aerospace11010043 - 30 Dec 2023
Viewed by 2053
Abstract
This study introduces an innovative approach involving the injection of hydrogen into a low-swirl, non-premixed flame, which operates with gaseous fuels derived from an air-blast atomizer designed for aero-engine applications. The aim is to characterize how hydrogen enrichment influences flame structures while maintaining [...] Read more.
This study introduces an innovative approach involving the injection of hydrogen into a low-swirl, non-premixed flame, which operates with gaseous fuels derived from an air-blast atomizer designed for aero-engine applications. The aim is to characterize how hydrogen enrichment influences flame structures while maintaining a constant thermal output of 4.6 kW. Using high-speed chemiluminescence imaging, three fueling conditions were compared: the first involved pure methane/air, while the second and third conditions introduced varying levels of hydrogen to an air–methane mixture. The results reveal significant effects of hydrogen enrichment on flame characteristics, including a slightly shorter length and a wider angle attributed to heightened expansion within the Combustion Recirculation Zone. Moreover, the emission of UV light underwent considerable changes, resulting in a shifted luminosity zone and reduced variance. To delve deeper into the underlying mechanisms, the researchers employed Proper Orthogonal Decomposition (POD) and Spectral Proper Orthogonal Decomposition (SPOD) analyses, showing coherent structures and energetic modes within the flames. Hydrogen enrichment led to the development of smaller structures near the nozzle exit, accompanied by longitudinal oscillations and vortex shedding phenomena. These findings contribute to an advanced understanding of hydrogen’s impact on flame characteristics, thereby propelling efforts toward improved flame stability. Additionally, these insights hold significance in the exploration of hydrogen as an alternative energy source with potential environmental benefits. Full article
Show Figures

Figure 1

24 pages, 14698 KiB  
Article
Study on the Suppression Effect on Vortex-Induced Vibration of Double-Deck Truss Girder by the Spatial Position of the Deflector Plate
by Gang Yao, Linjun Wu, Yang Yang, Maoyi Liu, Yuxiao Chen and Hongbo Du
Appl. Sci. 2023, 13(17), 9764; https://doi.org/10.3390/app13179764 - 29 Aug 2023
Cited by 2 | Viewed by 1466
Abstract
This paper carried out wind tunnel tests and numerical analysis to study the effect of the spatial position of deflector plates on the vortex-induced vibration (VIV) of a double-deck truss girder. The wind tunnel tests found that setting the web deflector plate and [...] Read more.
This paper carried out wind tunnel tests and numerical analysis to study the effect of the spatial position of deflector plates on the vortex-induced vibration (VIV) of a double-deck truss girder. The wind tunnel tests found that setting the web deflector plate and the lower chord deflector plate significantly suppressed the VIV. In order to study the suppression mechanism of the deflector plate on VIV, numerical simulations were conducted using the computational fluid dynamics (CFD) method. We analyzed the suppression mechanism of the deflector plate on VIV by combining the vertical amplitude obtained by numerical simulation with the change in the vorticity magnitude and direction. The results showed that the flow velocity around the lower surface of the airflow was reduced, resulting in significantly lower vorticity at the exact position of the lower chord deflector plate and web deflector plate section compared to the original section. The web deflector plate and the lower chord deflector plate broke the vortex shedding mode in the wake flow region, and the vortex shedding frequency was far away from the self-oscillation frequency of the double-deck truss girder, thus suppressing the VIV. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

21 pages, 5023 KiB  
Article
Hybrid Computation of the Aerodynamic Noise Radiated by the Wake of a Subsonic Cylinder
by Benet Eiximeno, Carlos Tur-Mongé, Oriol Lehmkuhl and Ivette Rodríguez
Fluids 2023, 8(8), 236; https://doi.org/10.3390/fluids8080236 - 21 Aug 2023
Cited by 2 | Viewed by 1937
Abstract
The noise radiated by the flow around a cylinder in the subcritical regime at ReD=1×104 and at a subsonic Mach number of M=0.5 is here studied. The aerodynamic sound radiated by a cylinder has [...] Read more.
The noise radiated by the flow around a cylinder in the subcritical regime at ReD=1×104 and at a subsonic Mach number of M=0.5 is here studied. The aerodynamic sound radiated by a cylinder has been studied with a wide range of Reynolds numbers, but there are no studies about how the Mach number affects the acoustic field in the subsonic regime. The flow field is resolved by means of large-eddy simulations of the compressible Navier–Stokes equations. For the study of the noise propagation, formulation 1C of the Ffowcs Williams–Hawkings analogy is used. The fluid flow results show good agreement when comparing the surface pressure coefficient, the recirculation length, the vortex shedding frequency and the force coefficients against other studies performed under similar conditions. The dynamic mode decomposition of the pressure fluctuations is used to relate them with the far-field noise. It is shown that, in contrast to what happens for low Mach numbers, quadrupoles have a significant impact mainly in the observers located in the streamwise direction. This effect leads to a global monopole directivity pattern as the shear fluctuations compensate for the lower value of the aeolian tone away from the cross-stream direction. Full article
Show Figures

Figure 1

Back to TopTop