The Reexamination of the Moisture–Vortex and Baroclinic Instabilities in the South Asian Monsoon
Abstract
:1. Introduction
2. Data and Model
3. Observed Characteristics of the Background Field and Synoptic-Scale Variability in the SASM
3.1. Background Field Features
3.2. Dominant Variability
3.3. The Evolving Horizontal Patterns and Vertical Structure
4. Construction of a 2.5-Layer Model and Eigenvalue Solutions
5. Discussion
5.1. Does the Baroclinic Instability Operate in the Model?
5.2. Dependence of the Growth Rate on Convective Adjustment Time
5.3. Issue of Observational Validation on the Role of the Baroclinic Instability in the SASM
6. Summary and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Clemens, S.C.; Liu, P. Contrasting the Indian and East Asian monsoons: Implications on geologic timescales. Mar. Geol. 2003, 201, 5–21. [Google Scholar] [CrossRef]
- Yihui, D.; Chan, J.C. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar] [CrossRef]
- Ding, Y. The variability of the Asian summer monsoon. 気象集誌. 第 2 輯 2007, 85, 21–54. [Google Scholar] [CrossRef]
- Ding, Y. Seasonal march of the East-Asian summer monsoon. In East Asian Monsoon; World Scientific: Singapore, 2004; pp. 3–53. [Google Scholar]
- Qian, W.; Lee, D.K. Seasonal march of Asian summer monsoon. Int. J. Climatol. A J. R. Meteorol. Soc. 2000, 20, 1371–1386. [Google Scholar] [CrossRef]
- Turner, A.G.; Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Chang. 2012, 2, 587–595. [Google Scholar] [CrossRef]
- Huang, R.; Sun, F. Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteorol. Soc. Jpn. Ser. II 1992, 70, 243–256. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, H.; Li, J. Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J. Geophys. Res. Atmos. 2010, 115, D00K05. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Y.; Yang, Q.; Fu, R.; Cunnold, D.; Choi, Y. Impact of East Asian summer monsoon on the air quality over China: View from space. J. Geophys. Res. Atmos. 2010, 115, D09301. [Google Scholar] [CrossRef]
- Saeed, F.; Hagemann, S.; Jacob, D. Impact of irrigation on the South Asian summer monsoon. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Sun, Y.; Kutzbach, J.; An, Z.; Clemens, S.; Liu, Z.; Liu, W.; Liu, X.; Shi, Z.; Zheng, W.; Liang, L. Astronomical and glacial forcing of East Asian summer monsoon variability. Quat. Sci. Rev. 2015, 115, 132–142. [Google Scholar] [CrossRef]
- Li, T.; Wang, B. REVIEW A review on the western north Pacific monsoon: Synoptic-to-interannual variabilities. TAO Terr. Atmos. Ocean. Sci. 2005, 16, 285. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Hsu, P.-C.; Li, T.; Hsu, P.-C. Tropical cyclone formation. In Fundamentals of Tropical Climate Dynamics; Springer: Cham, Switzerland, 2018; pp. 107–147. [Google Scholar]
- Vogel, B.; Günther, G.; Müller, R.; Grooß, J.-U.; Hoor, P.; Krämer, M.; Müller, S.; Zahn, A.; Riese, M. Fast transport from Southeast Asia boundary layer sources to northern Europe: Rapid uplift in typhoons and eastward eddy shedding of the Asian monsoon anticyclone. Atmos. Chem. Phys. 2014, 14, 12745–12762. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Huang, A. Climatic features of the south-westerly low-level jet over southeast China and its association with precipitation over east China. Asia-Pac. J. Atmos. Sci. 2013, 49, 259–270. [Google Scholar] [CrossRef]
- Xavier, A.; Kottayil, A.; Mohanakumar, K.; Xavier, P.K. The role of monsoon low-level jet in modulating heavy rainfall events. Int. J. Climatol. 2018, 38, e569–e576. [Google Scholar] [CrossRef]
- Liu, H.; He, M.; Wang, B.; Zhang, Q. Advances in low-level jet research and future prospects. J. Meteorol. Res. 2014, 28, 57–75. [Google Scholar] [CrossRef]
- Li, X.; Ting, M.; You, Y.; Lee, D.E.; Westervelt, D.M.; Ming, Y. South Asian summer monsoon response to aerosol-forced sea surface temperatures. Geophys. Res. Lett. 2020, 47, e2019GL085329. [Google Scholar] [CrossRef]
- Zhang, Z.; Chan, J.C.; Ding, Y. Characteristics, evolution and mechanisms of the summer monsoon onset over Southeast Asia. Int. J. Climatol. A J. R. Meteorol. Soc. 2004, 24, 1461–1482. [Google Scholar] [CrossRef]
- Latif, M.; Syed, F.; Hannachi, A. Rainfall trends in the South Asian summer monsoon and its related large-scale dynamics with focus over Pakistan. Clim. Dyn. 2017, 48, 3565–3581. [Google Scholar] [CrossRef]
- Shukla, R.P. The dominant intraseasonal mode of intraseasonal South Asian summer monsoon. J. Geophys. Res. Atmos. 2014, 119, 635–651. [Google Scholar] [CrossRef]
- Ashfaq, M.; Shi, Y.; Tung, W.W.; Trapp, R.J.; Gao, X.; Pal, J.S.; Diffenbaugh, N.S. Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys. Res. Lett. 2009, 36, L01704. [Google Scholar] [CrossRef]
- Huang, R.; Liu, Y.; Du, Z.; Chen, J.; Huangfu, J. Differences and links between the East Asian and South Asian summer monsoon systems: Characteristics and variability. Adv. Atmos. Sci. 2017, 34, 1204–1218. [Google Scholar] [CrossRef]
- Saeed, F.; Hagemann, S.; Jacob, D. A framework for the evaluation of the South Asian summer monsoon in a regional climate model applied to REMO. Int. J. Climatol. 2012, 32, 430–440. [Google Scholar] [CrossRef]
- Qian, W.; Zhu, Y. The comparison between summer monsoon components over East Asia and South Asia. J. Geosci. China 2002, 4, 17–32. [Google Scholar]
- Sikka, D.R. Synoptic and meso-scale weather disturbances over South Asia during the Southwest Summer monsoon season. In The Global Monsoon System: Research and Forecast; World Scientific: Singapore, 2011; pp. 183–204. [Google Scholar] [CrossRef]
- Nikumbh, A.C.; Chakraborty, A.; Bhat, G.; Frierson, D.M. Large-scale extreme rainfall-producing synoptic systems of the Indian summer monsoon. Geophys. Res. Lett. 2020, 47, e2020GL088403. [Google Scholar] [CrossRef]
- Huangfu, J.; Chen, W.; Lai, X.; Chen, D.; He, Z. Roles of synoptic-scale waves and intraseasonal oscillations in the onset of the South China Sea summer monsoon. Int. J. Climatol. 2022, 42, 2923–2934. [Google Scholar] [CrossRef]
- Wu, G.; Ren, S.; Xu, J.; Wang, D.; Bao, Q.; Liu, B.; Liu, Y. Impact of tropical cyclone development on the instability of South Asian High and the summer monsoon onset over Bay of Bengal. Clim. Dyn. 2013, 41, 2603–2616. [Google Scholar] [CrossRef]
- Huang, Q.; Guan, Y. Does the Asian monsoon modulate tropical cyclone activity over the South China Sea? Chin. J. Oceanol. Limnol. 2012, 30, 960–965. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, W.; Li, C.; Wang, D. Effects of the East Asian summer monsoon on tropical cyclone genesis over the South China Sea on an interdecadal time scale. Adv. Atmos. Sci. 2012, 29, 249–262. [Google Scholar] [CrossRef]
- Chang, C.P.; Lei, Y.; Sui, C.H.; Lin, X.; Ren, F. Tropical cyclone and extreme rainfall trends in East Asian summer monsoon since mid-20th century. Geophys. Res. Lett. 2012, 39, L18702. [Google Scholar] [CrossRef]
- Kumar, V.; Krishnan, R. On the association between the Indian summer monsoon and the tropical cyclone activity over northwest Pacific. Curr. Sci. 2005, 88, 602–612. [Google Scholar]
- Loo, Y.Y.; Billa, L.; Singh, A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. Front. 2015, 6, 817–823. [Google Scholar] [CrossRef]
- Charney, J.G. The dynamics of long waves in a baroclinic westerly current. J. Atmos. Sci. 1947, 4, 136–162. [Google Scholar] [CrossRef]
- Eady, E.T. Long waves and cyclone waves. Tellus 1949, 1, 33–52. [Google Scholar] [CrossRef]
- Phillips, N.A. Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 1954, 6, 274–286. [Google Scholar]
- Pedlosky, J. An initial value problem in the theory of baroclinic instability. Tellus 1964, 16, 12–17. [Google Scholar] [CrossRef]
- Smagorinsky, J.; Manabe, S.; Holloway, J.L. Numerical results from a nine-level general circulation model of the atmosphere. Mon. Weather. Rev. 1965, 93, 727–768. [Google Scholar] [CrossRef]
- Hide, R.; Fowlis, W. Thermal convection in a rotating annulus of liquid: Effect of viscosity on the transition between axisymmetric and non-axisymmetric flow regimes. J. Atmos. Sci. 1965, 22, 541–558. [Google Scholar] [CrossRef]
- Holton, J.R. An introduction to dynamic meteorology. Am. J. Phys. 1973, 41, 752–754. [Google Scholar] [CrossRef]
- Shukla, J. CISK-barotropic-baroclinic instability and the growth of monsoon depressions. J. Atmos. Sci. 1978, 35, 495–508. [Google Scholar] [CrossRef]
- Mak, M. On moist quasi-geostrophic baroclinic instability in a general model. Sci. Sin. B 1983, 26, 850–864. [Google Scholar]
- Cohen, N.Y.; Boos, W.R. Perspectives on moist baroclinic instability: Implications for the growth of monsoon depressions. J. Atmos. Sci. 2016, 73, 1767–1788. [Google Scholar] [CrossRef]
- Kuo, H.L. Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Atmos. Sci. 1949, 6, 105–122. [Google Scholar] [CrossRef]
- Diaz, M.; Boos, W.R. Monsoon depression amplification by moist barotropic instability in a vertically sheared environment. Q. J. R. Meteorol. Soc. 2019, 145, 2666–2684. [Google Scholar] [CrossRef]
- Adames, Á.F.; Ming, Y. Interactions between water vapor and potential vorticity in synoptic-scale monsoonal disturbances: Moisture vortex instability. J. Atmos. Sci. 2018, 75, 2083–2106. [Google Scholar] [CrossRef]
- Adames, Á.F. Interactions between water vapor, potential vorticity, and vertical wind shear in quasi-geostrophic motions: Implications for rotational tropical motion systems. J. Atmos. Sci. 2021, 78, 903–923. [Google Scholar] [CrossRef]
- Li, T. Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci. 2006, 63, 1093–1102. [Google Scholar] [CrossRef]
- Hsu, P.-c.; Li, T. Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Clim. 2012, 25, 4914–4931. [Google Scholar] [CrossRef]
- Wang, B.; Li, T. A simple tropical atmosphere model of relevance to short-term climate variations. J. Atmos. Sci. 1993, 50, 260–284. [Google Scholar] [CrossRef]
- Liebmann, B.; Smith, C.A. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Am. Meteorol. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Hersbach, H. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17. [Google Scholar]
- Yang, G.; Li, T. Moist Baroclinic Instability along the Subtropical Mei-Yu Front. J. Clim. 2023, 36, 805–822. [Google Scholar] [CrossRef]
- Luo, H.; Adames Corraliza, Á.F.; Rood, R.B. Barotropic and Moisture–Vortex Growth of Monsoon Low Pressure Systems. J. Atmos. Sci. 2023, 80, 2823–2836. [Google Scholar] [CrossRef]
- Suhas, D.; Boos, W.R. Monsoon depression amplification by horizontal shear and humidity gradients: A shallow water perspective. J. Atmos. Sci. 2023, 80, 633–647. [Google Scholar] [CrossRef]
Angular speed of rotation of the Earth | |
Radius of the Earth | |
Reference latitude | |
Gas constant for dry air | |
Specific heat of dry air at constant pressure | |
Ratio of gas constant to specific heat at constant pressure | |
Latent heat of vaporization | |
Density scale height | |
Pressure interval between level 1 and 3 | |
Mean zonal velocity at levels 1 | |
Mean zonal velocity at levels 3 | |
Mean meridional specific humidity gradient | |
Mean vertical specific humidity gradient | |
Eddy viscosity coefficient | |
Ekman friction coefficient | |
Static stability parameter | |
Convective adjustment time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Li, T.; Cui, J. The Reexamination of the Moisture–Vortex and Baroclinic Instabilities in the South Asian Monsoon. Atmosphere 2024, 15, 147. https://doi.org/10.3390/atmos15020147
Chen H, Li T, Cui J. The Reexamination of the Moisture–Vortex and Baroclinic Instabilities in the South Asian Monsoon. Atmosphere. 2024; 15(2):147. https://doi.org/10.3390/atmos15020147
Chicago/Turabian StyleChen, Hongyu, Tim Li, and Jing Cui. 2024. "The Reexamination of the Moisture–Vortex and Baroclinic Instabilities in the South Asian Monsoon" Atmosphere 15, no. 2: 147. https://doi.org/10.3390/atmos15020147
APA StyleChen, H., Li, T., & Cui, J. (2024). The Reexamination of the Moisture–Vortex and Baroclinic Instabilities in the South Asian Monsoon. Atmosphere, 15(2), 147. https://doi.org/10.3390/atmos15020147