Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = von Kossa stain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 709 KiB  
Article
An Overlooked Etiology of Acute Kidney Injury: A Clinicopathological Analysis of Phosphate Nephropathy and Review of the Literature
by Erman Özdemir, Pınar Özdemir, Serap Yadigar, Serkan Feyyaz Yalın, Ergün Parmaksız, Şükran Sarıkaya, Erdoğan Özdemir and Mehmet Rıza Altıparmak
J. Clin. Med. 2025, 14(12), 4081; https://doi.org/10.3390/jcm14124081 - 9 Jun 2025
Viewed by 616
Abstract
Background: Acute phosphate nephropathy (APN) is an underrecognized cause of acute kidney injury (AKI), typically associated with the use of oral sodium phosphate (OSP)-based bowel preparations. It is characterized by calcium phosphate crystal deposition within the renal tubules and may result in permanent [...] Read more.
Background: Acute phosphate nephropathy (APN) is an underrecognized cause of acute kidney injury (AKI), typically associated with the use of oral sodium phosphate (OSP)-based bowel preparations. It is characterized by calcium phosphate crystal deposition within the renal tubules and may result in permanent renal impairment. Despite known risks, phosphate-containing solutions are still widely used without sufficient risk stratification. Methods: We retrospectively evaluated 517 native kidney biopsies performed in our nephrology clinic between 2017 and 2022. Among these, 12 patients with unexplained AKI and recent colonoscopy history were identified. In nine cases, non-specific tubular deposits on routine staining prompted further histochemical analysis. All had a history of recent OSP-based bowel cleansing. The use of von Kossa staining confirmed calcium phosphate deposition, consistent with APN. Results: Out of 517 kidney biopsies performed during the study period, 9 patients were diagnosed with APN based on histopathological findings following recent colonoscopy and OSP-based bowel cleansing. The mean age was 58.7 years, and three were female. Hypertension was present in seven patients, diabetes mellitus in three, and epilepsy in two; one patient had no comorbidities. Baseline renal function was normal (mean serum creatinine 0.86 mg/dL) and increased to 1.76 mg/dL at three months post-exposure. All biopsies revealed tubulointerstitial calcium phosphate deposits and interstitial inflammation; mesangial hypercellularity was observed in five cases, tubular atrophy in three, and acute tubular necrosis in one. All samples stained positive with von Kossa staining. Over time, all patients developed chronic kidney disease, and one progressed to end-stage renal disease requiring dialysis. Conclusions: In patients presenting with unexplained AKI and recent OSP-based bowel preparation, APN should be considered in the differential diagnosis. When routine histology is inconclusive, definitive diagnosis may require special histochemical staining. Risk-based restrictions on phosphate-containing agents are warranted to reduce preventable kidney injury. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

17 pages, 11231 KiB  
Article
Biopolymer/Suture Polymer Interaction: Is It a Key of Bioprosthetic Calcification?
by Irina Yu. Zhuravleva, Anna A. Dokuchaeva, Andrey A. Vaver, Ludmila V. Kreiker, Elena V. Kuznetsova and Rostislav I. Grek
Polymers 2025, 17(11), 1576; https://doi.org/10.3390/polym17111576 - 5 Jun 2025
Viewed by 505
Abstract
The aim of this study was to evaluate the effect of suture material made of polyester (PET), polypropylene (PP), and polytetrafluoroethylene (PTFE) on the calcification of a bovine pericardium (BP) consisting of collagen biopolymer preserved with an epoxy compound. Non-porous film made of [...] Read more.
The aim of this study was to evaluate the effect of suture material made of polyester (PET), polypropylene (PP), and polytetrafluoroethylene (PTFE) on the calcification of a bovine pericardium (BP) consisting of collagen biopolymer preserved with an epoxy compound. Non-porous film made of the synthetic reinforced polymer REPEREN® was chosen as a control material. Samples of the material (sutured or non-sutured with each of the three types of surgical sutures) were implanted subcutaneously in 45 young rats for 30, 60, and 90 days. The calcium content of the explants was quantified using atomic absorption spectrometry, a histological examination was performed using hematoxylin and eosin and von Kossa staining, and the structure of the calcium phosphate deposits was studied using scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) with color field mapping. The results demonstrated the absence of calcification in the non-sutured BP and in all the REPEREN® groups. In the sutured BP samples, a dynamic increase in the Ca content and the Ca/P ratio to 1.67–1.7 (crystalline hydroxyapatite) was observed by the 90th day. The minimum Ca content among the sutured BP groups was detected in samples where the PET thread was used. The cellular reaction to BP was significantly more pronounced than the reaction to REPEREN® throughout the entire observation period; collagen homogenization was noted near the sutures. It can be concluded that all the studied suture materials provoke BP calcification. PET has the minimal negative effect. Full article
(This article belongs to the Special Issue Polymer-Based Materials for Drug Delivery and Biomedical Applications)
Show Figures

Figure 1

6 pages, 1756 KiB  
Clinicopathological Challenge
Skin-Colored Papules on the Neck of a Postmenopausal Woman: A Diagnostic Challenge
by Jason El Jalkh, Pia Maria Obeid, Dorra Guermazi, Aya Soubra and Elie Saliba
Dermatopathology 2025, 12(2), 15; https://doi.org/10.3390/dermatopathology12020015 - 14 May 2025
Viewed by 617
Abstract
A 64-year-old patient presented for management of symptomatic skin-colored papules symmetrically distributed over the lateral neck over the past two years, which failed to improve on multiple topical corticosteroids, antifungal creams, and topical calcineurin inhibitor. Histopathologic examination showed a regular epidermis with increased [...] Read more.
A 64-year-old patient presented for management of symptomatic skin-colored papules symmetrically distributed over the lateral neck over the past two years, which failed to improve on multiple topical corticosteroids, antifungal creams, and topical calcineurin inhibitor. Histopathologic examination showed a regular epidermis with increased melanophages in the papillary dermis, without vacuolar degeneration of the basement membrane. Verhoeff Van Gieson stain highlighted a band-like zone of attenuated elastic fibers in the papillary dermis, while Von Kossa stain was negative for calcified fibers. PAS staining was negative for fungal organisms and Alcian blue showed no increase in dermal mucin. Full article
(This article belongs to the Section Clinico-Pathological Correlation in Dermatopathology)
Show Figures

Figure 1

11 pages, 2503 KiB  
Article
Pathology of Free-Living Loggerhead Turtle (Caretta caretta) Embryos on the Island of Linosa (Italy)
by Frine Eleonora Scaglione, Matteo Cuccato, Erica Longato, Paola Pregel, Daniele Zucca, Stefano Nannarelli, Alessandra De Lucia, Marco Pilia, Elisabetta Manuali, Marco Gobbi, Enrico Bollo and Simonetta Appino
Vet. Sci. 2025, 12(4), 328; https://doi.org/10.3390/vetsci12040328 - 2 Apr 2025
Viewed by 496
Abstract
On the beach of Linosa Island (Italy), 43 loggerhead sea turtle (Caretta caretta) unhatched eggs were recovered from nests, formalin-fixed and necropsied. The tissue samples were stained with hematoxylin-eosin (HE), Grocott, von Kossa, periodic acid-Schiff (PAS), and Movat pentachrome stains. Histologically, [...] Read more.
On the beach of Linosa Island (Italy), 43 loggerhead sea turtle (Caretta caretta) unhatched eggs were recovered from nests, formalin-fixed and necropsied. The tissue samples were stained with hematoxylin-eosin (HE), Grocott, von Kossa, periodic acid-Schiff (PAS), and Movat pentachrome stains. Histologically, vacuolar degeneration (100.0%) and increased numbers of melanomacrophages (18.6%) in the liver, and edema (14.0%) in the lungs were observed. Twenty-five kidneys (58.1%) showed deposition of blue amorphous material with HE staining, which also appeared PAS-positive and black with von Kossa staining, allowing a diagnosis of calcium oxalate, confirmed by transmission electron microscopy (TEM). The hepatic lesions may be indicative of toxicosis, infection, or a defense mechanism. A statistically significant association between the nest position and renal oxalosis (renal calcium oxalate deposition) was observed. Renal oxalosis was probably due to the exceptionally high summer temperatures, which were statistically higher compared to the temperatures recorded in the previous two years. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Figure 1

17 pages, 4901 KiB  
Article
Optimization of High-Frequency Ultrasound Imaging to Detect Incremental Changes in Mineral Content at the Cartilage–Bone Interface Ex Vivo
by Akshay Charan, Parag V. Chitnis and Caroline D. Hoemann
Biomimetics 2025, 10(3), 160; https://doi.org/10.3390/biomimetics10030160 - 5 Mar 2025
Viewed by 832
Abstract
(1) Background: Osteoarthritis is a degenerative disease of the whole joint marked by cartilage–bone interface (CBI) remodeling, but methods to monitor subtle changes in mineralization are lacking. We optimized a non-destructive ultrasound imaging method to monitor incremental shifts in mineralization, using brief decalcification [...] Read more.
(1) Background: Osteoarthritis is a degenerative disease of the whole joint marked by cartilage–bone interface (CBI) remodeling, but methods to monitor subtle changes in mineralization are lacking. We optimized a non-destructive ultrasound imaging method to monitor incremental shifts in mineralization, using brief decalcification as a mimetic of CBI remodeling. (2) Methods: We used a 35-MHz transducer to scan 3 mm diameter bovine osteochondral explants wrapped with parafilm to produce surface-directed decalcification and dedicated 3D-printed holders to maintain sample orientation. Customized MATLAB codes and a matched pair design were used for quantitative hypothesis testing. (3) Results: Optimal scan precision was obtained when the High-Frequency Ultrasound (HFUS) focal distance was trained at the CBI. HFUS cartilage thickness increased by 53 ± 21 µm or 97 ± 28 µm after three or seven hours of ethylene diamine tetra-acetic acid (EDTA) (but not PBS), respectively, and was highly correlated with histological cartilage thickness (R = 0.98). The en face CBI backscatter pattern was irregular and shifted after the EDTA-displacement of the mineral front. Collective data suggested that the −10 dB echogenic CBI signal originated from the mineral front and varied topographically with undulating mineral thickness. (4) Conclusions: This imaging approach could be used to monitor tidemark remodeling in live explant cultures, toward identifying new treatments that inhibit tidemark advancement and slow osteoarthritis progression. Full article
Show Figures

Figure 1

17 pages, 3752 KiB  
Article
Extracorporeal Magnetotransduction Therapy as a New Form of Electromagnetic Wave Therapy: From Gene Upregulation to Accelerated Matrix Mineralization in Bone Healing
by Lennart Gerdesmeyer, Jutta Tübel, Andreas Obermeier, Norbert Harrasser, Claudio Glowalla, Rüdiger von Eisenhart-Rothe and Rainer Burgkart
Biomedicines 2024, 12(10), 2269; https://doi.org/10.3390/biomedicines12102269 - 7 Oct 2024
Cited by 3 | Viewed by 4363
Abstract
Background: Electromagnetic field therapy is gaining attention for its potential in treating bone disorders, with Extracorporeal Magnetotransduction Therapy (EMTT) emerging as an innovative approach. EMTT offers a higher oscillation frequency and magnetic field strength compared to traditional Pulsed Electromagnetic Field (PEMF) therapy, showing [...] Read more.
Background: Electromagnetic field therapy is gaining attention for its potential in treating bone disorders, with Extracorporeal Magnetotransduction Therapy (EMTT) emerging as an innovative approach. EMTT offers a higher oscillation frequency and magnetic field strength compared to traditional Pulsed Electromagnetic Field (PEMF) therapy, showing promise in enhancing fracture healing and non-union recovery. However, the mechanisms underlying these effects remain unclear. Results: This study demonstrates that EMTT significantly enhances osteoblast bone formation at multiple levels, from gene expression to extracellular matrix mineralization. Key osteoblastogenesis regulators, including SP7 and RUNX2, and bone-related genes such as COL1A1, ALPL, and BGLAP, were upregulated, with expression levels surpassing those of the control group by over sevenfold (p < 0.001). Enhanced collagen synthesis and mineralization were confirmed by von Kossa and Alizarin Red staining, indicating increased calcium and phosphate deposition. Additionally, calcium imaging revealed heightened calcium influx, suggesting a cellular mechanism for EMTT’s osteogenic effects. Importantly, EMTT did not compromise cell viability, as confirmed by live/dead staining and WST-1 assays. Conclusion: This study is the first to show that EMTT can enhance all phases of osteoblastogenesis and improve the production of critical mineralization components, offering potential clinical applications in accelerating fracture healing, treating osteonecrosis, and enhancing implant osseointegration. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

24 pages, 13262 KiB  
Article
Placental Tissue Calcification and Its Molecular Pathways in Female Patients with Late-Onset Preeclampsia
by Miguel A. Ortega, Tatiana Pekarek, Diego De Leon-Oliva, Diego Liviu Boaru, Oscar Fraile-Martinez, Cielo García-Montero, Julia Bujan, Leonel Pekarek, Silvestra Barrena-Blázquez, Raquel Gragera, Patrocinio Rodríguez-Benitez, Mauricio Hernández-Fernández, Laura López-González, Raul Díaz-Pedrero, Ángel Asúnsolo, Melchor Álvarez-Mon, Natalio García-Honduvilla, Miguel A. Saez, Juan A. De León-Luis and Coral Bravo
Biomolecules 2024, 14(10), 1237; https://doi.org/10.3390/biom14101237 - 30 Sep 2024
Cited by 3 | Viewed by 2435
Abstract
Preeclampsia (PE) is a complex multisystem disease characterized by hypertension of sudden onset (>20 weeks’ gestation) coupled with the presence of at least one additional complication, such as proteinuria, maternal organ dysfunction, or uteroplacental dysfunction. Hypertensive states during pregnancy carry life-threatening risks for [...] Read more.
Preeclampsia (PE) is a complex multisystem disease characterized by hypertension of sudden onset (>20 weeks’ gestation) coupled with the presence of at least one additional complication, such as proteinuria, maternal organ dysfunction, or uteroplacental dysfunction. Hypertensive states during pregnancy carry life-threatening risks for both mother and baby. The pathogenesis of PE develops due to a dysfunctional placenta with aberrant architecture that releases factors contributing to endothelial dysfunction, an antiangiogenic state, increased oxidative stress, and maternal inflammatory responses. Previous studies have shown a correlation between grade 3 placental calcifications and an elevated risk of developing PE at term. However, little is known about the molecular pathways leading to placental calcification. In this work, we studied the gene and protein expression of c-Jun N-terminal kinase (JNK), Runt-related transcription factor 2 (RUNX2), osteocalcin (OSC), osteopontin (OSP), pigment epithelium-derived factor (PEDF), MSX-2/HOX8, SOX-9, WNT-1, and β-catenin in placental tissue from women with late-onset PE (LO-PE). In addition, we employed von Kossa staining to detect mineral deposits in placental tissues. Our results show a significant increase of all these components in placentas from women with LO-PE. Therefore, our study suggests that LO-PE may be associated with the activation of molecular pathways of placental calcification. These results could be the starting point for future research to describe the molecular mechanisms that promote placental calcification in PE and the development of therapeutic strategies directed against it. Full article
(This article belongs to the Special Issue Tissue Calcification in Normal and Pathological Environments)
Show Figures

Figure 1

13 pages, 18951 KiB  
Article
Cytotoxicity, Biocompatibility, and Calcium Deposition Capacity of 45S5 Bioglass Experimental Paste and Bio-C Temp: In Vitro and In Vivo Study Using Wistar Rats
by Francine Benetti, Pedro Henrique Chaves de Oliveira, Maria Paula Bernal de Andrade, Cristiane Cantiga-Silva, Gustavo Sivieri-Araújo, Eloi Dezan Júnior, João Eduardo Gomes-Filho, Ivana Márcia Alvez Diniz, Alexandre Henrique dos Reis-Prado, Marina Trevelin Souza, Edgar Dutra Zanotto and Luciano Tavares Angelo Cintra
J. Funct. Biomater. 2024, 15(7), 184; https://doi.org/10.3390/jfb15070184 - 4 Jul 2024
Cited by 4 | Viewed by 4727
Abstract
The evolution of biomaterials engineering allowed for the development of products that improve outcomes in the medical–dental field. Bioglasses have demonstrated the ability to either compose or replace different materials in dentistry. This study evaluated the cytotoxicity, biocompatibility, calcium deposition, and collagen maturation [...] Read more.
The evolution of biomaterials engineering allowed for the development of products that improve outcomes in the medical–dental field. Bioglasses have demonstrated the ability to either compose or replace different materials in dentistry. This study evaluated the cytotoxicity, biocompatibility, calcium deposition, and collagen maturation of 45S5 bioglass experimental paste and Bio-C Temp, compared to calcium hydroxide (Ca(OH)2) paste. The 45S5 bioglass and Ca(OH)2 powder were mixed with distilled water (ratio 2:1); Bio-C Temp is ready-for-use. Dental pulp cells were exposed to the materials’ extracts (1:2 and 1:4 dilutions; 24, 48, and 72 h) for MTT and live/dead analyses. Polyethylene tubes filled with the pastes, or left empty (control), were implanted on the dorsum of 16 rats. After 7 and 30 days (n = 8/period), the rats were euthanized and the specimens were processed for hematoxylin–eosin (H&E), von Kossa (vK), and picrosirius red (PSR) staining, or without staining for polarized light (PL) birefringence analysis. A statistical analysis was applied (p < 0.05). There was no difference in cell viability among Ca(OH)2, 45S5 bioglass, and the control, across all periods and dilutions (p > 0.05), while Bio-C Temp was cytotoxic in all periods and dilutions compared to the control (p < 0.05). Regarding biocompatibility, there was a reduction in inflammation from 7 to 30 days for all groups, without significant differences among the groups for any period (p > 0.05). The fibrous capsules were thick for all groups at 7 days and thin at 30 days. All materials showed positive structures for vK and PL analysis. At 7 days, the control and 45S5 bioglass showed more immature collagen than the other groups (p < 0.05); at 30 days, 45S5 bioglass had more immature than mature collagen, different from the other groups (p < 0.05). In conclusion, Bio-C Temp presented cytotoxicity compared to the other materials, but the three pastes showed biocompatibility and induced calcium deposition. Additionally, the bioglass paste allowed for marked and continuous collagen proliferation. This study contributed to the development of new biomaterials and highlighted different methodologies for understanding the characteristics of medical–dental materials. Full article
(This article belongs to the Special Issue Biomaterials in Restorative Dentistry and Endodontics)
Show Figures

Figure 1

15 pages, 6786 KiB  
Article
Porcine Mandibular Bone Marrow-Derived Mesenchymal Stem Cell (BMSC)-Derived Extracellular Vesicles Can Promote the Osteogenic Differentiation Capacity of Porcine Tibial-Derived BMSCs
by Qun Zhao, Xing Zhang, You Li, Zhizhen He, Kang Qin, Eva Miriam Buhl, Ümit Mert, Klemens Horst, Frank Hildebrand, Elizabeth R. Balmayor and Johannes Greven
Pharmaceutics 2024, 16(2), 279; https://doi.org/10.3390/pharmaceutics16020279 - 16 Feb 2024
Cited by 4 | Viewed by 2386
Abstract
Objective: Existing research suggests that bone marrow-derived mesenchymal stem cells (BMSCs) may promote endogenous bone repair. This may be through the secretion of factors that stimulate repair processes or directly through differentiation into osteoblast-progenitor cells. However, the osteogenic potential of BMSCs varies among [...] Read more.
Objective: Existing research suggests that bone marrow-derived mesenchymal stem cells (BMSCs) may promote endogenous bone repair. This may be through the secretion of factors that stimulate repair processes or directly through differentiation into osteoblast-progenitor cells. However, the osteogenic potential of BMSCs varies among different tissue sources (e.g., mandibular versus long BMSCs). The main aim of this study was to investigate the difference in osteogenic differentiation capacity between mandibular BMSCs (mBMSCs) and tibial BMSCs (tBMSCs). Materials and Methods: Bioinformatics analysis of the GSE81430 dataset taken from the Gene Expression Omnibus (GEO) database was performed using GEO2R. BMSCs were isolated from mandibular and tibial bone marrow tissue samples. Healthy pigs (n = 3) (registered at the State Office for Nature, Environment, and Consumer Protection, North Rhine-Westphalia (LANUV) 81-02.04.2020.A215) were used for this purpose. Cell morphology and osteogenic differentiation were evaluated in mBMSCs and tBMSCs. The expression levels of toll-like receptor 4 (TLR4) and nuclear transcription factor κB (NF-κB) were analyzed using quantitative polymerase chain reaction (qPCR) and Western blot (WB), respectively. In addition, mBMSC-derived extracellular vesicles (mBMSC-EVs) were gained and used as osteogenic stimuli for tBMSCs. Cell morphology and osteogenic differentiation capacity were assessed after mBMSC-EV stimulation. Results: Bioinformatic analysis indicated that the difference in the activation of the TLR4/NF-κB pathway was more pronounced compared to all other examined genes. Specifically, this demonstrated significant downregulation, whereas only 5–7 upregulated genes displayed significant variances. The mBMSC group showed stronger osteogenic differentiation capacity compared to the tBMSC group, confirmed via ALP, ARS, and von Kossa staining. Furthermore, qPCR and WB analysis revealed a significant decrease in the expression of the TLR4/NF-κB pathway in the mBMSC group compared to the tBMSC group (TLR4 fold changes: mBMSCs vs. tBMSCs p < 0.05; NF-κB fold changes: mBMSCs vs. tBMSCs p < 0.05). The osteogenic differentiation capacity was enhanced, and qPCR and WB analysis revealed a significant decrease in the expression of TLR4 and NF-κB in the tBMSC group with mBMSC-EVs added compared to tBMSCs alone (TLR4 fold changes: p < 0.05; NF-κB fold changes: p < 0.05). Conclusion: Our results indicate that mBMSC-EVs can promote the osteogenic differentiation of tBMSCs in vitro. The results also provide insights into the osteogenic mechanism of mBMSCs via TLR4/NF-κB signaling pathway activation. This discovery promises a fresh perspective on the treatment of bone fractures or malunions, potentially offering a novel therapeutic method. Full article
Show Figures

Figure 1

15 pages, 5585 KiB  
Article
The Role of Apoptosis and Oxidative Stress in a Cell Spheroid Model of Calcific Aortic Valve Disease
by Colin W. Coutts, Ashley M. Baldwin, Mahvash Jebeli, Grace E. Jolin, Rozanne W. Mungai and Kristen L. Billiar
Cells 2024, 13(1), 45; https://doi.org/10.3390/cells13010045 - 25 Dec 2023
Cited by 7 | Viewed by 2613
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valve disease among aging populations. There are two reported pathways of CAVD: osteogenic and dystrophic, the latter being more prevalent. Current two-dimensional (2D) in vitro CAVD models have shed light on the disease [...] Read more.
Calcific aortic valve disease (CAVD) is the most common heart valve disease among aging populations. There are two reported pathways of CAVD: osteogenic and dystrophic, the latter being more prevalent. Current two-dimensional (2D) in vitro CAVD models have shed light on the disease but lack three-dimensional (3D) cell–ECM interactions, and current 3D models require osteogenic media to induce calcification. The goal of this work is to develop a 3D dystrophic calcification model. We hypothesize that, as with 2D cell-based CAVD models, programmed cell death (apoptosis) is integral to calcification. We model the cell aggregation observed in CAVD by creating porcine valvular interstitial cell spheroids in agarose microwells. Upon culture in complete growth media (DMEM with serum), calcium nodules form in the spheroids within a few days. Inhibiting apoptosis with Z-VAD significantly reduced calcification, indicating that the calcification observed in this model is dystrophic rather than osteogenic. To determine the relative roles of oxidative stress and extracellular matrix (ECM) production in the induction of apoptosis and subsequent calcification, the media was supplemented with antioxidants with differing effects on ECM formation (ascorbic acid (AA), Trolox, or Methionine). All three antioxidants significantly reduced calcification as measured by Von Kossa staining, with the percentages of calcification per area of AA, Trolox, Methionine, and the non-antioxidant-treated control on day 7 equaling 0.17%, 2.5%, 6.0%, and 7.7%, respectively. As ZVAD and AA almost entirely inhibit calcification, apoptosis does not appear to be caused by a lack of diffusion of oxygen and metabolites within the small spheroids. Further, the observation that AA treatment reduces calcification significantly more than the other antioxidants indicates that the ECM stimulatory effect of AA plays a role inhibiting apoptosis and calcification in the spheroids. We conclude that, in this 3D in vitro model, both oxidative stress and ECM production play crucial roles in dystrophic calcification and may be viable therapeutic targets for preventing CAVD. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

15 pages, 2404 KiB  
Article
High Phosphate-Induced JAK-STAT Signalling Sustains Vascular Smooth Muscle Cell Inflammation and Limits Calcification
by Federica Macrì, Ilaria Vigorito, Stefania Castiglione, Stefano Faggiano, Manuel Casaburo, Nadia Fanotti, Luca Piacentini, Davide Vigetti, Maria Cristina Vinci and Angela Raucci
Biomolecules 2024, 14(1), 29; https://doi.org/10.3390/biom14010029 - 24 Dec 2023
Cited by 8 | Viewed by 3598
Abstract
Vascular calcification (VC) is an age-related complication characterised by calcium-phosphate deposition in the arterial wall driven by the osteogenic transformation of vascular smooth muscle cells (VSMCs). The JAK-STAT pathway is an emerging target in inflammation. Considering the relationship between VC and inflammation, we [...] Read more.
Vascular calcification (VC) is an age-related complication characterised by calcium-phosphate deposition in the arterial wall driven by the osteogenic transformation of vascular smooth muscle cells (VSMCs). The JAK-STAT pathway is an emerging target in inflammation. Considering the relationship between VC and inflammation, we investigated the role of JAK-STAT signalling during VSMC calcification. Human aortic smooth muscle cells (HASMCs) were cultured in high-inorganic phosphate (Pi) medium for up to 7 days; calcium deposition was determined via Alizarin staining and colorimetric assay. Inflammatory factor secretion was evaluated via ELISA and JAK-STAT members’ activation using Western blot or immunohistochemistry on HASMCs or calcified aortas of Vitamin D-treated C57BL6/J mice, respectively. The JAK-STAT pathway was blocked by JAK Inhibitor I and Von Kossa staining was used for calcium deposits in murine aortic rings. During Pi-induced calcification, HASMCs released IL-6, IL-8, and MCP-1 and activated JAK1-JAK3 proteins and STAT1. Phospho-STAT1 was detected in murine calcified aortas. Blocking of the JAK-STAT cascade reduced HASMC proliferation and pro-inflammatory factor expression and release while increasing calcium deposition and osteogenic transcription factor RUNX2 expression. Consistently, JAK-STAT pathway inhibition exacerbates mouse aortic ring calcification ex vivo. Intriguingly, our results suggest an alternative link between VSMC inflammation and VC. Full article
(This article belongs to the Special Issue Molecular Aspect of Cardiovascular Risk Factors)
Show Figures

Figure 1

14 pages, 2529 KiB  
Article
Bone Formation in Zebrafish: The Significance of DAF-FM DA Staining for Nitric Oxide Detection
by Ann Huysseune, Ulrike G. Larsen, Daria Larionova, Cecilie L. Matthiesen, Steen V. Petersen, Marc Muller and P. Eckhard Witten
Biomolecules 2023, 13(12), 1780; https://doi.org/10.3390/biom13121780 - 12 Dec 2023
Cited by 5 | Viewed by 2559
Abstract
DAF-FM DA is widely used as a live staining compound to show the presence of nitric oxide (NO) in cells. Applying this stain to live zebrafish embryos is known to indicate early centers of bone formation, but the precise (cellular) location of the [...] Read more.
DAF-FM DA is widely used as a live staining compound to show the presence of nitric oxide (NO) in cells. Applying this stain to live zebrafish embryos is known to indicate early centers of bone formation, but the precise (cellular) location of the signal has hitherto not been revealed. Using sections of zebrafish embryos live-stained with DAF-FM DA, we could confirm that the fluorescent signals were predominantly located in areas of ongoing bone formation. Signals were observed in the bone and tooth matrix, in the notochord sheath, as well as in the bulbus arteriosus. Surprisingly, however, they were exclusively extracellular, even after very short staining times. Von Kossa and Alizarin red S staining to reveal mineral deposits showed that DAF-FM DA stains both the mineralized and non-mineralized bone matrix (osteoid), excluding that DAF-FM DA binds non-specifically to calcified structures. The importance of NO in bone formation by osteoblasts is nevertheless undisputed, as shown by the absence of bone structures after the inhibition of NOS enzymes that catalyze the formation of NO. In conclusion, in zebrafish skeletal biology, DAF-FM DA is appropriate to reveal bone formation in vivo, independent of mineralization of the bone matrix, but it does not demonstrate intracellular NO. Full article
Show Figures

Figure 1

15 pages, 4509 KiB  
Article
Altered Osteogenic Differentiation in Mesenchymal Stem Cells Isolated from Compact Bone of Chicken Treated with Varying Doses of Lipopolysaccharides
by Venkata Sesha Reddy Choppa, Guanchen Liu, Yuguo Hou Tompkins and Woo Kyun Kim
Biomolecules 2023, 13(11), 1626; https://doi.org/10.3390/biom13111626 - 7 Nov 2023
Cited by 2 | Viewed by 1810
Abstract
Persistent inflammation biologically alters signaling molecules and ultimately affects osteogenic differentiation, including in modern-day broilers with unique physiology. Lipopolysaccharides (LPS) are Gram-negative bacterial components that activate cells via transmembrane receptor activation and other molecules. Previous studies have shown several pathways associated with osteogenic [...] Read more.
Persistent inflammation biologically alters signaling molecules and ultimately affects osteogenic differentiation, including in modern-day broilers with unique physiology. Lipopolysaccharides (LPS) are Gram-negative bacterial components that activate cells via transmembrane receptor activation and other molecules. Previous studies have shown several pathways associated with osteogenic inductive ability, but the pathway has yet to be deciphered, and data related to its dose-dependent effect are limited. Primary mesenchymal stem cells (MSCs) were isolated from the bones of day-old broiler chickens, and the current study focused on the dose-dependent variation (3.125 micrograms/mL to 50 micrograms/mL) in osteogenic differentiation and the associated biomarkers in primary MSCs. The doses in this study were determined using a cell viability (MTT) assay. The study revealed that osteogenic differentiation varied with dose, and the cells exposed to higher doses of LPS were viable but lacked differentiating ability. However, this effect became transient with lower doses, and this phenotypic character was observed with differential staining methods like Alizarin Red, Von Kossa, and alkaline phosphatase. The data from this study revealed that LPS at varying doses had a varying effect on osteogenic differentiation via several pathways acting simultaneously during bone development. Full article
(This article belongs to the Special Issue Recent Advances in Skeletal Development and Diseases)
Show Figures

Graphical abstract

13 pages, 4588 KiB  
Article
Biocompatibility, Biomineralization and Induction of Collagen Maturation with the Use of Calcium Hydroxide and Iodoform Intracanal Dressing
by Carlos Roberto Emerenciano Bueno, Jimena Lama Sarmiento, Ana Maria Veiga Vasques, Ana Cláudia Rodrigues da Silva, Luciano Tavares Angelo Cintra, João Miguel Marques Santos and Eloi Dezan-Júnior
J. Funct. Biomater. 2023, 14(10), 507; https://doi.org/10.3390/jfb14100507 - 10 Oct 2023
Cited by 3 | Viewed by 2498
Abstract
Biocompatibility and biomineralization of root canal dressings are important requirements for periapical healing. This study evaluated the inflammatory response, biomineralization and tissue repair by collagen fiber maturation in the subcutaneous tissue of rats. Eighteen Wistar rats (n = 6) received subcutaneous implants: [...] Read more.
Biocompatibility and biomineralization of root canal dressings are important requirements for periapical healing. This study evaluated the inflammatory response, biomineralization and tissue repair by collagen fiber maturation in the subcutaneous tissue of rats. Eighteen Wistar rats (n = 6) received subcutaneous implants: calcium hydroxide + propylene glycol [CH+P], calcium hydroxide + propylene glycol + iodoform [CH+P+I], iodoform + carbowax [I+Cwax] and carbowax [Cwax]. Extra empty tubes were used as a control [C]. After 7, 15 and 30 days, the implants were removed with surrounding tissue for staining of hematoxylin-eosin, Von Kossa, picrosirius red and without staining for analysis under polarized light. Results were analyzed via Kruskal–Wallis followed by Dunn testing for nonparametric data and ANOVA followed by a Tukey post hoc test for parametric data (p < 5%). At 7 days, all groups showed a moderate inflammatory reaction and thick fibrous capsule, except the [Cwax] group, with a severe inflammatory infiltrate (p < 0.05). After 15 days, all groups but control had a decrease in inflammatory response. At 30 days, all groups presented a mild reaction and thin fibrous capsule (p > 0.05). Only groups containing calcium hydroxide were found to be positive using Von Kossa staining and polarized light in all periods. At 7 days, all groups showed a higher proportion of immature fibers. At 15 days, the [CH+P] and [Cwax] groups increased their proportion of mature/immature fibers. At 30 days, only the [CH+P] group presented a significant prevalence of mature collagen fibers (p < 0.05). All groups showed biocompatibility, but only groups containing calcium hydroxide induced biomineralization. The addition of iodoform delayed tissue healing. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

12 pages, 2523 KiB  
Article
Targeted Radiation Exposure Induces Accelerated Aortic Valve Remodeling in ApoE−/− Mice
by Guillaume Rucher, Kevin Prigent, Christophe Simard, Anne-Marie Frelin, Maëlle Coquemont-Guyot, Nicolas Elie, Nicolas Delcroix, Nicolas Perzo, Romain Guinamard, Ludovic Berger, Alain Manrique and on behalf of the STOP-AS Investigators
J. Clin. Med. 2023, 12(18), 5854; https://doi.org/10.3390/jcm12185854 - 8 Sep 2023
Cited by 1 | Viewed by 1482
Abstract
Thoracic radiation therapy may result in accelerated atherosclerosis and in late aortic valve stenosis (AS). In this study, we assessed the feasibility of inducing radiation-induced AS using a targeted aortic valve irradiation (10 or 20 Grays) in two groups of C57Bl6/J (WT) and [...] Read more.
Thoracic radiation therapy may result in accelerated atherosclerosis and in late aortic valve stenosis (AS). In this study, we assessed the feasibility of inducing radiation-induced AS using a targeted aortic valve irradiation (10 or 20 Grays) in two groups of C57Bl6/J (WT) and ApoE−/− mice compared to a control (no irradiation). Peak aortic jet velocity was evaluated by echocardiography to characterize AS. T2*-weighted magnetic resonance imaging after injection of MPIO-αVCAM-1 was used to examine aortic inflammation resulting from irradiation. A T2* signal void on valve leaflets and aortic sinus was considered positive. Valve remodeling and mineralization were assessed using von Kossa staining. Finally, the impact of radiation on cell viability and cycle from aortic human valvular interstitial cells (hVICs) was also assessed. The targeted aortic valve irradiation in ApoE−/− mice resulted in an AS characterized by an increase in peak aortic jet velocity associated with valve leaflet and aortic sinus remodeling, including mineralization process, at the 3-month follow-up. There was a linear correlation between histological findings and peak aortic jet velocity (r = 0.57, p < 0.01). In addition, irradiation was associated with aortic root inflammation, evidenced by molecular MR imaging (p < 0.01). No significant effect of radiation exposure was detected on WT animals. Radiation exposure did not affect hVICs viability and cell cycle. We conclude that targeted radiation exposure of the aortic valve in mice results in ApoE−/−, but not in WT, mice in an aortic valve remodeling mimicking the human lesions. This preclinical model could be a useful tool for future assessment of therapeutic interventions. Full article
(This article belongs to the Special Issue Valvular Heart Disease: From Basic to Clinical Advances)
Show Figures

Figure 1

Back to TopTop