Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = voltage-space-vectors diagram

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6658 KiB  
Article
A Three-Level Neutral-Point-Clamped Converter Based Standalone Wind Energy Conversion System Controlled with a New Simplified Line-to-Line Space Vector Modulation
by Tarak Ghennam, Lakhdar Belhadji, Nassim Rizoug, Bruno Francois and Seddik Bacha
Energies 2024, 17(9), 2214; https://doi.org/10.3390/en17092214 - 4 May 2024
Cited by 1 | Viewed by 1566
Abstract
Wind power systems, which are currently being constructed for the electricity worldwide market, are mostly based on Doubly Fed Induction Generators (DFIGs). To control such systems, multilevel converters are increasingly preferred due to the well-known benefits they provide. This paper deals with the [...] Read more.
Wind power systems, which are currently being constructed for the electricity worldwide market, are mostly based on Doubly Fed Induction Generators (DFIGs). To control such systems, multilevel converters are increasingly preferred due to the well-known benefits they provide. This paper deals with the control of a standalone DFIG-based Wind Energy Conversion System (WECS) by using a three-level Neutral-Point-Clamped (NPC) converter. The frequency and magnitude of the stator output voltage of the DFIG are controlled and fixed at nominal values despite the variable rotor speed, ensuring a continuous AC supply for three-phase loads. This task is achieved by controlling the DFIG rotor currents via a PI controller combined with a new Simplified Direct Space Vector Modulation strategy (SDSVM), which is applied to the three-level NPC converter. This strategy is based on the use of a line-to-line three-level converter space vector diagram without using Park transformation and then simplifying it to that of a two-level converter. The performance of the proposed SDSVM technique in terms of controlling the three-level NPC-converter-based standalone WECS is demonstrated through simulation results. The whole WECS control and the SDSVM strategy are implemented on a dSPACE DS 1104 board that drives a DFIG-based wind system test bench. The obtained experimental results confirm the validity and performance in terms of control. Full article
Show Figures

Figure 1

24 pages, 7048 KiB  
Article
Estimation of an Extent of Sinusoidal Voltage Waveform Distortion Using Parametric and Nonparametric Multiple-Hypothesis Sequential Testing in Devices for Automatic Control of Power Quality Indices
by Aleksandr Kulikov, Pavel Ilyushin, Aleksandr Sevostyanov, Sergey Filippov and Konstantin Suslov
Energies 2024, 17(5), 1088; https://doi.org/10.3390/en17051088 - 24 Feb 2024
Cited by 1 | Viewed by 1259
Abstract
Deviations of power quality indices (PQI) from standard values in power supply systems of industrial consumers lead to defective products, complete shutdown of production processes, and significant damage. At the same time, the PQI requirements vary depending on the industrial consumer, which is [...] Read more.
Deviations of power quality indices (PQI) from standard values in power supply systems of industrial consumers lead to defective products, complete shutdown of production processes, and significant damage. At the same time, the PQI requirements vary depending on the industrial consumer, which is due to different kinds, types, and composition of essential electrical loads. To ensure their reliable operation, it is crucial to introduce automatic PQI control devices, which evaluate the extent of distortion of the sinusoidal voltage waveform of a three-phase system. This allows the power dispatchers of grid companies and industrial enterprises to quickly make decisions on the measures to be taken in external and internal power supply networks to ensure that the PQI values are within the acceptable range. This paper proposes the use of an integrated indicator to assess the extent of distortion of the sinusoidal voltage waveform in a three-phase system. This indicator is based on the use of the magnitude of the ratio of complex amplitudes of the forward and reverse rotation of the space vector. In the study discussed, block diagrams of algorithms and flowcharts of automatic PQI control devices are developed, which implement parametric and nonparametric multiple-hypothesis sequential analysis using an integrated indicator. In this case, Palmer’s algorithm and the nearest neighbor method are used. The calculations demonstrate that the developed algorithms have high speed and high performance in detecting deviations of the electrical power quality. Full article
(This article belongs to the Topic Intelligent Control in Smart Energy Systems)
Show Figures

Figure 1

20 pages, 6361 KiB  
Article
Low Computational Burden Predictive Direct Power Control of Quasi Z-Source Inverter for Grid-Tied PV Applications
by Abderahmane Abid, Abualkasim Bakeer, Laid Zellouma, Mansour Bouzidi, Abderezak Lashab and Boualaga Rabhi
Sustainability 2023, 15(5), 4153; https://doi.org/10.3390/su15054153 - 24 Feb 2023
Cited by 8 | Viewed by 2375
Abstract
This paper proposes a simplified predictive direct power control for the grid-tied quasi Z-source inverter. The proposed control implements a model predictive control structure to achieve the maximum obtainable power from the collected PV source. The power delivered to the grid is managed [...] Read more.
This paper proposes a simplified predictive direct power control for the grid-tied quasi Z-source inverter. The proposed control implements a model predictive control structure to achieve the maximum obtainable power from the collected PV source. The power delivered to the grid is managed to compensate for the reactive power and, as needed, to ensure the grid’s stability. A predictive power model for a quasi Z-source inverter is developed in which the proposed control can operate with a fixed switching frequency without a weighting factor. The simplified space vector modulation uses the three appropriate switching vectors that are selected and applied using precalculated switching times during each switching period, in which the required switching vectors are determined only from one sector in the space vector diagram, taking all of the information of the other sectors, which leads to reducing the computational burden. Simulation results and comparative study are used to confirm the proposed control performance for the grid-tied quasi Z-source inverter capable of tracking and generating the maximum power from PV with fast-tracking dynamics, ensuring the ac voltage desired, and better tracking of the active and reactive power reference with the lowest power ripple. The grid current harmonics were tested and conformed to the IEEE-519 standard. Additionally, the proposed simplified PDPC is experimentally validated using the Hardware-in-the-Loop emulator and the C2000TM-microcontroller-LaunchPadXL TMS320F28379D kit, establishing the usability and good result of our proposed control approach in terms of requirements. Full article
Show Figures

Figure 1

18 pages, 5546 KiB  
Article
An Improved Carrier-Based PWM Strategy with Reduced Common-Mode Voltage for a Three-Level NPC Inverter
by Fatemeh AbolqasemiKharanaq, Amirreza Poorfakhraei, Ali Emadi and Berker Bilgin
Electronics 2023, 12(5), 1072; https://doi.org/10.3390/electronics12051072 - 21 Feb 2023
Cited by 6 | Viewed by 3568
Abstract
Double modulation wave carrier-based pulse width modulation (CBPWM) is a solution for eliminating the deviations of the neutral-point voltage (NPV) in three-level neutral-point clamped inverters. In this paper, a new hybrid CBPWM strategy is proposed that not only eliminates the neutral-point voltage oscillations [...] Read more.
Double modulation wave carrier-based pulse width modulation (CBPWM) is a solution for eliminating the deviations of the neutral-point voltage (NPV) in three-level neutral-point clamped inverters. In this paper, a new hybrid CBPWM strategy is proposed that not only eliminates the neutral-point voltage oscillations but also reduces the common-mode voltage (CMV) by half. Furthermore, the harmonic content is also reduced compared with the available reduced CMV modulation by adjusting the modulation waves based on the location of the reference vector in the space vector diagram. An active neutral-point voltage controller is also realized in order to maintain the performance of the modulation strategy under the NPV perturbations. The performance of the proposed algorithm is compared to the available CBPWM-based techniques in the literature. The effectiveness of the proposed method is also verified by experimental results. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

16 pages, 6150 KiB  
Article
Unidirectional Finite Control Set-Predictive Torque Control of IPMSM Fed by Three-Level NPC Inverter with Simplified Voltage-Vector Lookup Table
by Ibrahim Mohd Alsofyani and Laith M. Halabi
Electronics 2023, 12(1), 252; https://doi.org/10.3390/electronics12010252 - 3 Jan 2023
Cited by 5 | Viewed by 3067
Abstract
This paper proposes a unidirectional finite control set-predictive toque control (UFCS-PTC) method for a three-level neutral-point-clamped (3L-NPC) inverter fed interior permanent magnet synchronous motor (IPMSM). The proposed algorithm can lower the complexity of PTC fed by 3L-NPC by reducing the number of admissible [...] Read more.
This paper proposes a unidirectional finite control set-predictive toque control (UFCS-PTC) method for a three-level neutral-point-clamped (3L-NPC) inverter fed interior permanent magnet synchronous motor (IPMSM). The proposed algorithm can lower the complexity of PTC fed by 3L-NPC by reducing the number of admissible voltage vectors (VVs) effectively. The candidate VVs are restricted within 60° of the voltage space voltage diagram (VSVD), which is the nearest to the flux trajectory for each 60° flux sector. After the segmentation of the VSVD and flux trajectory, the proposed method can keep VVs in one direction during the prediction process, which can result in significant torque/flux reduction. Therefore, the UFCS-PTC can reduce the number of admissible VVs from twenty-seven to six while achieving excellent steady-state performance in terms of reduced flux and torque ripples. Additionally, the proposed method eliminates the need for weighting factor calculation for neutral point voltage associated with a 3L-NPC inverter. The UFCS-PTC of IPMSM also has other features, such as improved balancing capability of the DC-link capacitors’ voltage, small computation time due to the reduced number of admissible voltage vectors considered in the cost function, and easy implementation. The effectiveness of the proposed method is verified through experimental results. Full article
(This article belongs to the Special Issue Advanced Technologies in Power Electronics and Motor Drives)
Show Figures

Figure 1

17 pages, 10627 KiB  
Article
A Carrier-Based Discontinuous PWM Strategy of NPC Three-Level Inverter for Common-Mode Voltage and Switching Loss Reduction
by Guozheng Zhang, Yingjie Su, Zhanqing Zhou and Qiang Geng
Electronics 2021, 10(23), 3041; https://doi.org/10.3390/electronics10233041 - 5 Dec 2021
Cited by 11 | Viewed by 5023
Abstract
For the conventional carrier-based pulse width modulation (CBPWM) strategies of neutral point clamped (NPC) three-level inverters, the higher common-mode voltage (CMV) is a major drawback. However, with CMV suppression strategies, the switching loss is relatively high. In order to solve the above issue, [...] Read more.
For the conventional carrier-based pulse width modulation (CBPWM) strategies of neutral point clamped (NPC) three-level inverters, the higher common-mode voltage (CMV) is a major drawback. However, with CMV suppression strategies, the switching loss is relatively high. In order to solve the above issue, a carrier-based discontinuous PWM (DPWM) strategy for NPC three-level inverter is proposed in this paper. Firstly, the reference voltage is modified by the twice injection of zero-sequence voltage. Switching states of the three-phase are clamped alternatively to reduce both the CMV and the switching loss. Secondly, the carriers are also modified by the phase opposite disposition of the upper and lower carriers. The extra switching at the border of two adjacent regions in the space vector diagram is reduced. Meanwhile, a neutral-point voltage (NPV) control method is also presented. The duty cycle of the switching state that affects the NPV is adjusted to obtain the balance control of the NPV. Still, the switching sequence in each carrier period remains the same. Finally, the feasibility and effectiveness of the proposed DPWM strategy are tested on a rapid control prototype platform based on RT-Lab. Full article
(This article belongs to the Special Issue Smart Energy Control & Conversion Systems)
Show Figures

Figure 1

16 pages, 1870 KiB  
Article
A Novel Control Strategy for the Frequency and Voltage Regulation of Distribution Grids Using Electric Vehicle Batteries
by Mohammadshayan Latifi, Reza Sabzehgar, Poria Fajri and Mohammad Rasouli
Energies 2021, 14(5), 1435; https://doi.org/10.3390/en14051435 - 5 Mar 2021
Cited by 16 | Viewed by 2877
Abstract
In this study, a double-loop control strategy is proposed for power grid frequency and voltage regulation using plug-in electric vehicles (PEVs) connected to the grid through a three-level capacitor clamped inverter. The frequency and voltage regulation problem is first formulated using vector space [...] Read more.
In this study, a double-loop control strategy is proposed for power grid frequency and voltage regulation using plug-in electric vehicles (PEVs) connected to the grid through a three-level capacitor clamped inverter. The frequency and voltage regulation problem is first formulated using vector space analysis and phasor diagrams to find the boundaries and constraints in terms of the system parameters. The derived formulas are then utilized to design a double-loop controller using an exclusive phase detector control loop and a novel pulse width modulation (PWM) scheme to effectively regulate the frequency and voltage of the grid. The effectiveness and feasibility of the proposed control strategy are evaluated through simulation and experimental studies. This approach can benefit both the customers and the grid operator, as it facilitates utilizing the batteries of the connected PEVs to supply a portion or all of the active and reactive power demand, hence regulating the frequency and voltage of the grid. The extent to which active and reactive power can be supplied depends on the number of PEVs connected to the local grid. Full article
(This article belongs to the Special Issue Energy Control and Management for Transportation Electrification)
Show Figures

Figure 1

23 pages, 22731 KiB  
Article
AC Current Ripple Harmonic Pollution in Three-Phase Four-Leg Active Front-End AC/DC Converter for On-Board EV Chargers
by Aleksandr Viatkin, Riccardo Mandrioli, Manel Hammami, Mattia Ricco and Gabriele Grandi
Electronics 2021, 10(2), 116; https://doi.org/10.3390/electronics10020116 - 7 Jan 2021
Cited by 6 | Viewed by 4202
Abstract
Three-phase four-leg voltage-source converters have been considered for some recent projects in smart grids and in the automotive industry, projects such as on-board electric vehicles (EVs) chargers, thanks to their built-in ability to handle unbalanced AC currents through the 4th wire (neutral). Although [...] Read more.
Three-phase four-leg voltage-source converters have been considered for some recent projects in smart grids and in the automotive industry, projects such as on-board electric vehicles (EVs) chargers, thanks to their built-in ability to handle unbalanced AC currents through the 4th wire (neutral). Although conventional carrier-based modulations (CBMs) and space vector modulations (SVMs) have been commonly applied and extensively studied for three-phase four-leg voltage-source converters, very little has been reported concerning their pollution impact on AC grid in terms of switching ripple currents. This paper introduces a thorough analytical derivation of peak-to-peak and RMS values of the AC current ripple under balanced and unbalanced working conditions, in the case of three-phase four-leg converters with uncoupled AC-link inductors. The proposed mathematical approach covers both phase and neutral currents. All analytical findings have been applied to two industry recognized CBM methods, namely sinusoidal pulse-width modulation (PWM) and centered PWM (equivalent to SVM). The derived equations are effective, simple, and ready-to-use for accurate AC current ripple calculations. At the same time, the proposed equations and diagrams can be successfully adopted to design the conversion system basing on the grid codes in terms of current ripple (or total harmonic distortion (THD)/total demand distortion (TDD)) restrictions, enabling the sizing of AC-link inductors and the determination of the proper switching frequency for the given operating conditions. The analytical developments have been thoroughly verified by numerical simulations in MATLAB/Simulink and by extensive experimental tests. Full article
(This article belongs to the Section Electrical and Autonomous Vehicles)
Show Figures

Figure 1

15 pages, 6329 KiB  
Article
Predictive Torque Control Based on Discrete Space Vector Modulation of PMSM without Flux Error-Sign and Voltage-Vector Lookup Table
by Ibrahim Mohd Alsofyani and Kyo-Beum Lee
Electronics 2020, 9(9), 1542; https://doi.org/10.3390/electronics9091542 - 21 Sep 2020
Cited by 12 | Viewed by 3423
Abstract
The conventional finite set–predictive torque control of permanent magnet synchronous motors (PMSMs) suffers from large flux and torque ripples, as well as high current harmonic distortions. Introducing the discrete space vector modulation (DSVM) into the predictive torque control (PTC-DSVM) can improve its steady-state [...] Read more.
The conventional finite set–predictive torque control of permanent magnet synchronous motors (PMSMs) suffers from large flux and torque ripples, as well as high current harmonic distortions. Introducing the discrete space vector modulation (DSVM) into the predictive torque control (PTC-DSVM) can improve its steady-state performance; however, the control complexity is further increased owing to the large voltage–vector lookup table that increases the burden of memory. A simplified PTC-DSVM with 73 synthesized voltage vectors (VVs) is proposed herein, for further improving the steady-state performance of the PMSM drives with a significantly lower complexity and without requiring a VV lookup table. The proposed scheme for reducing the computation burden is designed to select an optimal zone of space vector diagram (SVD) in the utilized DSVM based on the torque demand. Hence, only 10 out of 73 admissible VVs will be initiated online upon the optimal SVD zone selection. Additionally, with the proposed algorithm, no flux error is required to control the flux demand. The proposed PTC-DSVM exhibits high performance features, such as low complexity with less memory utilization, reduced torque and flux ripples, and less redundant VVs in the prediction process. The simulation and experimental results for the 11 kW PMSM drive are presented to prove the effectiveness of the proposed control strategy. Full article
(This article belongs to the Special Issue High Power Electric Traction Systems)
Show Figures

Figure 1

12 pages, 5678 KiB  
Article
Discontinuous Space Vector PWM Strategy for Three-Phase Three-Level Electric Vehicle Traction Inverter Fed Two-Phase Load
by Guozheng Zhang, Yuwei Wan, Zhixin Wang, Le Gao, Zhanqing Zhou and Qiang Geng
World Electr. Veh. J. 2020, 11(1), 27; https://doi.org/10.3390/wevj11010027 - 14 Mar 2020
Cited by 11 | Viewed by 4528
Abstract
Discontinuous pulse width modulation (DPWM) strategies are usually adopted to reduce the switching loss and output current ripple of three-phase three-level traction inverters under three-phase load conditions. However, if there is a short circuit in any arbitrary phase or the inverter is used [...] Read more.
Discontinuous pulse width modulation (DPWM) strategies are usually adopted to reduce the switching loss and output current ripple of three-phase three-level traction inverters under three-phase load conditions. However, if there is a short circuit in any arbitrary phase or the inverter is used to feed a two-phase load, the output performance of conventional DPWM strategies will be deteriorated. Here, four improved DPWM (IDPWM) strategies for three-phase three-level neutral-point-clamped (NPC) traction inverter fed two-phase load are proposed. Unlike three-phase load conditions, the phase angle and the amplitude of each basic voltage vector in the space vector diagram are modified under two-phase load conditions. Consequently, sectors are re-divided and duty cycles of basic vectors during synthesis are recalculated. Clamping intervals of each phase for the four type discontinuous PWM (DPWM) strategies are rearranged according to the modified space vector diagram; then, the proposed DPWM strategies can be obtained. Compared with the conventional DPWM strategies, the output current waveform quality of the proposed strategy is significantly improved. Meanwhile, the amplitude of the neutral-point voltage ripple is also reduced. Full article
(This article belongs to the Special Issue Propulsion Systems of EVs)
Show Figures

Figure 1

20 pages, 7260 KiB  
Article
Smoothly Transitive Fixed Frequency Hysteresis Current Control Based on Optimal Voltage Space Vector
by Jiang Zeng, Lin Yang, Yuchang Ling, Haoping Chen, Zhonglong Huang, Tao Yu and Bo Yang
Energies 2018, 11(7), 1695; https://doi.org/10.3390/en11071695 - 1 Jul 2018
Cited by 1 | Viewed by 2931
Abstract
This paper proposes a smoothly transitive fixed frequency hysteresis current control (ST-FHCC) scheme applied to an active power filter (APF). First of all, a switching fixed frequency hysteresis current control (S-FHCC) is introduced, which is based on phase-to-phase decoupling and switching the control [...] Read more.
This paper proposes a smoothly transitive fixed frequency hysteresis current control (ST-FHCC) scheme applied to an active power filter (APF). First of all, a switching fixed frequency hysteresis current control (S-FHCC) is introduced, which is based on phase-to-phase decoupling and switching the control strategies under mode 0 or mode 1, and its weakness is described in detail. To enhance it, an improved approach of regulating the hysteresis bandwidth is presented to fix the switching frequency with switch phases being regulated, based on the optimal voltage space vector (OVSV). Furthermore, a flexible division of the voltage-space-vectors diagram is developed to divide the original voltage-space-vectors diagram into six sub-regions, upon which the control strategies under mode 0 and mode 1 can be switched alternately in order to obtain a smooth transition. As a consequence, ST-FHCC can thoroughly avoid the inherent weakness of S-FHCC of switching that is not smooth as a result of the low control accuracy of current errors. Case studies are carried out through power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC) while simulation results verify the effectiveness and superiority of ST-FHCC compared to S-FHCC. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop