Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,644)

Search Parameters:
Keywords = voltage regulator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2551 KB  
Article
Deep-Reinforcement-Learning-Based Sliding Mode Control for Optimized Energy Management in DC Microgrids
by Monia Charfeddine, Mongi Ben Moussa and Khalil Jouili
Mathematics 2025, 13(19), 3212; https://doi.org/10.3390/math13193212 - 7 Oct 2025
Abstract
A hybrid control architecture is proposed for enhancing the stability and energy management of DC microgrids (DCMGs) integrating photovoltaic generation, batteries, and supercapacitors. The approach combines nonlinear Sliding Mode Control (SMC) for fast and robust DC bus voltage regulation with a Deep Q-Learning [...] Read more.
A hybrid control architecture is proposed for enhancing the stability and energy management of DC microgrids (DCMGs) integrating photovoltaic generation, batteries, and supercapacitors. The approach combines nonlinear Sliding Mode Control (SMC) for fast and robust DC bus voltage regulation with a Deep Q-Learning (DQL) agent that learns optimal high-level policies for charging, discharging, and load management. This dual-layer design leverages the real-time precision of SMC and the adaptive decision-making capability of DQL to achieve dynamic power sharing and balanced state-of-charge levels across storage units, thereby reducing asymmetric wear. Simulation results under variable operating scenarios showed that the proposed method significantly improvedvoltage stability, loweredthe occurrence of deep battery discharges, and decreased load shedding compared to conventional fuzzy-logic-based energymanagement, highlighting its effectiveness and resilience in the presence of renewable generation variability and fluctuating load demands. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

29 pages, 9652 KB  
Article
Overcurrent Limiting Strategy for Grid-Forming Inverters Based on Current-Controlled VSG
by Alisher Askarov, Pavel Radko, Yuly Bay, Ivan Gusarov, Vagiz Kabirov, Pavel Ilyushin and Aleksey Suvorov
Mathematics 2025, 13(19), 3207; https://doi.org/10.3390/math13193207 - 7 Oct 2025
Abstract
A key direction of the development of modern power systems is the application of a continuously increasing number of grid-forming power converters to provide various system services. One of the possible strategies for the implementation of grid-forming control is a control algorithm based [...] Read more.
A key direction of the development of modern power systems is the application of a continuously increasing number of grid-forming power converters to provide various system services. One of the possible strategies for the implementation of grid-forming control is a control algorithm based on a virtual synchronous generator (VSG). However, at present, the problem of VSG operation under abnormal conditions associated with an increase in output current remains unsolved. Existing current saturation algorithms (CSAs) lead to the degradation of grid-forming properties during overcurrent limiting or reduce the possible range of current output. In this regard, this paper proposes to use the structure of modified current-controlled VSG (CC-VSG) instead of traditional voltage-controlled VSG. A current vector amplitude limiter is used to limit the output current in the CC-VSG structure. At the same time, the angle of the current reference vector continues to be regulated based on the emerging operating conditions due to the voltage feedback in the used VSG equations. The presented simulation results have shown that it was possible to achieve a wide operating range for the current phase from 0° to 180° in comparison with a traditional VSG algorithm. At the same time, the properties of the grid-forming inverter, such as power synchronization without phase-locked loop controller, voltage, and frequency control, are preserved. In addition, in order to avoid saturation of the voltage controller, it is proposed to use a simple algorithm of blocking and switching the reference signal from the setpoint to the current voltage level. Due to this structure, it was possible to prevent saturation of integrators in the control loops and to provide a guaranteed exit from the limiting mode. The results of adding this structure showed a five-second reduction in the overvoltage that occurs when it is absent. A comparison with conditional integration also showed that it prevented lock-up in the limiting mode. The results of experimental verification of the developed prototype of the inverter with CC-VSG control and CSA are also given, including a comparison with the serial model of the hybrid inverter. The results obtained showed that the developed algorithm excludes both the dead time and the load current loss when the external grid is disconnected. In addition, there is no tripping during overload, unlike a hybrid inverter. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

31 pages, 1677 KB  
Review
A Taxonomy of Robust Control Techniques for Hybrid AC/DC Microgrids: A Review
by Pooya Parvizi, Alireza Mohammadi Amidi, Mohammad Reza Zangeneh, Jordi-Roger Riba and Milad Jalilian
Eng 2025, 6(10), 267; https://doi.org/10.3390/eng6100267 - 6 Oct 2025
Abstract
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating [...] Read more.
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating points, often fail to maintain stability under large load and generation fluctuations. Optimization-based methods are highly sensitive to model inaccuracies and parameter uncertainties, reducing their reliability in dynamic environments. Intelligent approaches, such as fuzzy logic and ML-based controllers, provide adaptability but suffer from high computational demands, limited interpretability, and challenges in real-time deployment. These limitations highlight the need for robust control strategies that can guarantee reliable operation despite disturbances, uncertainties, and varying operating conditions. Numerical performance indices demonstrate that the reviewed robust control strategies outperform conventional linear, optimization-based, and intelligent controllers in terms of system stability, voltage and current regulation, and dynamic response. This paper provides a comprehensive review of recent robust control strategies for hybrid AC/DC microgrids, systematically categorizing classical model-based, intelligent, and adaptive approaches. Key research gaps are identified, including the lack of unified benchmarking, limited experimental validation, and challenges in integrating decentralized frameworks. Unlike prior surveys that broadly cover microgrid types, this work focuses exclusively on hybrid AC/DC systems, emphasizing hierarchical control architectures and outlining future directions for scalable and certifiable robust controllers. Also, comparative results demonstrate that state of the art robust controllers—including H∞-based, sliding mode, and hybrid intelligent controllers—can achieve performance improvements for metrics such as voltage overshoot, frequency settling time, and THD compared to conventional PID and droop controllers. By synthesizing recent advancements and identifying critical research gaps, this work lays the groundwork for developing robust control strategies capable of ensuring stability and adaptability in future hybrid AC/DC microgrids. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

16 pages, 1426 KB  
Article
Nighttime Reactive Power Optimization for Large-Scale PV Plants: Minimizing Compensation Equipment Investment
by Yu-Ming Liu, Cheng-Chien Kuo and Hung-Cheng Chen
Appl. Sci. 2025, 15(19), 10748; https://doi.org/10.3390/app151910748 - 6 Oct 2025
Abstract
The increasing integration of photovoltaic (PV) power systems poses challenges for nighttime voltage regulation because long high-voltage (HV) and ultra-high-voltage (UHV) underground cables generate capacitive reactive power that elevates the grid voltage. Conventional compensators based on passive inductors and capacitors are bulky, costly, [...] Read more.
The increasing integration of photovoltaic (PV) power systems poses challenges for nighttime voltage regulation because long high-voltage (HV) and ultra-high-voltage (UHV) underground cables generate capacitive reactive power that elevates the grid voltage. Conventional compensators based on passive inductors and capacitors are bulky, costly, and inflexible, rendering them unsuitable for substation use. This study proposes an optimization-based strategy that leverages the existing inverter infrastructure of PV plants to provide nighttime reactive power compensation without additional hardware. A genetic algorithm (GA) determines the optimal number and spatial deployment of inverters to minimize line losses. Field validation at a 120 MW PV plant with 1292 inverters shows that the strategy reduces reverse reactive power from 0.84 MVAr to 0.00214 MVAr and line losses from 1.8235 kW to 0.386 kW using only 55 inverters, achieving near-zero additional capital expenditure (CAPEX). This method enhances the voltage stability and system efficiency while reducing the investment and maintenance costs. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

30 pages, 2458 KB  
Article
Smart Metering as a Regulatory and Technological Enabler for Flexibility in Distribution Networks: Incentives, Devices, and Protocols
by Matias A. Kippke Salomón, José Manuel Carou Álvarez, Lucía Súárez Ramón and Pablo Arboleya
Energies 2025, 18(19), 5269; https://doi.org/10.3390/en18195269 - 3 Oct 2025
Abstract
The digital transformation of low-voltage distribution networks demands a renewed perspective on both regulatory frameworks and metering technologies. This article explores the intersection between incentive structures and metering technologies, focusing on how smart metering can act as a strategic enabler for flexibility in [...] Read more.
The digital transformation of low-voltage distribution networks demands a renewed perspective on both regulatory frameworks and metering technologies. This article explores the intersection between incentive structures and metering technologies, focusing on how smart metering can act as a strategic enabler for flexibility in electricity distribution. Starting with the Spanish regulatory evolution and European benchmarking, the shift from asset-based regulation and how it can be complemented with performance-oriented incentives to support advanced metering functionalities is analyzed. On the technical side, the capabilities of smart meters and the performance of communication protocols (such as PRIME, G3-PLC, and 6LoWPAN) highlighting their suitability for real-time observability and control are examined. The findings identify a way to enhance regulatory frameworks for fully harnessing the operational potential of smart metering systems. This article calls for a hybrid, context-aware approach that integrates regulatory evolution with metering structures innovation to unlock the full value of smart metering in the energy transition. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
49 pages, 28853 KB  
Article
Terminal Voltage and Load Frequency Regulation in a Nonlinear Four-Area Multi-Source Interconnected Power System via Arithmetic Optimization Algorithm
by Saleh A. Alnefaie, Abdulaziz Alkuhayli and Abdullah M. Al-Shaalan
Mathematics 2025, 13(19), 3131; https://doi.org/10.3390/math13193131 - 30 Sep 2025
Abstract
The increasing integration of renewable energy sources (RES) and rising energy demand have created challenges in maintaining stability in interconnected power systems, particularly in terms of frequency, voltage, and tie-line power. While traditional load frequency control (LFC) and automatic voltage regulation (AVR) strategies [...] Read more.
The increasing integration of renewable energy sources (RES) and rising energy demand have created challenges in maintaining stability in interconnected power systems, particularly in terms of frequency, voltage, and tie-line power. While traditional load frequency control (LFC) and automatic voltage regulation (AVR) strategies have been widely studied, they often fail to address the complexities introduced by RES and nonlinear system dynamics such as boiler dynamics, governor deadband, and generation rate constraints. This study introduces the Arithmetic Optimization Algorithm (AOA)-optimized PI(1+DD) controller, chosen for its ability to effectively optimize control parameters in highly nonlinear and dynamic environments. AOA, a novel metaheuristic technique, was selected due to its robustness, efficiency in exploring large search spaces, and ability to converge to optimal solutions even in the presence of complex system dynamics. The proposed controller outperforms classical methods such as PI, PID, I–P, I–PD, and PI–PD in terms of key performance metrics, achieving a settling time of 7.5 s (compared to 10.5 s for PI), overshoot of 2.8% (compared to 5.2% for PI), rise time of 0.7 s (compared to 1.2 s for PI), and steady-state error of 0.05% (compared to 0.3% for PI). Additionally, sensitivity analysis confirms the robustness of the AOA-optimized controller under ±25% variations in turbine and speed control parameters, as well as in the presence of nonlinearities, demonstrating its potential as a reliable solution for improving grid performance in complex, nonlinear multi-area interconnected power systems. Full article
(This article belongs to the Special Issue Artificial Intelligence and Optimization in Engineering Applications)
Show Figures

Figure 1

24 pages, 11005 KB  
Article
Hybrid Finite Control Set Model Predictive Control and Universal Droop Control for Enhanced Power Sharing in Inverter-Based Microgrids
by Devarapalli Vimala, Naresh Kumar Vemula, Bhamidi Lokeshgupta, Ramesh Devarapalli and Łukasz Knypiński
Energies 2025, 18(19), 5200; https://doi.org/10.3390/en18195200 - 30 Sep 2025
Abstract
This paper proposes a novel hybrid control strategy integrating a Finite Control Set Model Predictive Controller (FCS-MPC) with a universal droop controller (UDC) for effective load power sharing in inverter-fed microgrids. Traditional droop-based methods, though widely adopted for their simplicity and decentralized nature, [...] Read more.
This paper proposes a novel hybrid control strategy integrating a Finite Control Set Model Predictive Controller (FCS-MPC) with a universal droop controller (UDC) for effective load power sharing in inverter-fed microgrids. Traditional droop-based methods, though widely adopted for their simplicity and decentralized nature, suffer from limitations such as steady-state inaccuracies and poor transient response, particularly under mismatched impedance conditions. To overcome these drawbacks, the proposed scheme incorporates detailed modeling of inverter and source dynamics within the predictive controller to enhance accuracy, stability, and response speed. The UDC complements the predictive framework by ensuring coordination among inverters with different impedance characteristics. Simulation results under various load disturbances demonstrate that the proposed approach significantly outperforms conventional PI-based droop control in terms of voltage and frequency regulation, transient stability, and balanced power sharing. The performance is further validated through real-time simulations, affirming the scheme’s potential for practical deployment in dynamic microgrid environments. Full article
(This article belongs to the Special Issue Planning, Operation and Control of Microgrids: 2nd Edition)
Show Figures

Figure 1

36 pages, 6811 KB  
Article
A Hierarchical Two-Layer MPC-Supervised Strategy for Efficient Inverter-Based Small Microgrid Operation
by Salima Meziane, Toufouti Ryad, Yasser O. Assolami and Tawfiq M. Aljohani
Sustainability 2025, 17(19), 8729; https://doi.org/10.3390/su17198729 - 28 Sep 2025
Abstract
This study proposes a hierarchical two-layer control framework aimed at advancing the sustainability of renewable-integrated microgrids. The framework combines droop-based primary control, PI-based voltage and current regulation, and a supervisory Model Predictive Control (MPC) layer to enhance dynamic power sharing and system stability [...] Read more.
This study proposes a hierarchical two-layer control framework aimed at advancing the sustainability of renewable-integrated microgrids. The framework combines droop-based primary control, PI-based voltage and current regulation, and a supervisory Model Predictive Control (MPC) layer to enhance dynamic power sharing and system stability in renewable-integrated microgrids. The proposed method addresses the limitations of conventional control techniques by coordinating real and reactive power flow through an adaptive droop formulation and refining voltage/current regulation with inner-loop PI controllers. A discrete-time MPC algorithm is introduced to optimize power setpoints under future disturbance forecasts, accounting for state-of-charge limits, DC-link voltage constraints, and renewable generation variability. The effectiveness of the proposed strategy is demonstrated on a small hybrid microgrid system that serve a small community of buildings with a solar PV, wind generation, and a battery storage system under variable load and environmental profiles. Initial uncontrolled scenarios reveal significant imbalances in resource coordination and voltage deviation. Upon applying the proposed control, active and reactive power are equitably shared among DG units, while voltage and frequency remain tightly regulated, even during abrupt load transitions. The proposed control approach enhances renewable energy integration, leading to reduced reliance on fossil-fuel-based resources. This contributes to environmental sustainability by lowering greenhouse gas emissions and supporting the transition to a cleaner energy future. Simulation results confirm the superiority of the proposed control strategy in maintaining grid stability, minimizing overcharging/overdischarging of batteries, and ensuring waveform quality. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

21 pages, 2027 KB  
Article
Fast Network Reconfiguration Method with SOP Considering Random Output of Distributed Generation
by Zhongqiang Zhou, Yuan Wen, Yixin Xia, Xiaofang Liu, Yusong Huang, Jialong Tan and Jupeng Zeng
Processes 2025, 13(10), 3104; https://doi.org/10.3390/pr13103104 - 28 Sep 2025
Abstract
Power outages in non-faulted zones caused by system failures significantly reduce the reliability of distribution networks. To address this issue, this paper proposes a fault self-healing technique based on the integration of soft open points (SOPs) and network reconfiguration. A mathematical model for [...] Read more.
Power outages in non-faulted zones caused by system failures significantly reduce the reliability of distribution networks. To address this issue, this paper proposes a fault self-healing technique based on the integration of soft open points (SOPs) and network reconfiguration. A mathematical model for power restoration is developed. The model incorporates SOP operational constraints and the stochastic output of photovoltaic (PV) distributed generation. And this formulation enables the determination of the optimal network reconfiguration strategy and enhances the restoration capability. The study first analyzes the operational principles of SOPs and formulates corresponding constraints based on their voltage support and power flow regulation capabilities. The stochastic nature of PV power output is then modeled and integrated into the restoration model to enhance its practical applicability. This restoration model is further reformulated as a second-order cone programming (SOCP) problem to enable efficient computation of the optimal network configuration. The proposed method is simulated and validated in MATLAB R2019a. Results demonstrate that combining the SOP with the reconfiguration strategy achieves a 100% load restoration rate. This represents a significant improvement compared to traditional network reconfiguration methods. Furthermore, the second-order cone programming (SOCP) transformation ensures computational efficiency. The proposed approach effectively enhances both the fault recovery capability and operational reliability of distribution networks with high penetration of renewable energy. Full article
Show Figures

Figure 1

15 pages, 1739 KB  
Article
Interference Feature of Square-Wave Modulated Single-Frequency Signal to Regulated Power Supply
by Xiaopeng Li, Guanghui Wei, Xiaodong Pan and Jiangning Sun
Electronics 2025, 14(19), 3842; https://doi.org/10.3390/electronics14193842 - 27 Sep 2025
Abstract
To explore the advantages and limitations of employing square-wave modulated single-frequency signals in electric field radiated susceptibility testing, critical interference effect tests using both single-frequency continuous waves and square-wave modulated single-frequency radiation fields were conducted, respectively, at four susceptible frequencies (98, 262, 326, [...] Read more.
To explore the advantages and limitations of employing square-wave modulated single-frequency signals in electric field radiated susceptibility testing, critical interference effect tests using both single-frequency continuous waves and square-wave modulated single-frequency radiation fields were conducted, respectively, at four susceptible frequencies (98, 262, 326, 404 MHz) of a linear voltage regulator and two susceptible frequencies (26, 36 MHz) of a switching-mode power supply. The variation law of critical interference field strength according to the modulation period was determined. The test results demonstrate that the output interruption in the tested power supplies was not only determined by the interference field strength and frequency but also significantly influenced by the repetition period of the interference signal. Square-wave modulated single-frequency interference provides superior characterization of the time-domain response characteristics of the equipment under testing when compared to conventional single-frequency continuous wave interference. However, RS103 only employs a modulated signal with a 1 ms repetition period, making it insufficient to fully characterize the actual susceptible characteristics of the tested equipment. Therefore, it requires supplementary evaluation through critical interference testing using single-frequency continuous waves. Full article
Show Figures

Figure 1

14 pages, 10382 KB  
Article
A Low-Power, Wide-DR PPG Readout IC with VCO-Based Quantizer Embedded in Photodiode Driver Circuits
by Haejun Noh, Woojin Kim, Yongkwon Kim, Seok-Tae Koh and Hyuntak Jeon
Electronics 2025, 14(19), 3834; https://doi.org/10.3390/electronics14193834 - 27 Sep 2025
Abstract
This work presents a low-power photoplethysmography (PPG) readout integrated circuit (IC) that achieves a wide dynamic range (DR) through the direct integration of a voltage-controlled oscillator (VCO)-based quantizer into the photodiode driver. Conventional PPG readout circuits rely on either transimpedance amplifier (TIA) or [...] Read more.
This work presents a low-power photoplethysmography (PPG) readout integrated circuit (IC) that achieves a wide dynamic range (DR) through the direct integration of a voltage-controlled oscillator (VCO)-based quantizer into the photodiode driver. Conventional PPG readout circuits rely on either transimpedance amplifier (TIA) or light-to-digital converter (LDC) topologies, both of which require auxiliary DC suppression loops. These additional loops not only raise power consumption but also limit the achievable DR. The proposed design eliminates the need for such circuits by embedding a linear regulator with a mirroring scale calibrator and a time-domain quantizer. The quantizer provides first-order noise shaping, enabling accurate extraction of the AC PPG signal while the regulator directly handles the large DC current component. Post-layout simulations show that the proposed readout achieves a signal-to-noise-and-distortion ratio (SNDR) of 40.0 dB at 10 µA DC current while consuming only 0.80 µW from a 2.5 V supply. The circuit demonstrates excellent stability across process–voltage–temperature (PVT) corners and maintains high accuracy over a wide DC current range. These features, combined with a compact silicon area of 0.725 mm2 using TSMC 250 nm bipolar–CMOS–DMOS (BCD) process, make the proposed IC an attractive candidate for next-generation wearable and biomedical sensing platforms. Full article
(This article belongs to the Special Issue CMOS Integrated Circuits Design)
Show Figures

Figure 1

25 pages, 5414 KB  
Article
Adaptive Droop Control for Power Distribution of Hybrid Energy Storage Systems in PV-Fed DC Microgrids
by Ģirts Staņa and Kaspars Kroičs
Energies 2025, 18(19), 5137; https://doi.org/10.3390/en18195137 - 26 Sep 2025
Abstract
The increasing deployment of stand-alone photovoltaic (PV) power supply systems is driven by their capability to convert solar irradiance into electrical energy. A typical application of such systems is solar-powered water pumping. However, since solar irradiance varies throughout the day, the maximum power [...] Read more.
The increasing deployment of stand-alone photovoltaic (PV) power supply systems is driven by their capability to convert solar irradiance into electrical energy. A typical application of such systems is solar-powered water pumping. However, since solar irradiance varies throughout the day, the maximum power output of PV panels may be lower than the load demand. A viable solution to this issue is the integration of hybrid energy storage systems (HESSs) combining batteries and supercapacitors (SCs). In this work, HESS charging and discharging control strategies were developed based on adaptive droop control, which regulates the power distribution between the SC and the battery and limits DC grid voltage deviations. In the developed method, the SC droop coefficient is adaptively adjusted in a stepwise manner depending on the SC state of charge (SoC), while the battery droop coefficient remains constant. The performance of the proposed strategies was evaluated through simulations, showing SC-battery internal loss minimization by up to 50% compared with the scenario without droop control when the SC is discharged first, and only then is the battery engaged. Step response of the converter was investigated experimentally, showing less than a 2 ms response time, and no undesired influence from the proposed control method was detected. Full article
Show Figures

Figure 1

19 pages, 1317 KB  
Review
Integrated High-Voltage Bidirectional Protection Switches with Overcurrent Protection: Review and Design Guide
by Justin Pabot, Mostafa Amer, Yvon Savaria and Ahmad Hassan
Electronics 2025, 14(19), 3819; https://doi.org/10.3390/electronics14193819 - 26 Sep 2025
Abstract
Protecting sensitive electronic interfaces is critical in industrial applications, where exposure to harsh conditions and fault events is common. This paper reviews and compares circuit techniques for the design of bidirectional protection switches, highlighting key features such as analog switching, high-voltage capability, thermal [...] Read more.
Protecting sensitive electronic interfaces is critical in industrial applications, where exposure to harsh conditions and fault events is common. This paper reviews and compares circuit techniques for the design of bidirectional protection switches, highlighting key features such as analog switching, high-voltage capability, thermal shutdown, galvanic input isolation, and adjustable current limiting. Based on this review, we propose a universal architecture that combines the most suitable building blocks identified in the literature, with a focus on options that would enable monolithic integration in high-voltage silicon-on-insulator (SOI) technology and capable of delivering up to 2 A at a maximum voltage of 200 V. The proposed architecture is intended as a design guide for realizing a universal switch, rather than a fabricated implementation. To demonstrate system-level interactions, behavioral MATLAB/Simulink (R2024b) simulations are presented using generic components, which show expected functional responses but are not tied to process-specific device models. Full article
Show Figures

Figure 1

17 pages, 1478 KB  
Article
Pharmacological Actions of Potassium Channel Openers on Voltage-Gated Potassium Channels
by Michael T. McCoy, Bruce Ladenheim, Jean Lud Cadet and Atul P. Daiwile
Pharmaceuticals 2025, 18(10), 1446; https://doi.org/10.3390/ph18101446 - 26 Sep 2025
Abstract
Background/Objectives: Potassium (K+) channels are essential transmembrane proteins that regulate ion flow, playing a critical role in regulating action potentials and neuronal transmission. Although K+ channel openers (agonists, K+ Ag) are widely used in treating neurological and psychiatric disorders, [...] Read more.
Background/Objectives: Potassium (K+) channels are essential transmembrane proteins that regulate ion flow, playing a critical role in regulating action potentials and neuronal transmission. Although K+ channel openers (agonists, K+ Ag) are widely used in treating neurological and psychiatric disorders, their precise mechanisms of action remain unclear. Our study explored how K+ channel openers might influence the expression of voltage-gated K+ channels (Kv) in rat brain. Methods: Briefly, eight rats per group received intraperitoneal injections of diazoxide (Dia), chlorzoxazone (Chl), or flupirtine (Flu). Two hours post-injection, the prefrontal cortex (PFC), nucleus accumbens (NAc), dorsal striatum (dSTR), dorsal hippocampus (dHIP), and ventral hippocampus (vHIP) were collected for mRNA expression analysis of various Kv. Results: Dia administration altered expression of Kcna6 in the NAc, dSTR, and vHIP, and Kcnq2 in the PFC, dSTR, and dHIP. The mRNA levels of Kcna2 and Kcna3 changed in the NAc, dHIP, and vHIP, while Kcna6 expression increased in the PFC, dHIP, and vHIP of rats treated with Chl. Injection of Flu resulted in altered expression for Kcna1 in the NAc, dSTR, and dHIP; Kcna3 in the PFC, NAc, dHIP, and vHIP; Kcna6 in the dSTR, dHIP, and vHIP; and Kcnq2 and Kcnq3 in the PFC, dHIP, and vHIP. We also found dose-dependent changes. Conclusions: To our knowledge, this is the first study to identify the effects of potassium channel openers on gene expression within the mesocorticolimbic and nigrostriatal dopaminergic systems. These findings reveal a novel molecular mechanism underlying the action of these drugs in the brain. Importantly, our results have broader implications for translational neuroscience, particularly in the context of repurposing FDA-approved drugs, such as diazoxide and chlorzoxazone, for the treatment of neurological disorders. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 3062 KB  
Article
Enhancing AVR System Stability Using Non-Monopolize Optimization for PID and PIDA Controllers
by Ahmed M. Mosaad, Mahmoud A. Attia, Nourhan M. Elbehairy, Mohammed Alruwaili, Amr Yousef and Nabil M. Hamed
Processes 2025, 13(10), 3072; https://doi.org/10.3390/pr13103072 - 25 Sep 2025
Abstract
This work suggests a new use for the Non-Monopolize Optimization (NO) method to improve the dynamic stability and robustness of PID and PIDA controllers in Automatic Voltage Regulator (AVR) systems when there are load disruptions. The NO algorithm is a new search method [...] Read more.
This work suggests a new use for the Non-Monopolize Optimization (NO) method to improve the dynamic stability and robustness of PID and PIDA controllers in Automatic Voltage Regulator (AVR) systems when there are load disruptions. The NO algorithm is a new search method that does not use metaphors and only looks for one answer. It utilizes adaptive dimension modifications to strike a balance between exploration and exploitation. Its addition to AVR control makes parameter tweaking more efficient, without relying on random metaphors or population-based heuristics. MATLAB/Simulink R2025a runs full simulations to check how well the system works in both the time domain (step response, root locus) and the frequency domain (Bode plot). We compare the results to those of well-known optimizers like WOA, TLBO, ARO, GOA, and GA. The suggested NO-based PID and PIDA controllers always show less overshoot, faster rise and settling periods, and higher phase and gain margins, which proves that they are more stable and responsive. A robustness test with a load change of ±50% shows that NO-tuned controllers are even more reliable. The results show that using NO to tune different controllers could be a good choice for real-time AVR controller tuning in modern power systems because it is lightweight and works well. Full article
(This article belongs to the Special Issue AI-Based Modelling and Control of Power Systems)
Show Figures

Figure 1

Back to TopTop