Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = volcanic forcing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 1755 KB  
Brief Report
The 1572 CE Santorini Eruption from Little-Known Historical Documents
by Gerassimos A. Papadopoulos
GeoHazards 2025, 6(4), 76; https://doi.org/10.3390/geohazards6040076 - 3 Nov 2025
Viewed by 754
Abstract
The Santorini volcano in the South Aegean Volcanic Arc is of great scientific importance. Knowledge of historical eruptions is valuable for better understanding the volcanic cycle and for improved hazard assessments. One of the little-known historical eruptions occurred either in 1570 or in [...] Read more.
The Santorini volcano in the South Aegean Volcanic Arc is of great scientific importance. Knowledge of historical eruptions is valuable for better understanding the volcanic cycle and for improved hazard assessments. One of the little-known historical eruptions occurred either in 1570 or in 1573 or from 1570 to 1573 CE. We bring to light a very little-known but reliable Greek manuscript dated in 1588 CE which improves our knowledge about this eruption. The manuscript documents that the eruption occurred in 1572 and took place within the sea caldera between Santorini and Palaia Kameni. It makes it clear that “fire, smoke, and stones” were coming out between the two islands and a new volcanic island named Mikri Kameni was born. This landscape has been verified by independent maps of the 17th and 18th centuries. The floating pumice was transported by the sea as far as to Thessaloniki and Constantinople. Also, we learn a lot about the consequences of the eruption: (1) smoke and heat destroyed the vineyards and the planting season on Santorini, i.e., spring–summer, (2) it is likely that sulfurous gases were released, and (3) the residents of Santorini were forced to move to nearby islands. The duration of the eruption was ~1 year, but the fire and smoke disappeared suddenly. The Volcanic Explosivity Index of the eruption was estimated to be as high as 3. Full article
Show Figures

Figure 1

13 pages, 556 KB  
Article
Fractal Complexity and Symmetry in Lava Flow Emplacement
by Antonio F. Miguel
Symmetry 2025, 17(9), 1502; https://doi.org/10.3390/sym17091502 - 10 Sep 2025
Viewed by 395
Abstract
This study presents a cohesive physical model that predicts lava flow morphology by establishing a quantitative link between a lava’s yield strength and its geometric complexity, measured by a prefractal dimension. The model is founded on the principle of symmetry, where the potential [...] Read more.
This study presents a cohesive physical model that predicts lava flow morphology by establishing a quantitative link between a lava’s yield strength and its geometric complexity, measured by a prefractal dimension. The model is founded on the principle of symmetry, where the potential for fracturing and complexity peaks at an intermediate yield strength. This peak in complexity, observed with a predicted prefractal dimension (Dpf) of 1.15 for terrestrial ‘a’ā-like lava, arises from a critical state where a balance between gravitational driving forces and internal resistance allows for the formation of intricate margins. The model demonstrates that as lavas deviate from this optimal strength, becoming either too fluid (pāhoehoe, Dpf = 1.05) or too rigid (rhyolite, Dpf = 1.07), their morphology becomes progressively simpler, representing a symmetrical decline in complexity. Our approach also incorporates the overriding influence of topographic confinement and the temporal evolution of complexity as the lava cools. Validated against terrestrial lavas and successfully applied to lower-gravity environments, the model predicts a reduction in complexity for similar flows on Mars (Dpf = 1.13) and the Moon (Dpf = 1.09), providing a tool for interpreting volcanic processes grounded in the fundamental principles of symmetry and complexity. Full article
(This article belongs to the Special Issue Mathematics: Feature Papers 2025)
Show Figures

Figure 1

16 pages, 4736 KB  
Review
Volcanic Islands as Reservoirs of Geoheritage: Current and Potential Initiatives of Geoconservation
by Esther Martín-González, Juana Vegas, Inés Galindo, Carmen Romero and Nieves Sánchez
J. Mar. Sci. Eng. 2025, 13(8), 1420; https://doi.org/10.3390/jmse13081420 - 25 Jul 2025
Cited by 1 | Viewed by 918
Abstract
Volcanic islands host exceptional geological features that illustrate complex endogenic processes and interactions with climatic and marine forces, while also being particularly vulnerable to the impacts of climate change. Despite their scientific, educational, touristic, and aesthetic values, such islands remain underrepresented within the [...] Read more.
Volcanic islands host exceptional geological features that illustrate complex endogenic processes and interactions with climatic and marine forces, while also being particularly vulnerable to the impacts of climate change. Despite their scientific, educational, touristic, and aesthetic values, such islands remain underrepresented within the UNESCO Global Geoparks (UGGp). This study reviews current volcanic island geoparks and evaluates territories with potential for future designation, based on documented geoheritage, geosite inventories, and geoconservation frameworks. Geoparks are categorized according to their dominant narratives—ranging from recent Quaternary volcanism to broader tectonic, sedimentary, and metamorphic histories. Through an analysis of their distribution, management strategies, and integration into territorial planning, this work highlights the challenges that insular territories face, including vulnerability to global environmental change, limited legal protection, and structural inequalities in access to international resources recognition. It concludes that volcanic island geoparks represent strategic platforms for implementing sustainable development models, especially in ecologically and socially fragile contexts. Enhancing their global representation will require targeted efforts in ecologically and socially fragile contexts. Enhancing their global representation will require targeted efforts in capacity building, funding access, and regional cooperation—particularly across the Global South. Full article
(This article belongs to the Special Issue Feature Review Papers in Geological Oceanography)
Show Figures

Figure 1

29 pages, 17376 KB  
Article
A Study on the Thermal and Moisture Transfer Characteristics of Prefabricated Building Wall Joints in the Inner Mongolia Region
by Liting He and Dezhi Zou
Buildings 2025, 15(13), 2197; https://doi.org/10.3390/buildings15132197 - 23 Jun 2025
Viewed by 404
Abstract
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection [...] Read more.
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection interfaces during winter significantly exacerbates freeze–thaw damage due to persistent thermal gradients. A coupled heat–moisture transfer model incorporating gas–liquid–solid phase transitions was developed, with the liquid moisture content and temperature gradient as dual driving forces. A validation against internationally recognized BS EN 15026:2007 benchmark cases confirmed the model robustness. The prefabricated sandwich insulation walls reconstructed with region-specific volcanic ash materials underwent a comparative evaluation of temperature and relative humidity distributions under varied winter conditions. Furthermore, we analyze and assess the potential for freezing at connection points and identify the specific areas at risk. Synergistic effects between assembly gaps and indoor–outdoor environmental interactions on wall performance degradation were systematically assessed. The results indicated that, across all working conditions, both the temperature and relative humidity at each wall measurement point underwent periodic variations influenced by the outdoor environment. These fluctuations decreased in amplitude from the exterior to the interior, accompanied by a noticeable delay effect. Specifically, at Section 2, the wall temperatures at points B2–B8 were higher compared to those at A2–A8 of Section 1. The relative humidity gradient remained relatively stable at each measurement point, while the temperature fluctuation amplitude was smaller by 2.58 ± 0.3 °C compared to Section 1. Under subfreezing conditions, Section 1 demonstrates a marked reduction in relative humidity (Cases 1-3 and 2-3) compared to reference cases, which is indicative of internal ice crystallization. Conversely, Section 2 maintains higher relative humidity values under identical therma. These findings suggest that prefabricated building joints significantly impact indoor and outdoor wall temperatures, potentially increasing the indoor heat loss and accelerating temperature transfer during winter. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 25801 KB  
Article
A Large-Scale Focused Fluid Flow Zone Between Atolls in the Xisha Islands (South China Sea): Types, Characteristics, and Evolution
by Jixiang Zhao, Benjun Ma, Zhiliang Qin, Wenjian Lan, Benyu Zhu, Shuyi Pang, Mingzhe Li and Ruining Wang
J. Mar. Sci. Eng. 2025, 13(2), 216; https://doi.org/10.3390/jmse13020216 - 23 Jan 2025
Viewed by 1078
Abstract
A large number of seabed depressions, covering an area of 2500 km2 in the Xisha Massif of the South China Sea, are investigated using newly collected high-resolution acoustic data. By analyzing the morphological features and seismic attributes of the focused fluid flow [...] Read more.
A large number of seabed depressions, covering an area of 2500 km2 in the Xisha Massif of the South China Sea, are investigated using newly collected high-resolution acoustic data. By analyzing the morphological features and seismic attributes of the focused fluid flow system, five geological structures are recognized and described in detail, including pockmarks, volcanic mounds, pipes, faults, and forced folds. Pockmarks and volcanic mounds occur as clustered groups and their distributions are related to two large-scale volcanic zones with chaotic seismic reflections. Pipes, characterized by disordered seismic reflections, mainly occur within the focused fluid flow zone (FFFZ) and directly link with the large-scale deep volcano and its surrounding areas. Faults and fractures mainly occur along pipes and extend to the seafloor, commonly presenting lateral walls of mega-pockmarks. Forced folds are primarily clustered above volcanic zones and commonly restricted between faults or pipes, characterized by sediment deformations as indicated in seismic profiles. By comprehensive analysis of the above observations and a simplified simulation model, the volcanism-induced hydrothermal fluid activities are argued herein to contribute to these focused fluid flow structures. In addition, traces of suspected submarine instability disasters such as landslides have been found in this sea area, and more observational data will be needed to determine whether seafloor fluid flow zones can be used as a predictor of seafloor instability in the future. Full article
Show Figures

Figure 1

51 pages, 13757 KB  
Article
Coastal Hazard and Vulnerability Assessment in Cameroon
by Mesmin Tchindjang, Philippes Mbevo Fendoung and Casimir Kamgho
J. Mar. Sci. Eng. 2025, 13(1), 65; https://doi.org/10.3390/jmse13010065 - 2 Jan 2025
Cited by 2 | Viewed by 4322
Abstract
The coast is the most dynamic part of the Earth’s surface due to its strategic position at the interface of the land and the sea. It is, therefore, exposed to hazards and specific risks because of the geography as well as the geological [...] Read more.
The coast is the most dynamic part of the Earth’s surface due to its strategic position at the interface of the land and the sea. It is, therefore, exposed to hazards and specific risks because of the geography as well as the geological and environmental characteristics of different countries. The coastal environment is essentially dynamic and evolving in time and space, marked by waves, tides, and seasons; moreover, it is subjected to many marine and continental processes (forcing). This succession of events significantly influences the frequency and severity of coastal hazards. The present paper aims at describing and characterizing the hazards and vulnerabilities on the Cameroonian coast. Cameroon possesses 400 km of coastline, which is exposed to various hazards. It is important to determine the probabilities of these hazards, the associated effects, and the related vulnerabilities. In this study, in this stable intraplate setting, the methodology used was diverse and combined techniques for the study of the shore and methods for the treatment of climatic data. Also, historical data were collected during field observations and from the CRED website for all the natural hazards recorded in Cameroon. In addition, documents on climate change were consulted. Remotely sensed data, combined with GIS tools, helped to determine and assess the associated risks. A critical grid combining a severity and frequency analysis was used to better understand these hazards and the coastal vulnerabilities of Cameroon. The results show that Cameroon’s coastal margins are subject to natural processes that cause shoreline changes, including inundation, erosion, and accretion. This study identified seven primary hazard types (earthquakes, volcanism, landslides, floods, erosion, sea level rise, and black tides) affecting the Cameroonian coastline, with the erosion rate exceeding 1.15 m/year at Cape Cameroon. Coastal populations are continuously threatened by these natural or man-induced hazards, and they are periodically subjected to catastrophic disasters such as floods and landslides, as experienced in Cameroon. In addition, despite the existence of the National Contingency Plan devised by the Directorate of Civil Protection, National Risk, and Climate Change Observatories, the implementation of disaster risk reduction and mitigation strategies is suboptimal. Full article
(This article belongs to the Special Issue Monitoring and Analysis of Coastal Hazard Risks)
Show Figures

Figure 1

16 pages, 2739 KB  
Article
Temperature and Ozone Response to Different Forcing in the Lower Troposphere and Stratosphere
by Margarita Usacheva, Eugene Rozanov, Vladimir Zubov and Sergei Smyshlyaev
Atmosphere 2024, 15(11), 1289; https://doi.org/10.3390/atmos15111289 - 27 Oct 2024
Viewed by 3000
Abstract
To evaluate the contributions of different forcings to the temperature and atmospheric composition changes between 1980 and 2020, we exploited the chemistry-climate model (CCM) SOCOLv3. The study examined ozone content and atmospheric temperature response to (1) ozone-depleting substances; (2) greenhouse gas concentrations, ocean [...] Read more.
To evaluate the contributions of different forcings to the temperature and atmospheric composition changes between 1980 and 2020, we exploited the chemistry-climate model (CCM) SOCOLv3. The study examined ozone content and atmospheric temperature response to (1) ozone-depleting substances; (2) greenhouse gas concentrations, ocean surface temperature, and sea ice coverage; (3) solar irradiance; and (4) stratospheric aerosol loading and, separately, (5) greenhouse gas concentrations, (6) ocean surface temperature and sea ice coverage, and (7) NOx surface emissions. To evaluate the impacts of specific factors, we performed model runs driven by each factor (1–7) variability as well as a reference experiment that accounted for the influence of all factors simultaneously. We identified the relative contribution of different factors to the evolution of the temperature and ozone content of the lower troposphere and stratosphere from 1980 to 2020. The model results were in good agreement with the reanalyses (MERRA2 and ERA5). We showed that stratospheric ozone depletion before the Montreal Protocol introduction and partial recovery after that were chiefly driven by ODS. Stratospheric aerosol from major volcanic eruptions caused only short-term (up to 5 years) ozone decline. Increased greenhouse gas emissions dominate the ongoing long-term stratospheric cooling as well as tropospheric and surface warming. Solar irradiance contributed to short-term fluctuations but had a minimal long-term impact. Furthermore, our analysis of the solar signal in the tropical stratosphere underscores the complex interplay of solar radiation with volcanic, oceanic, and atmospheric factors, revealing significant altitudinal distributions of temperature and ozone responses to solar activity. Our findings advocate further innovative methodologies to take into account the nonlinearity of the atmospheric processes. Full article
(This article belongs to the Special Issue Ozone Evolution in the Past and Future (2nd Edition))
Show Figures

Figure 1

25 pages, 8771 KB  
Article
Relation between Central European Climate Change and Eifel Volcanism during the Last 130,000 Years: The ELSA-23-Tephra-Stack
by Frank Sirocko, Frederik Krebsbach, Johannes Albert, Sarah Britzius, Fiona Schenk and Michael W. Förster
Quaternary 2024, 7(2), 21; https://doi.org/10.3390/quat7020021 - 25 Apr 2024
Cited by 4 | Viewed by 3019
Abstract
The analysis of tephra layers in maar lake sediments of the Eifel shows 14 well-visible tephra during the last glacial cycle from the Holocene to the Eemian (0–130,000 yr b2k). These tephra were analyzed for their petrographic composition, which allows us to connect [...] Read more.
The analysis of tephra layers in maar lake sediments of the Eifel shows 14 well-visible tephra during the last glacial cycle from the Holocene to the Eemian (0–130,000 yr b2k). These tephra were analyzed for their petrographic composition, which allows us to connect several tephra to eruption sites. All tephra were dated by application of the ELSA-20 chronology, developed using the late Pleistocene infilled maar lake of Auel and the Holocene lake Holzmaar (0–60,000 yr b2k). We extend the ELSA-20 chronology with this paper for the millennia of 60,000–130,000 yr b2k (ELSA-23 chronology), which is based on the infilled maar lake records from Dehner, Hoher List, and Jungferweiher. The evaluation of the tephra from the entire last glacial cycle shows that all 14 tephra were close to interstadial warming of the North Atlantic sea surface temperatures. In particular, phreatomagmatic maar eruptions were systematically associated with Heinrich events or C-events. These events represent times of warming of the Southern Hemisphere, global sea level rise, and CO2 increase, which predate the abrupt interstadial warming events of the Northern Hemisphere. This synchroneity indicates a physical relationship between endogenic and exogenic processes. Changes in the lithospheric stress field in response to changes in continental ice loads have already been suggested as a potential candidate to explain the exogenic forcing of endogenic processes. The chronology of volcanic activity in the Eifel demonstrates that intraplate mantle plumes are also affected by the exogenic forcing of endogenic processes. Full article
Show Figures

Figure 1

34 pages, 4425 KB  
Article
Atmospheric Processes over the Broader Mediterranean Region: Effect of the El Niño–Southern Oscillation?
by Harry D. Kambezidis
Atmosphere 2024, 15(3), 268; https://doi.org/10.3390/atmos15030268 - 23 Feb 2024
Cited by 2 | Viewed by 4161
Abstract
The Mediterranean area is considered a hot spot on our planet because it represents the crossroads of various aerosols. Several studies have shown that the weather in the region is affected by the North-Atlantic Oscillation, which, in turn, is well connected with the [...] Read more.
The Mediterranean area is considered a hot spot on our planet because it represents the crossroads of various aerosols. Several studies have shown that the weather in the region is affected by the North-Atlantic Oscillation, which, in turn, is well connected with the El Niño–Southern Oscillation (ENSO) phenomenon. Nevertheless, no study has investigated the ENSO effect on the solar radiation and atmospheric aerosols in this region. The present study considers a greater area around the Mediterranean Sea over the period 1980–2022. The results show that there exists a loose but significant dependence, in some cases, of the optical properties of aerosols (aerosol optical depth, Ångström exponent, cloud optical depth) and solar radiation (net short-wave and net long-wave radiation, direct aerosol radiative forcing) on ENSO events. The results of this study provide motivation for further investigations, since such results can increase the accuracy of general circulation models that deal with climate change. Besides the ENSO effect, the enrichment of the Mediterranean atmosphere in suspended particles from great volcanic eruptions is shown. The inter-annual variation of the examined parameters is presented. A classification of the existing aerosols over the area is also provided. Full article
(This article belongs to the Special Issue Atmospheric Aerosols and Their Impact on Air Quality and the Climate)
Show Figures

Figure 1

13 pages, 4527 KB  
Article
Wavelet Analysis of Ozone Driving Factors Based on ~20 Years of Ozonesonde Measurements in Beijing
by Yunshu Zeng, Jinqiang Zhang, Yajuan Li, Sichang Liu and Hongbin Chen
Atmosphere 2023, 14(12), 1733; https://doi.org/10.3390/atmos14121733 - 25 Nov 2023
Cited by 4 | Viewed by 1926
Abstract
A long-term vertical ozone observational dataset has been provided during 2001–2019 by ozonesonde measurements in Beijing on the North China Plain. Previous studies using this dataset primarily focused on the vertical characteristics of climatological ozone and its variation; however, the driving factors of [...] Read more.
A long-term vertical ozone observational dataset has been provided during 2001–2019 by ozonesonde measurements in Beijing on the North China Plain. Previous studies using this dataset primarily focused on the vertical characteristics of climatological ozone and its variation; however, the driving factors of ozone variation have not been well discussed. In this study, by applying the wavelet analysis method (including continuous wavelet transform and cross wavelet) and sliding correlation coefficients to ~20 years of ozonesonde measurements collected in Beijing, we analyzed the dominant modes of ozone column variability within three height ranges over Beijing (total column ozone: TOT; stratospheric column ozone: SCO; and tropospheric column ozone: TCO). Moreover, we also preliminarily discussed the relationship between these three ozone columns and the El Niño Southern Oscillation (ENSO), Quasi-biennial Oscillation (QBO), and 11-year solar activity cycle. The results revealed that the ozone columns within the three height ranges predominantly adhered to interannual variability patterns, and the short-term variabilities in TOT and SCO may have been related to eruptive volcanic activity. In comparison to the TOT and SCO, the TCO was more susceptible to the forcing influences of high-frequency factors such as pollutant transport. Similar to the results in other mid-latitude regions, strong ENSO and QBO signals were revealed in the interannual ozone column variability over Beijing. The TOT and SCO showed positive anomalous responses to ENSO warm-phase events, and the peak of the ENSO warm phase led the winter peaks of the TOT and SCO by approximately 3–6 months. During the strong cold–warm transition phase in 2009–2012, the TOT and SCO showed a significant positive correlation with the ENSO index. The strong seasonality of the meridional circulation process driven by the QBO led to a significant positive correlation between the QBO index and the TOT and SCO in the interannual cycle, except for two periods of abnormal QBO fluctuations in 2010–2012 and 2015–2017, whereas the TCO showed a time-lagged correlation of approximately 3 months in the annual cycle relative to the QBO due to the influence of the thermodynamic tropopause. In addition, analysis of the F10.7 index and the ozone columns revealed that the ozone columns over Beijing exhibited lagged responses to the peaks of sunspot activity, and there was no obvious correlation between ozone columns and 11-year solar activity cycle. Given the complex driving mechanism of the climatic factors on local ozone variability, the preliminary results obtained in this study still require further validation using longer time series of observational data and the combination of chemical models and more auxiliary data. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing)
Show Figures

Figure 1

4 pages, 2071 KB  
Proceeding Paper
Circulation Responses in the Southern Eastern Mediterranean to Large Volcanic Eruptions: The Katmai Eruption
by Stergios Misios and Vassilis Amiridis
Environ. Sci. Proc. 2023, 26(1), 221; https://doi.org/10.3390/environsciproc2023026211 - 24 Oct 2023
Viewed by 1046
Abstract
The Etesian winds characterize the summertime circulation in the Eastern Mediterranean. Etesians are modulated by the Indian summer monsoon (ISM), but their response to other external forcings is not understood. Here, we investigate the response of Etesians to the Novarupta/Katmai 1912 volcanic eruption [...] Read more.
The Etesian winds characterize the summertime circulation in the Eastern Mediterranean. Etesians are modulated by the Indian summer monsoon (ISM), but their response to other external forcings is not understood. Here, we investigate the response of Etesians to the Novarupta/Katmai 1912 volcanic eruption with the aid of 20th Century reanalysis and station-based wind observations. We demonstrate a robust reduction in the total number of days with Etesian winds in July and August 1913. We also detect a strong cooling and weakened surface pressure gradients in the Eastern Mediterranean, which explains the decline in Etesian winds in the post-eruption summer. Full article
Show Figures

Figure 1

18 pages, 14118 KB  
Article
Analysis of Ionospheric Anomalies before the Tonga Volcanic Eruption on 15 January 2022
by Jiandi Feng, Yunbin Yuan, Ting Zhang, Zhihao Zhang and Di Meng
Remote Sens. 2023, 15(19), 4879; https://doi.org/10.3390/rs15194879 - 9 Oct 2023
Cited by 12 | Viewed by 3213
Abstract
In this paper, GNSS stations’ observational data, global ionospheric maps (GIM) and the electron density of FORMOSAT-7/COSMIC-2 occultation are used to study ionospheric anomalies before the submarine volcanic eruption of Hunga Tonga–Hunga Ha’apai on 15 January 2022. (i) We detect the negative total [...] Read more.
In this paper, GNSS stations’ observational data, global ionospheric maps (GIM) and the electron density of FORMOSAT-7/COSMIC-2 occultation are used to study ionospheric anomalies before the submarine volcanic eruption of Hunga Tonga–Hunga Ha’apai on 15 January 2022. (i) We detect the negative total electron content (TEC) anomalies by three GNSS stations on 5 January before the volcanic eruption after excluding the influence of solar and geomagnetic disturbances and lower atmospheric forcing. The GIMs also detect the negative anomaly in the global ionospheric TEC only near the epicenter of the eruption on 5 January, with a maximum outlier exceeding 6 TECU. (ii) From 1 to 3 January (local time), the equatorial ionization anomaly (EIA) peak shifts significantly towards the Antarctic from afternoon to night. The equatorial ionization anomaly double peak decreases from 4 January, and the EIA double peak disappears and merges into a single peak on 7 January. Meanwhile, the diurnal maxima of TEC at TONG station decrease by nearly 10 TECU and only one diurnal maximum occurred on 4 January (i.e., 5 January of UT), but the significant ionospheric diurnal double-maxima (DDM) are observed on other dates. (iii) We find a maximum value exceeding NmF2 at an altitude of 100~130 km above the volcanic eruption on 5 January (i.e., a sporadic E layer), with an electron density of 7.5 × 105 el/cm3. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing II)
Show Figures

Figure 1

36 pages, 8438 KB  
Article
The Detection and Attribution of Northern Hemisphere Land Surface Warming (1850–2018) in Terms of Human and Natural Factors: Challenges of Inadequate Data
by Willie Soon, Ronan Connolly, Michael Connolly, Syun-Ichi Akasofu, Sallie Baliunas, Johan Berglund, Antonio Bianchini, William M. Briggs, C. J. Butler, Rodolfo Gustavo Cionco, Marcel Crok, Ana G. Elias, Valery M. Fedorov, François Gervais, Hermann Harde, Gregory W. Henry, Douglas V. Hoyt, Ole Humlum, David R. Legates, Anthony R. Lupo, Shigenori Maruyama, Patrick Moore, Maxim Ogurtsov, Coilín ÓhAiseadha, Marcos J. Oliveira, Seok-Soon Park, Shican Qiu, Gerré Quinn, Nicola Scafetta, Jan-Erik Solheim, Jim Steele, László Szarka, Hiroshi L. Tanaka, Mitchell K. Taylor, Fritz Vahrenholt, Víctor M. Velasco Herrera and Weijia Zhangadd Show full author list remove Hide full author list
Climate 2023, 11(9), 179; https://doi.org/10.3390/cli11090179 - 28 Aug 2023
Cited by 14 | Viewed by 97880
Abstract
A statistical analysis was applied to Northern Hemisphere land surface temperatures (1850–2018) to try to identify the main drivers of the observed warming since the mid-19th century. Two different temperature estimates were considered—a rural and urban blend (that matches almost exactly with most [...] Read more.
A statistical analysis was applied to Northern Hemisphere land surface temperatures (1850–2018) to try to identify the main drivers of the observed warming since the mid-19th century. Two different temperature estimates were considered—a rural and urban blend (that matches almost exactly with most current estimates) and a rural-only estimate. The rural and urban blend indicates a long-term warming of 0.89 °C/century since 1850, while the rural-only indicates 0.55 °C/century. This contradicts a common assumption that current thermometer-based global temperature indices are relatively unaffected by urban warming biases. Three main climatic drivers were considered, following the approaches adopted by the Intergovernmental Panel on Climate Change (IPCC)’s recent 6th Assessment Report (AR6): two natural forcings (solar and volcanic) and the composite “all anthropogenic forcings combined” time series recommended by IPCC AR6. The volcanic time series was that recommended by IPCC AR6. Two alternative solar forcing datasets were contrasted. One was the Total Solar Irradiance (TSI) time series that was recommended by IPCC AR6. The other TSI time series was apparently overlooked by IPCC AR6. It was found that altering the temperature estimate and/or the choice of solar forcing dataset resulted in very different conclusions as to the primary drivers of the observed warming. Our analysis focused on the Northern Hemispheric land component of global surface temperatures since this is the most data-rich component. It reveals that important challenges remain for the broader detection and attribution problem of global warming: (1) urbanization bias remains a substantial problem for the global land temperature data; (2) it is still unclear which (if any) of the many TSI time series in the literature are accurate estimates of past TSI; (3) the scientific community is not yet in a position to confidently establish whether the warming since 1850 is mostly human-caused, mostly natural, or some combination. Suggestions for how these scientific challenges might be resolved are offered. Full article
Show Figures

Figure 1

12 pages, 1857 KB  
Article
Classification of Risks for Landslides in Slopes and Hillsides of Volcanic Nature in Macaronesia and Their Application to the Canary Islands
by Sergio Leyva, Noelia Cruz-Pérez, Jesica Rodríguez-Martín and Juan C. Santamarta
Geosciences 2023, 13(6), 155; https://doi.org/10.3390/geosciences13060155 - 24 May 2023
Cited by 2 | Viewed by 2165
Abstract
Due to their genesis, volcanic rocks present some singularities that make their geotechnical characteristics significantly different from other more common types of massifs, such as sedimentary and metamorphic rocks. The formation mechanisms of volcanic rocks are varied, rapid, and, in general, of high [...] Read more.
Due to their genesis, volcanic rocks present some singularities that make their geotechnical characteristics significantly different from other more common types of massifs, such as sedimentary and metamorphic rocks. The formation mechanisms of volcanic rocks are varied, rapid, and, in general, of high energy. These processes give this type of rock a geotechnical behaviour and geomechanical properties that are totally different from those of other nonvolcanic materials, derived from their high heterogeneity and anisotropy. There are voids and cavities due to the alternation of strata of different competences and resistances, or susceptibility to erosion, and discontinuities and joints of very different genesis (of thermal origin, by mechanical forces, by erosive processes or by shrinkage—recrystallization). The phenomenology of the instability of blocks and stones is variable, which makes it very difficult to establish simple and concrete methodologies or procedures to study and analyse this problem. To date, the estimation of the risk of this type of phenomenon has been quantified using empirical methodologies; this approach is considered to be the most operative in responding to such a complex phenomenology in which a multitude of factors intervene. In the field of roads, the most widely used methods are RHRS and RHRON. Therefore, a new rockfall risk classification based on the RHRS (Rockfall Hazard Rating System) methodology is proposed in this article and specifically applied to the Canary Islands region. Full article
Show Figures

Figure 1

21 pages, 2335 KB  
Article
A New View on the Global Redox-Cycle of Biosphere Carbon
by A. A. Ivlev
C 2023, 9(2), 53; https://doi.org/10.3390/c9020053 - 23 May 2023
Cited by 1 | Viewed by 2275
Abstract
The global carbon cycle model is presented as a natural self-regulating machine that provides renewable biomass synthesis during evolution. The machine consists of two parts, geological and biosphere. Between the parts, there is an interaction. The geological part is controlled by the movement [...] Read more.
The global carbon cycle model is presented as a natural self-regulating machine that provides renewable biomass synthesis during evolution. The machine consists of two parts, geological and biosphere. Between the parts, there is an interaction. The geological part is controlled by the movement of lithosphere plates, which is under the guidance of gravitational forces from celestial bodies acting on the Earth. The movement of the lithosphere plates is divided into a phase of a relatively quick movement, occurring in the tectonically active state of the Earth’s crust, named the orogenic period, and a phase of a relatively slow movement, occurring in the phase of the tectonically quiet state of the crust, named geosynclinal period. In the orogenic period, the energy of moving plates’ collisions is sufficient to initiate sulfate reduction, proceeding in the subduction zone. This is the reaction where sedimentary organic matter is oxidized. Resultant CO2 is injected into “atmosphere—hydrosphere” system of the Earth. Its concentration achieves maximal values, whereas oxygen concentration drops to a minimum since it reacts with the reduced sulfur forms that evolve in the thermochemical sulfate reduction and due to binding with reduced forms of metals, coming to the Earth’s surface with volcanic exhalations. Carbon dioxide initiates photosynthesis and the associated biosphere events. In the geosynclinal period, the sulfate reduction ceases, and CO2 does not enter the system anymore, though photosynthesis in the biosphere proceeds in the regime of CO2 pool depletion. Under such conditions, the surface temperature on the Earth decreases, ending with glaciations. The successive depletion of the CO2 pool results in a regular sequence of climatic changes on the Earth. The ratio of CO2/O2 is the key environmental parameter in the orogenic cycle providing climatic changes. They consistently vary from hot and anaerobic in the orogenic period to glacial and aerobic by the end of the geosynclinal period. The climatic changes provide biotic turnover. Especially abrupt changes accompany the transition to a new orogenic cycle, resulting in mass extinction of organisms and the entry of huge masses of biogenic material into the sediment. This provided the conditions for the formation of rocks rich in organic matter (“black shales”). It is shown that the suggested model is supported by numerous geological and paleontological data evidencing the orogenic cycles’ existence and their relationship with the evolution of photosynthesis. Full article
(This article belongs to the Special Issue Permafrost and Carbon Dioxide Emission)
Show Figures

Figure 1

Back to TopTop