Atmospheric Processes over the Broader Mediterranean Region: Effect of the El Niño–Southern Oscillation?
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
- The correlation is low and positive in all time-series pairs (NAOI-SSN, ONI-SSN, and NAOI-ONI) and non-significant at the 95% CI. Nevertheless, the highest r was found in the case of the NAOI-SSN pair and the least in the ONI-SSN pair.
- In contrast to the above observation, Kirov and Georgieva [22] studied the influence of the solar activity on NAO and ENSO in the period 1821–1999; they used 30-year averages of NAOI, ONI, and SSN and found rNAOI-SSN = −0.71, rONI-SSN = −0.76, and rNAOI-ONI = +0.72, all significant at the 99.99% CI. They, therefore, came to the conclusion that while both ENSO and NAO phenomena control the global climate, their long-term fluctuations are closely linked to solar activity.
- The discrepancy between Kirov and Georgieva’s results and the correlations in the present work may be attributed to the long averaging (filtering) process applied by the former researchers. The present work did not use such a long-term averaging process but only estimation of annual averages from monthly ones.
- Furthermore, during the period of the present study, NAO decreased/increased with ENSO at low/high levels, during solar maximum/minimum. These observations can be recognised in Figure 4.
- In more detail, during the 11-year solar cycle, the ENSO phenomenon has a statistically significant minimum of 1 year before the solar maximum, according to [22]. However, this influence is dictated by the strength and location of the centres responsible for these circulation phenomena (pressure differences in the south Pacific and north Atlantic, respectively).
- Based on the information above, it is unclear whether the ENSO events have a major impact on the NAO circulation; additionally, this seems to ignore ENSO’s possible influence on atmospheric radiation and aerosols over the Mediterranean. As a result, the extent of this teleconnection will be examined in the upcoming sections of this paper.
3.1. ENSO and Atmospheric Aerosol Properties
3.2. ENSO and Cloud Properties
3.3. ENSO and Atmospheric Radiation
3.4. Additional Analysis
- There is a medium negative correlation (anti-correlation) for the DARF-ONI time series in the sub-periods 1980–2022, and 2001–2022, while there exists a medium positive and a low negative correlation in the (DARF, SSN) pair in the mentioned sub-periods, respectively.
- During the 1980–2000 sub-period, there is a high positive and a negative correlation for the DARF-SSN and DARD-ONI time series, respectively.
- The first sub-period includes both volcanic eruptions mentioned above, which sent vast amounts of ash and gases into the atmosphere and affected the atmospheric radiation budget over the Mediterranean.
- From 2000 onward, the 11-year solar activity has been progressively decreasing, with a solar minimum predicted for roughly 2040–2050 [79] (current solar cycle 25), which is anticipated to have a further impact on the atmospheric radiation and aerosol properties over the Mediterranean region.
- There is a solar brightening signal over the Mediterranean after the 1990s [82,86,87,88,89]. It is obvious that reduced surface temperatures and decreased water evaporation may follow lower solar radiation levels; these factors may have led to decreased cloud cover and precipitation [82,90]. Moreover, reduced precipitation indicates less frequent aerosol washout, which increases the number of suspended particles in the atmosphere. These particles may increase solar light absorption, which can, in turn, slow the warming effect over the Mediterranean (see the slight increasing trend of AAOD550 in Figure 12).
- A slight increase in netSW = SW↓ − SW↑ means that the difference between the two SW fluxes increases with time, but the reflected SW radiation (SW↑) increases at a slower pace than its downward counterpart (SW↓). This could be the result of a change (decrease) in the overall surface albedo (ρg, land and sea) over the selected Mediterranean area in the period 1980–2022, reflecting less and less SW over time; however, this is not the case, as shown by the red solid line in Figure 2, which shows a rather steady state for ρg over time. Therefore, the cause must be sought in the increase in SW↓ (not shown here, but mentioned in various studies, e.g., [91]).
- The netLW flux shows the same trend as the netSW; an increase in netLW over time may be linked to a decreasing LW↑, which may be explained by a decrease in the surface’s emissivity in the Mediterranean region, or a decrease in ρg, which is not the case in this instance (see Figure 2; also explained in item 1 above). Therefore, the explanation is an increased rate in the downward IR flux, which suggests a warming signal over the Mediterranean, in accordance with the conclusion at the beginning of this section.
- The energy budget (netSW + netLW) at the surface of the Mediterranean (land and sea) seems to change over time, being more and more in the IR band; indeed, from the regression expressions for netSW and netLW in the legend of Figure 10, it is estimated that netSW2022 – netSW1980 = +0.890 Wm−2, and netLW2022 − netLW1980 = +2.672 Wm−2. This leads to an increase of netSW1980–2022 + netLW1980–2022 = +3.562 Wm−2 or +0.828 Wm−2 per decade. The increase in the netLW flux over the whole Mediterranean region is a sign of regional warming in the presence of atmospheric aerosols and clear skies. A study by Kambezidis et al. [82] for the Mediterranean area in the period 1979–2012 showed a slight decreasing trend in netSWBOA,CS,A of −0.17 Wm−2 per decade, which does not agree with the slight increase of +0.621 Wm−2 per decade in the present work; the disagreement may be attributed to the further recovery of the solar radiation levels (brightening effect) in the decade 2013–2022.
3.5. Statistics
4. Discussion
5. Conclusions
- As shown in Table 2a of Section 3.5, higher (positive) r values are shown between the optical aerosol properties (TAOD550, AE470–870) and either ONI or NAOI, and lower (negative) ones between the radiative parameters (DARF, netSWBOA,CS,A) and either ONI or NAOI. Statistical significance was found between netLWBOA,CS,A and COD; this suggests that clouds play a significant role in preventing IR radiation from the ground (warming effect). Another interesting finding is the strong statistical significance of AE470–870 or DARF with ONI, a fact that confirms the initial hypothesis of the influence of the ENSO phases on the size of the aerosol particles and their radiative effect over the Mediterranean region. Last, the very similar correlation coefficients of TAOD550 and netSWBOA,CS,A with either NAO or ENSO give indirect evidence of the influence of ENSO on NAO and ultimately on the atmospheric radiation over the Mediterranean region.
- As shown in Table 3 of Section 3.5, the highest positive trend is for the netLWBOA at the surface of the Mediterranean; this finding explains the positive trend of DARF (warming effect). Negative trends in the 43-year period of the study are shown by the COD, TAOD550, SAOD550, and AE470–870 parameters; the trend of the latter parameter implies the predominance of coarser-mode particles in the atmosphere of the Mediterranean; these particles have a tendency to absorb solar radiation (positive trend of AAOD550) rather than scatter it (negative trend of SAOD550). This is so because the water droplets of clouds participate in and contribute to this mechanism (declining trend of COD). The trends in the studied parameters show how each parameter has evolved over the Mediterranean region in the period 1980–2022. Since the selected domain of the study is huge, the trends may be considered as being on a macro scale; nevertheless, they show a general trend (positive or negative) that agrees with that from other studies.
- The majority of the atmospheric aerosols in the atmosphere of the selected Mediterranean region during the period of the study and on a monthly basis were found to be classified into the CMA and UBA categories; the first category is related to the vast water surface of the area, while the second is related to the air pollution in large cities and summertime wildfires.
- There was a noticeable drop in the direct aerosol radiative forcing from cold to warm El Niño events (i.e., from negative to positive ONI values). This was shown by the significant negative correlation coefficient (−0.391) between DARF and ONI, which indicated that the progressive shift from cold to warm El Niño events is able to cause a cooling effect in the Mediterranean region, as expressed by DARF drifting to more negative values. This conclusion was confirmed by the significant positive correlation between AE470–870 and ONI (+0.349); positive El Niño events tend to invoke fine-mode atmospheric aerosols over the Mediterranean, which are associated with a cooling effect. Furthermore, the El Niño phase has been shown to correlate positively with the North-Atlantic Oscillation (+0.134); it is, therefore, probable that the cooling effect is produced as a result of the ENSO–NAO teleconnection.
- Though DARF’s trend in relation to ONI is negative (see Figure A1), its trend with respect to time (years) is positive (see Figure 9). This outcome, strange at first glance, is quite explainable. The upward trend of DARF indicates that the atmosphere over the broader Mediterranean region gradually became warmer from 1980 to 2022. Nevertheless, on occasion, when the ENSO phase turns from positive to negative (from El Niño to La Niña) during one or two consecutive years, DARF shows lower values. The latter is shown in Figure A3.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Schulz, M.; Textor, C.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, O.; Dentener, F.; Guibert, S.; et al. Radiative Forcing by Aerosols as Derived from the AeroCom Present-Day and Pre-Industrial Simulations. Atmos. Chem. Phys. 2006, 6, 5225–5246. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, M.; Wang, L.; Li, H.; Li, J. Characteristics of Aerosols and Clouds and Their Role in Earth’s Energy Budget. J. Clim. 2024, 37, 995–1014. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kambezidis, H.D.; Adamopoulos, A.D.; Kassomenos, P.A. On the Characterization of Aerosols Using the Ångström Exponent in the Athens Area. J. Atmos. Sol. Terr. Phys. 2006, 68, 2147–2163. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Q.; Kahn, R.A.; Randerson, J.T.; Diner, D.J. Quantifying Aerosol Direct Radiative Effect with Multiangle Imaging Spectroradiometer Observations: Top-of-Atmosphere Albedo Change by Aerosols Based on Land Surface Types. J. Geophys. Res. 2009, 114, D02109. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Yung, Y.L.; Lv, D.; Hansen, J.; Penner, J.E.; Liao, H.; Ramaswamy, V.; Kahn, R.A.; Zhang, P.; et al. Scattering and Absorbing Aerosols in the Climate System. Nat. Rev. Earth Environ. 2022, 3, 363–379. [Google Scholar] [CrossRef]
- Martin, R.V.; Jacob, D.J.; Yantosca, R.M.; Chin, M.; Ginoux, P. Global and Regional Decreases in Tropospheric Oxidants from Photochemical Effects of Aerosols. J. Geophys. Res. Atmos. 2003, 108, 4097. [Google Scholar] [CrossRef]
- Kerminen, V.-M. The First Estimates of Global Nucleation Mode Aerosol Concentrations Based on Satellite Measurements. Atmos. Chem. Phys. Discuss. 2011, 11, 18823–18852. [Google Scholar] [CrossRef]
- Sinha, P.R.; Kaskaoutis, D.G.; Manchanda, R.K.; Sreenivasan, S. Characteristics of Aerosols over Hyderabad in Southern Peninsular India: Synergy in the Classification Techniques. Ann. Geophys. 2012, 30, 1393–1410. [Google Scholar] [CrossRef]
- Choobari, O.A.; Zawar-Reza, P.; Sturman, A. The Global Distribution of Mineral Dust and Its Impacts on the Climate System: A Review. Atmos. Res. 2014, 138, 152–165. [Google Scholar] [CrossRef]
- Beegum, S.N.; Gherboudj, I.; Chaouch, N.; Temimi, M.; Ghedira, H. Simulation and Analysis of Synoptic Scale Dust Storms over the Arabian Peninsula. Atmos. Res. 2018, 199, 62–81. [Google Scholar] [CrossRef]
- Ohvril, H.; Teral, H.; Neiman, L.; Kannel, M.; Unstare, M.; Tee, M.; Russak, V.; Okulov, O.; Joẽveer, A.; Kallis, A.; et al. Global Dimming and Brightening versus Atmospheric Column Transparency, Europe, 1906–2007. J. Geophys. Res. Atmos. 2009, 114, 1–17. [Google Scholar] [CrossRef]
- Kambezidis, H.D.D.; Founda, D.H.H.; Papanikolaou, N.S.S.; Founda, D.H.H.; Papanikolaou, N.S.S. Linke and Unsworth-Monteith Turbidity Parameters in Athens. Q. J. R. Meteorol. Soc. 1993, 54, 367–374. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Psiloglou, B.E. Climatology of the Linke and Unsworth-Monteith Turbidity Parameters for Greece: Introduction to the Notion of a Typical Atmospheric Turbidity Year. Appl. Sci. 2020, 10, 4043. [Google Scholar] [CrossRef]
- Babatunde, A.; Vincent, O.O. Estimation of Hourly Clearness Index and Diffuse Fraction Over Coastal and Sahel Regions of Nigeria Using NCEP/NCAR Satellite Data. J. Energy Res. Rev. 2021, 7, 1–18. [Google Scholar] [CrossRef]
- Yang, L.; Cao, Q.; Yu, Y.; Liu, Y. Comparison of Daily Diffuse Radiation Models in Regions of China without Solar Radiation Measurement. Energy 2020, 191, 116571. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Kampezidou, S.I.; Kampezidou, D. Mathematical Determination of the Upper and Lower Limits of the Diffuse Fraction at Any Site. Appl. Sci. 2021, 11, 8654. [Google Scholar] [CrossRef]
- Yoo, J.M.; Won, Y.I.; Jeong, M.J.; Kim, K.M.; Shin, D.B.; Lee, Y.R.; Cho, Y.J. Intensity of Climate Variability Derived from the Satellite and MERRA Reanalysis Temperatures: AO, ENSO, and QBO. J. Atmos. Sol. Terr. Phys. 2013, 95–96, 15–27. [Google Scholar] [CrossRef]
- Müller, W.A.; Roeckner, E. ENSO Impact on Midlatitude Circulation Patterns in Future Climate Change Projections. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Abish, B.; Mohanakumar, K. Absorbing Aerosol Variability over the Indian Subcontinent and Its Increasing Dependence on ENSO. Glob. Planet. Change 2013, 106, 13–19. [Google Scholar] [CrossRef]
- Laken, B.A.; Stordal, F. Are There Statistical Links between the Direction of European Weather Systems and ENSO, the Solar Cycle or Stratospheric Aerosols? R. Soc. Open Sci. 2016, 3, 150320. [Google Scholar] [CrossRef]
- Kirov, B.; Georgieva, K. Long-Term Variations and Interrelations of ENSO, NAO and Solar Activity. Phys. Chem. Earth 2002, 27, 441–448. [Google Scholar] [CrossRef]
- Mezzina, B.; García-Serrano, J.; Bladé, I.; Kucharski, F. Dynamics of the ENSO Teleconnection and NAO Variability in the North Atlantic-European Late Winter. J. Clim. 2020, 33, 907–923. [Google Scholar] [CrossRef]
- Casselman, J.W.; Taschetto, A.S.; Domeisen, D.I.V. Nonlinearity in the Pathway of El Ninõ-Southern Oscillation to the Tropical North Atlantic. J. Clim. 2021, 34, 7277–7296. [Google Scholar] [CrossRef]
- Casselman, J.W.; Jiménez-Esteve, B.; Domeisen, D.I.V. Modulation of the El Niño Teleconnection to the North Atlantic by the Tropical North Atlantic during Boreal Spring and Summer. Weather. Clim. Dyn. 2022, 3, 1077–1096. [Google Scholar] [CrossRef]
- García-Serrano, J.; Cassou, C.; Douville, H.; Giannini, A.; Doblas-Reyes, F.J. Revisiting the ENSO Teleconnection to the Tropical North Atlantic. J. Clim. 2017, 30, 6945–6957. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Xie, M.; Fang, K.; Tarasick, D.W.; Wang, H.; Meng, L.; Cheng, X.; Han, H.; Zhang, X. ENSO Teleconnection to Interannual Variability in Carbon Monoxide Over the North Atlantic European Region in Spring. Front. Environ. Sci. 2022, 10, 1027. [Google Scholar] [CrossRef]
- Alpert, P.; Baldi, M.; Ilani, R.; Krichak, S.; Price, C.; Rodó, X.; Saaroni, H.; Ziv, B.; Kishcha, P.; Barkan, J.; et al. Chapter 2 Relations between Climate Variability in the Mediterranean Region and the Tropics: ENSO, South Asian and African Monsoons, Hurricanes and Saharan Dust. In Mediterranean; Lionello, P., Malanotte-Rizzoli, P., Boscolo, R.B.T.-D. in E. and E. S., Eds.; Elsevier: New York, NY, USA, 2006; Volume 4, pp. 149–177. [Google Scholar] [CrossRef]
- Mariotti, A.; Zeng, N.; Lau, K.M. Euro-Mediterranean Rainfall and ENSO—A Seasonally Varying Relationship. Geophys. Res. Lett. 2002, 29, 59-1–59-4. [Google Scholar] [CrossRef]
- Mathbout, S.; Lopez-Bustins, J.A.; Royé, D.; Martin-Vide, J.; Benhamrouche, A. Spatiotemporal Variability of Daily Precipitation Concentration and Its Relationship to Teleconnection Patterns over the Mediterranean during 1975–2015. Int. J. Climatol. 2020, 40, 1435–1455. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. Global and Regional Scale Precipitation Patterns Associated with the El Niňo/Southern Oscillation. Mon. Weather. Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef]
- Urdiales-Flores, D.; Zittis, G.; Hadjinicolaou, P.; Osipov, S.; Klingmüller, K.; Mihalopoulos, N.; Kanakidou, M.; Economou, T.; Lelieveld, J. Drivers of Accelerated Warming in Mediterranean Climate-Type Regions. NPJ Clim. Atmos. Sci. 2023, 6, 97. [Google Scholar] [CrossRef]
- Chiacchio, M.; Wild, M. Influence of NAO and Clouds on Long-Term Seasonal Variations of Surface Solar Radiation in Europe. J. Geophys. Res. Atmos. 2010, 115, D00D22. [Google Scholar] [CrossRef]
- Westervelt, D.M.; Conley, A.J.; Fiore, A.M.; Lamarque, J.F.; Shindell, D.T.; Previdi, M.; Mascioli, N.R.; Faluvegi, G.; Correa, G.; Horowitz, L.W. Connecting Regional Aerosol Emissions Reductions to Local and Remote Precipitation Responses. Atmos. Chem. Phys. 2018, 18, 12461–12475. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, X.; Yin, Z.Y.; An, Z. Global Impact of ENSO on Dust Activities with Emphasis on the Key Region from the Arabian Peninsula to Central Asia. J. Geophys. Res. Atmos. 2021, 126, e2020JD034068. [Google Scholar] [CrossRef]
- Banerjee, P.; Kumar, S.P. ENSO Modulation of Interannual Variability of Dust Aerosols over the Northwest Indian Ocean. J. Clim. 2016, 29, 1391–1415. [Google Scholar] [CrossRef]
- Im, U.; Kanakidou, M. Impacts of East Mediterranean Megacity Emissions on Air Quality. Atmos. Chem. Phys. 2012, 12, 6335–6355. [Google Scholar] [CrossRef]
- Stohl, A.; Aamaas, B.; Amann, M.; Baker, L.H.; Bellouin, N.; Berntsen, T.K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; et al. Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants. Atmos. Chem. Phys. 2015, 15, 10529–10566. [Google Scholar] [CrossRef]
- Abdelkader, M.; Metzger, S.; Mamouri, R.E.; Astitha, M.; Barrie, L.; Levin, Z.; Lelieveld, J. Dust-Air Pollution Dynamics over the Eastern Mediterranean. Atmos. Chem. Phys. 2015, 15, 9173–9189. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Rashki, A.; Dumka, U.C.; Mofidi, A.; Kambezidis, H.D.; Psiloglou, B.E.; Karagiannis, D.; Petrinoli, K.; Gavriil, A. Atmospheric Dynamics Associated with Exceptionally Dusty Conditions over the Eastern Mediterranean and Greece in March 2018. Atmos Res 2019, 218, 269–284. [Google Scholar] [CrossRef]
- Amiridis, V.; Wandinger, U.; Marinou, E.; Giannakaki, E.; Tsekeri, A.; Basart, S.; Kazadzis, S.; Gkikas, A.; Tayler, M.; Baldasano, J.; et al. Optimizing Saharan Dust CALIPSO Retrievals. Atmos. Chem. Phys. Discuss. 2013, 13, 14749–14795. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kambezidis, H.D.; Nastos, P.T.; Kosmopoulos, P.G. Study on an Intense Dust Storm over Greece. Atmos. Environ. 2008, 42, 6884–6896. [Google Scholar] [CrossRef]
- Rizza, U.; Barnaba, F.; Marcello Miglietta, M.; Mangia, C.; Di Liberto, L.; Dionisi, D.; Costabile, F.; Grasso, F.; Paolo Gobbi, G. WRF-Chem Model Simulations of a Dust Outbreak over the Central Mediterranean and Comparison with Multi-Sensor Desert Dust Observations. Atmos. Chem. Phys. 2017, 17, 93–115. [Google Scholar] [CrossRef]
- Sicard, M.; Córdoba-Jabonero, C.; Barreto, A.; Welton, E.J.; Gil-Díaz, C.; Carvajal-Pérez, C.V.; Comerón, A.; García, O.; García, R.; López-Cayuela, M.Á.; et al. Volcanic Eruption of Cumbre Vieja, La Palma, Spain: A First Insight to the Particulate Matter Injected in the Troposphere. Remote Sens. 2022, 14, 2470. [Google Scholar] [CrossRef]
- Robock, A.; Matson, M. Circumglobal Transport of the El Chichón Volcanic Dust Cloud. Science (1979) 1983, 221, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kahn, R.A.; Chaloulakou, A.; Koutrakis, P. Analysis of the Impact of the Forest Fires in August 2007 on Air Quality of Athens Using Multi-Sensor Aerosol Remote Sensing Data, Meteorology and Surface Observations. Atmos Environ. 2009, 43, 3310–3318. [Google Scholar] [CrossRef]
- Mishra, A.K.; Klingmueller, K.; Fredj, E.; Lelieveld, J.; Rudich, Y.; Koren, I. Radiative Signature of Absorbing Aerosol over the Eastern Mediterranean Basin. Atmos. Chem. Phys. 2014, 14, 7213–7231. [Google Scholar] [CrossRef]
- Khadgarai, S.; Kumar, V.; Pradhan, P.K. The Connection between Extreme Precipitation Variability over Monsoon Asia and Large-Scale Circulation Patterns. Atmosphere 2021, 12, 1492. [Google Scholar] [CrossRef]
- Yadav, M. South Asian Monsoon Extremes and Climate Change. In Extremes in Atmospheric Processes and Phenomenon: Assessment, Impacts and Mitigation, Disaster Resilience and Green Growth; Saxena, P., Shukla, A., Gupta, A.K., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2022; pp. 59–86. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kalapureddy, M.C.R.; Devara, P.C.S.; Kosmopoulos, P.G.; Nastos, P.T.; Krishna Moorthy, K.; Kambezidis, H.D. Spatio-Temporal Aerosol Optical Characteristics over the Arabian Sea during the Pre-Monsoon Season. Atmos. Chem. Phys. Discuss. 2009, 9, 22223–22269. [Google Scholar] [CrossRef]
- Casselman, J.W.; Lübbecke, J.F.; Bayr, T.; Huo, W.; Wahl, S.; Domeisen, D.I.V. The Teleconnection of Extreme El Niño-Southern Oscillation (ENSO) Events to the Tropical North Atlantic in Coupled Climate Models. Weather. Clim. Dyn. 2023, 4, 471–487. [Google Scholar] [CrossRef]
- Hochet, A.; Dodet, G.; Ardhuin, F.; Hemer, M.; Young, I. Sea State Decadal Variability in the North Atlantic: A Review. Climate 2021, 9, 173. [Google Scholar] [CrossRef]
- King, M.P.; Keenlyside, N.; Li, C. ENSO Teleconnections in Terms of Non-NAO and NAO Atmospheric Variability. Clim. Dyn. 2023, 61, 2717–2733. [Google Scholar] [CrossRef]
- Casas-Gómez, P.; Sánchez-Salguero, R.; Ribera, P.; Linares, J.C. Contrasting Signals of the Westerly Index and North Atlantic Oscillation over the Drought Sensitivity of Tree-Ring Chronologies from the Mediterranean Basin. Atmosphere 2020, 11, 644. [Google Scholar] [CrossRef]
- Acker, J.G.; Leptoukh, G. Online Analysis Enhances Use of NASA Earth Science Data. Eos Trans. Am. Geophys. Union. 2007, 88, 14. [Google Scholar] [CrossRef]
- Kambezidis, H.D.D. The Solar Resource. In Comprehensive Renewable Energy; Elsevier: New York, NY, USA, 2012; Volume 3, pp. 27–84. [Google Scholar] [CrossRef]
- Jones, P.D.; Jonsson, T.; Wheeler, D. Extension to the North Atlantic Oscillation Using Early Instrumental Pressure Observations from Gibraltar and South-West Iceland. Int. J. Climatol. 1997, 17, 1433–1450. [Google Scholar] [CrossRef]
- Chen, W.Y.; Van den Dool, H. Sensitivity of Teleconnection Patterns to the Sign of Their Primary Action Center. Mon. Weather. Rev. 2003, 131, 2885–2899. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Mon. Weather. Rev. 1987, 115, 282. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Chiu, J.C.; Huang, C.-H.; Marshak, A.; Slutsker, I.; Giles, D.M.; Holben, B.N.; Knyazikhin, Y.; Wiscombe, W.J. Cloud Optical Depth Retrievals from the Aerosol Robotic Network (AERONET) Cloud Mode Observations. J. Geophys. Res. 2010, 115, D14202. [Google Scholar] [CrossRef]
- Min, Q.; Joseph, E.; Duan, M. Retrievals of Thin Cloud Optical Depth from a Multifilter Rotating Shadowband Radiometer. J. Geophys. Res. Atmos. 2004, 109, 1–10. [Google Scholar] [CrossRef]
- Eldering, A.; Kulawik, S.S.; Worden, J.; Bowman, K.; Osterman, G. Implementation of Cloud Retrievals for TES Atmospheric Retrievals: 2. Characterization of Cloud Top Pressure and Effective Optical Depth Retrievals. J. Geophys. Res. Atmos. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Yu, H.; Kaufman, Y.J.; Chin, M.; Feingold, G.; Remer, L.A.; Anderson, T.L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; et al. A Review of Measurement-Based Assessments of the Aerosol Direct Radiative Effect and Forcing. Atmos. Chem. Phys. 2006, 6, 613–666. [Google Scholar] [CrossRef]
- Marinou, E.; Amiridis, V.; Binietoglou, I.; Solomos, S.; Proestakis, E.; Konsta, D.; Tsikerdekis, A.; Papagiannopoulos, N.; Vlastou, G.; Zanis, P.; et al. 3D Evolution of Saharan Dust Transport towards Europe Based on a 9-Year EARLINET-Optimized CALIPSO Dataset. Atmos. Chem. Phys. Discuss. 2016, 1–35. [Google Scholar] [CrossRef]
- Kambezidis, H.D. The Solar Radiation Climate of Greece. Climate 2021, 9, 183. [Google Scholar] [CrossRef]
- Mahowald, N.; Albani, S.; Kok, J.F.; Engelstaeder, S.; Scanza, R.; Ward, D.S.; Flanner, M.G. The Size Distribution of Desert Dust Aerosols and Its Impact on the Earth System. Aeolian Res. 2014, 15, 53–71. [Google Scholar] [CrossRef]
- Shaheen, A.; Wu, R.; Yousefi, R.; Wang, F.; Ge, Q.; Kaskaoutis, D.G.; Wang, J.; Alpert, P.; Munawar, I. Spatio-Temporal Changes of Spring-Summer Dust AOD over the Eastern Mediterranean and the Middle East: Reversal of Dust Trends and Associated Meteorological Effects. Atmos. Res. 2022, 281, 106509. [Google Scholar] [CrossRef]
- Ozdemir, E.; Tuna Tuygun, G.; Elbir, T. Application of Aerosol Classification Methods Based on AERONET Version 3 Product over Eastern Mediterranean and Black Sea. Atmos. Pollut. Res. 2020, 11, 2226–2243. [Google Scholar] [CrossRef]
- Chiapello, I.; Formenti, P.; Mbemba Kabuiku, L.; Ducos, F.; Tanré, D.; Dulac, F. Aerosol Optical Properties Derived from POLDER-3/PARASOL (2005–2013) over the Western Mediterranean Sea–Part 2: Spatial Distribution and Temporal Variability. Atmos. Chem. Phys. 2021, 21, 12715–12737. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kosmopoulos, P.; Kambezidis, H.D.; Nastos, P.T. Aerosol Climatology and Discrimination of Different Types over Athens, Greece, Based on MODIS Data. Atmos. Environ. 2007, 41, 7315–7329. [Google Scholar] [CrossRef]
- Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Léon, J.F. Absorption Properties of Mediterranean Aerosols Obtained from Multi-Year Ground-Based Remote Sensing Observations. Atmos. Chem. Phys. 2013, 13, 9195–9210. [Google Scholar] [CrossRef]
- Ruckstuhl, C.; Norris, J.R.; Philipona, R. Is There Evidence for an Aerosol Indirect Effect during the Recent Aerosol Optical Depth Decline in Europe? J. Geophys. Res. Atmos. 2010, 115, 1–7. [Google Scholar] [CrossRef]
- Robock, A. Climate Model Simulations of the Effects of the El Chichon Eruption. Geofis. Int. 1984, 23, 403–414. [Google Scholar] [CrossRef]
- Parker, D.E.; Wilson, H.; Jones, P.D.; Christy, J.R.; Folland, C.K. The Impact of Mount Pinatubo on World-Wide Temperatures. Int. J. Climatol. 1996, 16, 487–497. [Google Scholar] [CrossRef]
- Sharafa, S.B.; Aliyu, R.; Ibrahim, B.B.; Tijjani, B.I.; Darma, T.H.; Gana, U.M.; Ayedun, F.; Sulu, H.T. Model Prediction and Climatology of Aerosol Optical Depth (Τ550) and Angstrom Exponent (A470-660) over Three Aerosol Robotic Network Stations in Sub-Saharan Africa Using Moderate Resolution Imaging Spectroradiometer Data. Niger. J. Technol. 2020, 39, 255–268. [Google Scholar] [CrossRef]
- Serrano, D.; Marín, M.J.; Núñez, M.; Utrillas, M.P.; Gandía, S.; Martínez-Lozano, J.A. Wavelength Dependence of the Effective Cloud Optical Depth. J. Atmos. Sol. Terr. Phys. 2015, 130–131, 14–22. [Google Scholar] [CrossRef]
- Luccini, E.; Rivas, M.; Rojas, E. Cloud Optical Depth from Total and UV Solar Irradiance Measurements at Two Sites of the Atacama Desert in Chile. Atmos. Res. 2016, 174–175, 18–30. [Google Scholar] [CrossRef]
- Mörner, N.-A. The Approaching New Grand Solar Minimum and Little Ice Age Climate Conditions. Nat. Sci. 2015, 7, 510–518. [Google Scholar] [CrossRef]
- Korras-Carraca, M.B.; Gkikas, A.; Matsoukas, C.; Hatzianastassiou, N. Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019). Atmosphere 2021, 12, 1254. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Kambezidou, D.H. The Solar Dimming Effect over the Mediterranean Region. In Proceedings of the 5th International Conference SOLARIS, Brno, Czech Republic, 10–11 August 2011; pp. 116–121. [Google Scholar]
- Kambezidis, H.D.; Kaskaoutis, D.G.; Kalliampakos, G.K.; Rashki, A.; Wild, M. The Solar Dimming/Brightening Effect over the Mediterranean Basin in the Period 1979–2012. J. Atmos. Sol. Terr. Phys. 2016, 150–151, 31–46. [Google Scholar] [CrossRef]
- Papadimas, C.D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I. The Direct Effect of Aerosols on Solar Radiation over the Broader Mediterranean Basin. Atmos. Chem. Phys. 2012, 12, 7165–7185. [Google Scholar] [CrossRef]
- Gao, P.X. Long-Term Trend of Sunspot Numbers. Astrophys. J. 2016, 830, 140. [Google Scholar] [CrossRef]
- Veronig, A.M.; Jain, S.; Podladchikova, T.; Pötzi, W.; Clette, F. Hemispheric Sunspot Numbers 1874–2020. Astron. Astrophys. 2021, 652, A56. [Google Scholar] [CrossRef]
- Nastos, P.T.; Kambezidis, H.D.; Demetriou, D. Solar Dimming/Brightening within the Mediterranean. In Proceedings of the 13th International Conference on Environmental Science and Technology, Athens, Greece, 5–7 September 2013; Volume 12. [Google Scholar]
- Sanchez-Lorenzo, A.; Calbó, J.; Brunetti, M.; Deser, C. Dimming/Brightening over the Iberian Peninsula: Trends in Sunshine Duration and Cloud Cover and Their Relations with Atmospheric Circulation. J. Geophys. Res. Atmos. 2009, 114, D00D09. [Google Scholar] [CrossRef]
- Wild, M.; Trüssel, B.; Ohmura, A.; Long, C.N.; König-Langlo, G.; Dutton, E.G.; Tsvetkov, A. Global Dimming and Brightening: An Update beyond 2000. J. Geophys. Res. Atmos. 2009, 114, 1–14. [Google Scholar] [CrossRef]
- Stamatis, M.; Hatzianastassiou, N.; Korras-Carraca, M.B.; Matsoukas, C.; Wild, M.; Vardavas, I. An Assessment of Global Dimming and Brightening during 1984-2018 Using the FORTH Radiative Transfer Model and ISCCP Satellite and MERRA-2 Reanalysis Data. Atmosphere 2023, 14, 1258. [Google Scholar] [CrossRef]
- Ioannidis, E.; Lolis, C.J.; Papadimas, C.D.; Hatzianastassiou, N.; Bartzokas, A. On the Intra-Annual Variation of Cloudiness over the Mediterranean Region. Atmos. Res. 2018, 208, 246–256. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Khodayar, S. A Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature. Remote Sens. 2020, 12, 2687. [Google Scholar] [CrossRef]
- Katsoulis, B.; Kambezidis, H. Variation of Cloudiness and Sunshine in the Greek Mainland. Z. Für Meteorol. 1987, 37, 278–284. [Google Scholar]
- Founda, D.; Nastos, P.T.; Pierros, F.; Kalimeris, A. Historical Observations of Cloudiness (1882–2012) over a Large Urban Area of the Eastern Mediterranean (Athens). Theor. Appl. Clim. 2019, 137, 283–295. [Google Scholar] [CrossRef]
- Norris, J.R.; Wild, M. Trends in Aerosol Radiative Effects over Europe Inferred from Observed Cloud Cover, Solar “Dimming”, and Solar “Brightening”. J. Geophys. Res. Atmos. 2007, 112, 1–13. [Google Scholar] [CrossRef]
- Raptis, I.-P.P.; Kazadzis, S.; Amiridis, V.; Gkikas, A.; Gerasopoulos, E.; Mihalopoulos, N. A Decade of Aerosol Optical Properties Measurements over Athens, Greece. Atmosphere 2020, 11, 154. [Google Scholar] [CrossRef]
- Nabat, P.; Somot, S.; Mallet, M.; Sanchez-Lorenzo, A.; Wild, M. Contribution of Anthropogenic Sulfate Aerosols to the Changing Euro-Mediterranean Climate since 1980. Geophys. Res. Lett. 2014, 41, 5605–5611. [Google Scholar] [CrossRef]
- Samman, A.E.; Butt, M.J. Aerosol Types and Their Climatology over the Dust Belt Region. Atmosphere 2023, 14, 1610. [Google Scholar] [CrossRef]
- Pace, G.; di Sarra, A.; Meloni, D.; Piacentino, S.; Chamard, P. Aerosol Optical Properties at Lampedusa (Central Mediterranean). 1. Influence of Transport and Identification of Different Aerosol Types. Atmos. Chem. Phys. 2006, 6, 697–713. [Google Scholar] [CrossRef]
- Kaufman, Y.J. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A). J. Geophys. Res. 1992, 97, 14581–14599. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Fraser, R.S. Temporal and Spatial Variability of Aerosol Optical Depth in the Sahel Region in Relation to Vegetation Remote Sensing. Int. J. Remote Sens. 1991, 12, 1147–1163. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H. Trends in Aerosol Optical Properties over Eastern Europe Based on MODIS-Aqua. Geosci. Front. 2020, 11, 2169–2181. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.G.; Kharol, S.K.K.; Sinha, P.R.R.; Singh, R.P.P.; Kambezidis, H.D.D.; Rani Sharma, A.; Badarinath, K.V.S.V.S. Extremely Large Anthropogenic-Aerosol Contribution to Total Aerosol Load over the Bay of Bengal during Winter Season. Atmos. Chem. Phys. 2011, 11, 7097–7117. [Google Scholar] [CrossRef]
- Damiano, R.; Sannino, A.; Amoruso, S.; Boselli, A. Aerosol Characterization with Long-Term AERONET Sun-Photometer Measurements in the Naples Mediterranean Area. Atmosphere 2022, 13, 2078. [Google Scholar] [CrossRef]
- Kalapureddy, M.C.R.; Kaskaoutis, D.G.; Ernest Raj, P.; Devara, P.C.S.; Kambezidis, H.D.; Kosmopoulos, P.G.; Nastos, P.T. Identification of Aerosol Type over the Arabian Sea in the Premonsoon Season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB). J. Geophys. Res. Atmos. 2009, 114, D17203. [Google Scholar] [CrossRef]
- Kalapureddy, M.C.R.; Devara, P.C.S. Characterization of Aerosols over Oceanic Regions around India during Pre-Monsoon 2006. Atmos Environ. 2008, 42, 6816–6827. [Google Scholar] [CrossRef]
- Al-taie, K.B.; Rajab, J.M.; Al-salihi, A.M. Climatology and Classification of Aerosols Based on Optical Properties over Selected Stations in Iraq. In Proceedings of the 8th International Conference on Applied Science and Technology (ICAST 2020), Bahir Dar, Ethiopia, 2–4 October 2020; Volume 050041, pp. 1–12. [Google Scholar]
- Logothetis, S.A.; Salamalikis, V.; Kazantzidis, A. Aerosol Classification in Europe, Middle East, North Africa and Arabian Peninsula Based on AERONET Version 3. Atmos. Res. 2020, 239, 104893. [Google Scholar] [CrossRef]
- Szkop, A.; Pietruczuk, A.; Posyniak, M. Classification of Aerosol over Central Europe by Cluster Analysis of Aerosol Columnar Optical Properties & Backward Trajectory Statistics. Acta Geophys. 2016, 64, 2650–2676. [Google Scholar]
- Gharibzadeh, M.; Alam, K.; Abedini, Y.; Bidokhti, A.A. Classification of Aerosols Using Multiple Clustering Techniques over Zanjan, Iran, during 2010–2014. In Proceedings of the E3S Web of Conferences, Dushanbe, Tajikistan, 8–12 April 2019; Volume 99, pp. 1–5. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kambezidis, H.D.; Hatzianastassiou, N.; Kosmopoulos, P.G.; Badarinath, K.V.S. Aerosol Climatology: On the Discrimination of Aerosol Types over Four AERONET Sites. Atmos. Chem. Phys. Discuss. 2007, 7, 6357–6411. [Google Scholar] [CrossRef]
- Gerasopoulos, E.; Amiridis, V.; Kazadzis, S.; Kokkalis, P.; Eleftheratos, K.; Andreae, M.O.; Andreae, T.W.; El-Askary, H.; Zerefos, C.S. Three-Year Ground Based Measurements of Aerosol Optical Depth over the Eastern Mediterranean: The Urban Environment of Athens. Atmos. Chem. Phys. 2011, 11, 2145–2159. [Google Scholar] [CrossRef]
- Bruley, E.; Mouillot, F.; Lauvaux, T.; Rambal, S. Enhanced Spring Warming in a Mediterranean Mountain by Atmospheric Circulation. Sci. Rep. 2022, 12, 7721. [Google Scholar] [CrossRef]
- Aurelle, D.; Thomas, S.; Albert, C.; Bally, M.; Bondeau, A.; Boudouresque, C.; Cahill, A.E.; Carlotti, F.; Chenuil, A.; Cramer, W.; et al. Biodiversity, Climate Change, and Adaptation in the Mediterranean. Ecosphere 2022, 13, e3915. [Google Scholar] [CrossRef]
Parameter | Remarks | Period | Source |
---|---|---|---|
NAOI | North-Atlantic Oscillation index | 1980–2022 | CPC/NCEP/NOAA, USA |
ONI | Oceanic El Niño index | 1980–2022 | CPC/NCEP/NOAA, USA |
SSN | Sunspot number | 1980–2022 | WDC/SILSO, Belgium |
TAOD550 | Total aerosol optical depth at 550 nm | 1980–2022 | Giovanni/GSFC/NASA, USA |
SAOD550 | Scattering aerosol optical depth at 550 nm | 1980–2022 | Giovanni/GSFC/NASA, USA |
DAOD550 | Dust aerosol optical depth at 550 nm | 1980–2022 | Giovanni/GSFC/NASA, USA |
AAOD550 | Absorbing aerosol optical depth at 550 nm | 1980–2022 | Giovanni/GSFC/NASA, USA |
AE470–870 | Ångström exponent in the VIS band 470–870 nm | 1980–2022 | Giovanni/GSFC/NASA, USA |
DARF | Direct aerosol radiative forcing | 1980–2022 | Estimated |
COD | Cloud optical depth | 1980–2022 | Giovanni/GSFC/NASA, USA |
netSWBOA,CS,A | Net SW radiation at BOA under CS and presence of A | 1980–2022 | Giovanni/GSFC/NASA, USA |
netSWBOA,CS,NA | Net SW radiation at BOA under CS without A | 1980–2022 | Giovanni/GSFC/NASA, USA |
netSWTOA,CS,A | Net SW radiation at TOA under CS and presence of A | 1980–2022 | Giovanni/GSFC/NASA, USA |
netSWTOA,CS,NA | Net SW radiation at TOA under CS without A | 1980–2022 | Giovanni/GSFC/NASA, USA |
netLWBOA,CS,A | Net LW radiation at BOA under CS and presence of A | 1980–2022 | Giovanni/GSFC/NASA, USA |
netLWBOA,CS,NA | Net LW radiation at BOA under CS without A | 1980–2022 | Giovanni/GSFC/NASA, USA |
netLWTOA,CS,A | Net LW radiation at TOA under CS and presence of A | 1980–2022 | Giovanni/GSFC/NASA, USA |
netLWTOA,CS,NA | Net LW radiation at TOA under CS without A | 1980–2022 | Giovanni/GSFC/NASA, USA |
ρg | Ground albedo | 1980–2022 | Giovanni/GSFC/NASA, USA |
a. Parameter | r | R2 |
---|---|---|
NAOI-ONI | +0.134 | 0.018 |
NAOI-SSN | +0.211 | 0.045 |
ONI-SSN | +0.021 | 0.000 |
TAOD550-ONI | +0.229 | 0.052 |
TAOD550-NAOI | +0.257 | 0.066 |
AE470–870-ONI | +0.349 * | 0.122 * |
AE470–870-NAOI | +0.289 | 0.084 |
DARF-ONI | −0.391 ** | 0.153 ** |
DARF-NAOI | −0.171 | 0.029 |
netSW-ONI | −0.244 | 0.059 |
netSW-NAOI | −0.241 | 0.058 |
netLW-ONI | +0.144 | 0.021 |
netLW-NAOI | +0.105 | 0.011 |
COD-ONI | +0.143 | 0.020 |
COD-NAOI | −0.093 | 0.009 |
DARF-COD | +0.095 | 0.009 |
netSW-COD | +0.226 | 0.051 |
netLW-COD | +0.545 *** | 0.298 *** |
b. Parameter | Value | |
+0.070 | ||
−0.008 | ||
+81.369 sunspots | ||
+0.213 | ||
+0.939 | ||
+4.026 Wm−2 | ||
+17.870 | ||
+274.338 Wm−2 | ||
−97.928 Wm−2 |
Parameter | Trend (Value per Decade) |
---|---|
DARF | +0.203 |
netSWBOA,CS,A | +0.207 Wm−2 |
netLWBOA,CS,A | +0.621 Wm−2 |
COD | −0.190 |
TAOD550 | −0.018 |
SAOD550 | −0.019 |
DAOD550 | +5.281 × 10−4 |
AAOD550 | +7.674 × 10−4 |
AE470–870 | −0.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kambezidis, H.D. Atmospheric Processes over the Broader Mediterranean Region: Effect of the El Niño–Southern Oscillation? Atmosphere 2024, 15, 268. https://doi.org/10.3390/atmos15030268
Kambezidis HD. Atmospheric Processes over the Broader Mediterranean Region: Effect of the El Niño–Southern Oscillation? Atmosphere. 2024; 15(3):268. https://doi.org/10.3390/atmos15030268
Chicago/Turabian StyleKambezidis, Harry D. 2024. "Atmospheric Processes over the Broader Mediterranean Region: Effect of the El Niño–Southern Oscillation?" Atmosphere 15, no. 3: 268. https://doi.org/10.3390/atmos15030268
APA StyleKambezidis, H. D. (2024). Atmospheric Processes over the Broader Mediterranean Region: Effect of the El Niño–Southern Oscillation? Atmosphere, 15(3), 268. https://doi.org/10.3390/atmos15030268