Relation between Central European Climate Change and Eifel Volcanism during the Last 130,000 Years: The ELSA-23-Tephra-Stack
Abstract
:1. Introduction
1.1. West Eifel Volcanic Field
1.2. The ELSA Cores
1.3. Tephra Layers
2. Methods
2.1. Dating of Tephra Layers
2.2. Petrography of Tephra Layers
2.3. Geochemical Characterization of Tephra Layers in the Lake Sediments
3. Results: Documentation of the 14 Marker Tephra Layers Deposited in the Maar Lake Sediments of the Last 130,000 Years
3.1. Ulmener Maar Tephra (UMT) 10,650 yr b2k (Figure S1)
3.2. Laacher See Tephra (LST) 13,056 Dendro Year b2k (Figure S2)
3.3. Eltville Tephra (EVT), 24,720 yr b2k (Figure S3)
3.4. Wartgesberg Tephra (WBT) 28,100 yr b2k (Figure S4)
3.5. Unknown Tephra 1 (UT1) 30,300 yr b2k (Figure S5)
3.6. Dreiser Weiher Tephra (DWT) 40,370 yr b2k (Figure S6)
3.7. Meerfelder Maar Tephra (MMT) 47,340 yr b2k (Figure S7)
3.8. Auel Maar Tephra (AUT) 59,130 yr b2k (Figure S8)
3.9. Schalkenmehrener Maar Tephra (SMT) 72,090 yr b2k (Figure S9)
3.10. Dehner Maar Tephra (DET) 76,100 yr b2k (Figure S10)
3.11. Mosenberg Tephra (MOT) 87,590 yr b2k (Figure S11)
3.12. Chalk Tephra (CHT—Former Unknown Tephra 5 (UT5))—104,050 yr b2k (Figure S12)
3.13. Dümpelmaar Tephra (DMT) 109,000 yr b2k (Figure S13)
3.14. Jungferweiher Tephra (JWT) 132,000 yr b2k (Figure S14)
4. Discussion
Relation between Phreatomagmatic Maar Eruptions and North Atlantic Heinrich Events
- Primary changes in the upper mantle may cause changes in the heat flow trapped under continental ice sheets. If ice sheets are thick enough to be near the point of basal melt, they will surge as soon as the threshold for basal melt is reached. An alternative endogenic–exogenic forcing could imply intensification of Mid-Ocean Ridge spreading rates, warming of ocean water, and increase in water volume, leading to sea level rise, which destabilized the shelf-based ice proportions, leading to a surge in continental ice.
- The other scenario is exogenic forcing, which causes an endogenic response. If ice sheets increase and decrease in size by climatic forces only (insolation, ocean currents, greenhouse gases), one must assume that the changes in the lithospheric stress and associated changes in the oceanic crust stress field are due to the increase in water mass in the oceans and/or loss of ice on the continents (Figure 16). These changes in the global lithospheric stress field could activate tectonic faults that connect the Earth’s atmosphere and surface to the mantle/asthenosphere during times of isostatic adjustment. Under this scenario, exogenic climate forces would act as a trigger for tectonic activity and volcanism.
5. Conclusions
- The Eifel volcanism during the last glacial cycle is characterized by 14 tephra layers from volcanic eruptions, which are visible in all cores across the entire Eifel.
- The eruptions must have taken place over several days to weeks, which are necessary to explain the regional extent of these marker tephra.
- Some of the tephra were connected to an eruption site by studying the sediment petrography of the tuff wall around the maar structures and comparing them with discrete tephra layers in the ELSA sediment cores.
- Tephra from phreatomagmatic eruptions can be best differentiated from volcanic ashes by the amount of host rock fragments, which are derived from the Devonian and Triassic rocks at the site of eruption.
- Most marker tephra occurred during cold phases (Heinrich events and C-events), when the continental ice sheets decayed, meaning they are synchronous with global sea level rise and synchronous with the loss of ice-load on the continents.
- Several tephra have occurred during warm phases; however, they always occur in close connection to times of abrupt warming when precipitation over land has increased, leading to local lake level rise or regional soil moisture change.
- Color changes and associated changes in mineral compositions indicate that several of the tephra represent multiple, synchronous eruptions from maar volcanoes and scoria cones.
- The focus of eruptions in the millennium before warming can be explained by a relationship between Eifel intraplate volcanism and global sea level and Scandinavian ice load, which have the potential to affect the lithospheric stress field in Central Europe.
- The timing of the eruptions close to warming indicates exogenic forcing of endogenic processes. Alternatively, one could also assume that a global period of increased volcanic activity traps geothermal heat under the continental ice sheets and causes their decay.
- A final potential interpretation could involve the increase/decrease in precipitation and thus the weight of the water in the pore space at the groundwater level or in the maar lake. Maar lakes are known to occur along existing faults, which could be activated by the load of lake level increase of many meters in the case of maar structures without an outlet.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Büchel, G.; Negendank, J.F.; Wuttke, M.; Viereck-Götte, L. Quartäre und tertiäre Maare der Eifel, Enspel (Westerwald) und Laacher See: Vulkanologie, Sedimentologie und Hydrogeologie. In Proceedings of the Internationale Maar-Tagung; Neuffer, F.O., Lutz, H., Eds.; Naturhistorisches Museum Mainz: Mainz, Germany, 2000; pp. 85–112. [Google Scholar]
- Lorenz, V.; Büchel, G. Zur Vulkanologie der Maare und Schlackenkegel der Westeifel. Mitt. POLLICHIA 1980, 68, 29–100. [Google Scholar]
- Mertes, H.; Schmincke, H.-U. Mafic potassic lavas of the Quaternary West Eifel volcanic field. Contrib. Mineral. Petrol. 1985, 89, 330–345. [Google Scholar] [CrossRef]
- Meyer, W. Geologie der Eifel; Schweizerbart Science Publishers: Stuttgart, Germany, 1998. [Google Scholar]
- Schmincke, H.-U. The Quaternary Volcanic Fields of the East and West Eifel (Germany); The Quaternary Volcanic Fields of the East and West Eifel (Germany). In Mantle Plumes: A Multidisciplinary Approach; Ritter, J.R.R., Christensen, U.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 241–322. ISBN 978-3-540-68046-8. [Google Scholar]
- Ritter, R.R.; Jordan, M.; Christensen, U.R.; Achauer, U. A mantle plume below the Eifel volcanic fields, Germany. Earth Planet. Sci. Lett. 2001, 186, 7–14. [Google Scholar] [CrossRef]
- Zolitschka, B.; Negendank, J.F.W.; Lottermoser, B.G. Sedimentological proof and dating of the Early Holocene volcanic eruption of Ulmener Maar (Vulkaneifel, Germany). Geol. Rundsch. 1995, 84, 213–219. [Google Scholar] [CrossRef]
- Brauer, A.; Endres, C.; Negendank, J.F.W. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quat. Int. 1999, 61, 17–25. [Google Scholar] [CrossRef]
- Sirocko, F.; Seelos, K.; Schaber, K.; Rein, B.; Dreher, F.; Diehl, M.; Lehne, R.; Jager, K.; Krbetschek, M.; Degering, D. A late Eemian aridity pulse in central Europe during the last glacial inception. Nature 2005, 436, 833–836. [Google Scholar] [CrossRef] [PubMed]
- Büchel, G. Vulkanologische Karte West- und Hocheifel; Johannes Gutenberg University Mainz: Mainz, Germany, 1994. [Google Scholar]
- Lorenz, V. Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to kimberlite diatremes. Phys. Chem. Earth 1975, 9, 17–27. [Google Scholar] [CrossRef]
- Schmincke, H.U. Phreatomagmatische Phasen in Vulkanen der Osteifel. Geol. Jahrb. 1977, 39, 3–45. [Google Scholar]
- Mertz, D.F.; Löhnertz, W.; Nomade, S.; Pereira, A.; Prelević, D.; Renne, P.R. Temporal–spatial evolution of low-SiO2 volcanism in the Pleistocene West Eifel volcanic field (West Germany) and relationship to upwelling asthenosphere. J. Geodyn. 2015, 88, 59–79. [Google Scholar] [CrossRef]
- Schnepp, E.; Hradetzky, H. Combined paleointensity and 40Ar/39Ar age spectrum data from volcanic rocks of the West Eifel field (Germany): Evidence for an early Brunhes geomagnetic excursion. J. Geophys. Res. Solid Earth 1994, 99, 9061–9076. [Google Scholar] [CrossRef]
- Schnepp, E. Geomagnetic paleointensities derived from volcanic rocks of the Quaternary East Eifel volcanic field, Germany. Phys. Earth Planet. Inter. 1996, 94, 23–41. [Google Scholar] [CrossRef]
- van den Bogaard, P. 40Ar/39Ar ages of sanidine phenocrysts from Laacher See Tephra (12,900 yr BP): Chronostratigraphic and petrological significance. Earth Planet. Sci. Lett. 1995, 133, 163–174. [Google Scholar] [CrossRef]
- van den Bogaard, P.; Hall, C.M.; Schmincke, H.-U.; York, D. Precise single-grain 40Ar/39Ar dating of a cold to warm climate transition in Central Europe. Nature 1989, 342, 523–525. [Google Scholar] [CrossRef]
- van den Bogaard, P.; Schmincke, H.U. Die Entwicklungsgeschichte des Mittelrheinraumes und die Eruptionsgeschichte des Osteifel-Vulkanfeldes; Die Entwicklungsgeschichte des Mittelrheinraumes und die Eruptionsgeschichte des Osteifel-Vulkanfeldes. In Rheingeschichte zwischen Mosel und Maas; Schirmer, W., Ed.; Deutsche Quartärvereinigung: Hannover, Germany, 1990; Volume 1, pp. 166–190. [Google Scholar]
- Lippolt, H.J.; Fuhrmann, U.; Hradetzky, H. 40Ar/39Ar age determinations on sanidines of the Eifel volcanic field (Federal Republic of Germany): Constraints on age and duration of a Middle Pleistocene cold period. Chem. Geol. Isot. Geosci. Sect. 1986, 59, 187–204. [Google Scholar] [CrossRef]
- Sirocko, F.; Dietrich, S.; Veres, D.; Grootes, P.M.; Schaber-Mohr, K.; Seelos, K.; Nadeau, M.-J.; Kromer, B.; Rothacker, L.; Roehner, M.; et al. Multi-proxy dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany. Quat. Sci. Rev. 2013, 62, 56–76. [Google Scholar] [CrossRef]
- Degering, D.; Krbetschek, M.R. Dating of interglacial sediments by luminescence methods; Dating of interglacial sediments by luminescence methods. In Developments in Quaternary Sciences; Elsevier: Amsterdam, The Netherlands, 2007; Volume 7, pp. 157–171. ISBN 978-0-444-52955-8. [Google Scholar]
- Britzius, S.; Dreher, F.; Maisel, P.; Sirocko, F. Vegetation Patterns during the Last 132,000 Years: A Synthesis from Twelve Eifel Maar Sediment Cores (Germany): The ELSA-23-Pollen-Stack. Quaternary 2024, 7, 8. [Google Scholar] [CrossRef]
- Förster, M.W.; Sirocko, F. The ELSA tephra stack: Volcanic activity in the Eifel during the last 500,000 years. Glob. Planet. Chang. 2016, 142, 100–107. [Google Scholar] [CrossRef]
- Förster, M.W.; Zemlitskaya, A.; Otter, L.M.; Buhre, S.; Sirocko, F. Late Pleistocene Eifel eruptions: Insights from clinopyroxene and glass geochemistry of tephra layers from Eifel Laminated Sediment Archive sediment cores. J. Quat. Sci. 2020, 35, 186–198. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.J.; Fischer, H.; et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef]
- Riechelmann, D.F.C.; Albert, J.; Britzius, S.; Krebsbach, F.; Scholz, D.; Schenk, F.; Jochum, K.P.; Sirocko, F. Bioproductivity and vegetation changes documented in Eifel maar lake sediments (western Germany) compared with speleothem growth indicating three warm phases during the last glacial cycle. Quat. Int. 2023, 673, 1–17. [Google Scholar] [CrossRef]
- Sirocko, F.; Martínez-García, A.; Mudelsee, M.; Albert, J.; Britzius, S.; Christl, M.; Diehl, D.; Diensberg, B.; Friedrich, R.; Fuhrmann, F.; et al. Muted multidecadal climate variability in central Europe during cold stadial periods. Nat. Geosci. 2021, 14, 651–658. [Google Scholar] [CrossRef]
- Berger, A.; Loutre, M.F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 1991, 10, 297–317. [Google Scholar] [CrossRef]
- Bereiter, B.; Lüthi, D.; Siegrist, M.; Schüpbach, S.; Stocker, T.F.; Fischer, H. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proc. Natl. Acad. Sci. USA 2012, 109, 9755–9760. [Google Scholar] [CrossRef] [PubMed]
- Korte, M.; Brown, M.C.; Panovska, S.; Wardinski, I. Robust Characteristics of the Laschamp and Mono Lake Geomagnetic Excursions: Results From Global Field Models. Front. Earth Sci. 2019, 7, 86. [Google Scholar] [CrossRef]
- Muscheler, R.; Beer, J.; Kubik, P.W.; Synal, H.-A. Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C. Quat. Sci. Rev. 2005, 24, 1849–1860. [Google Scholar] [CrossRef]
- Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J.M.; Chappellaz, J.; et al. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science 2007, 317, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Martrat, B.; Grimalt, J.O.; Shackleton, N.J.; de Abreu, L.; Hutterli, M.A.; Stocker, T.F. Four Climate Cycles of Recurring Deep and Surface Water Destabilizations on the Iberian Margin. Science 2007, 317, 502–507. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, 2004PA001071. [Google Scholar] [CrossRef]
- Grant, K.M.; Rohling, E.J.; Ramsey, C.B.; Cheng, H.; Edwards, R.L.; Florindo, F.; Heslop, D.; Marra, F.; Roberts, A.P.; Tamisiea, M.E.; et al. Sea-level variability over five glacial cycles. Nat. Commun. 2014, 5, 5076. [Google Scholar] [CrossRef]
- Siddall, M.; Rohling, E.J.; Almogi-Labin, A.; Hemleben, C.; Meischner, D.; Schmelzer, I.; Smeed, D.A. Sea level fluctuations during the last glacial cycle. Nature 2003, 423, 853–858. [Google Scholar] [CrossRef]
- Lambeck, K.; Purcell, A. Glacial Rebound and Crustal Stress in Finland; Posiva: Eurajoki, Finland, 2003; ISBN 951-652-124-X. [Google Scholar]
- Wu, P.; Johnston, P.; Lambeck, K. Postglacial rebound and fault instability in Fennoscandia. Geophys. J. Int. 1999, 139, 657–670. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Manga, M. Earthquakes Influenced by Water; Earthquakes Influenced by Water. In Water and Earthquakes; Wang, C.-Y., Manga, M., Eds.; Lecture Notes in Earth System Sciences; Springer: Cham, Switzerland, 2021; pp. 61–82. ISBN 978-3-030-64308-9. [Google Scholar]
- Carlson, G.; Shirzaei, M.; Werth, S.; Zhai, G.; Ojha, C. Seasonal and Long-Term Groundwater Unloading in the Central Valley Modifies Crustal Stress. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018490. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Andersen, K.K.; Svensson, A.M.; Steffensen, J.P.; Vinther, B.M.; Clausen, H.B.; Siggaard-Andersen, M.-L.; Johnsen, S.J.; Larsen, L.B.; Dahl-Jensen, D.; et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. 2006, 111, 1–16. [Google Scholar] [CrossRef]
- Reinig, F.; Wacker, L.; Jöris, O.; Oppenheimer, C.; Guidobaldi, G.; Nievergelt, D.; Adolphi, F.; Cherubini, P.; Engels, S.; Esper, J.; et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature 2021, 595, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Schaarschmidt, M.; Kolb, T.; Büchel, G.; Richter, D.; Zöller, L. Luminescence dating of Late Pleistocene eruptions in the Eifel Volcanic Field, Germany. J. Quat. Sci. 2017, 32, 628–638. [Google Scholar] [CrossRef]
- Schaber, K.; Sirocko, F. Lithologie und Stratigraphie der spätpleistozänen Trockenmaare der Eifel. Mainz. Geowiss. Mitteilungen 2005, 33, 295–340. [Google Scholar]
- Büchel, G. Maars of the Westeifel, Germany; Maars of the Westeifel, Germany. In Paleolimnology of European Maar Lakes; Negendank, J.F.W., Zolitschka, B., Eds.; Lecture Notes in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 1993; Volume 49, pp. 1–13. ISBN 978-3-540-56570-3. [Google Scholar]
- van den Bogaard, P.; Schmincke, H.-U. The eruptive center of the late quaternary Laacher see tephra. Geol. Rundsch. 1984, 73, 933–980. [Google Scholar] [CrossRef]
- Jouannic, G.; Walter-Simonnet, A.V.; Bossuet, G.; Simonnet, J.P.; Jacotot, A. Evidence of tephra reworking in loess based on 2D magnetic susceptibility mapping: A case study from Rocourt, Belgium. Quat. Int. 2016, 394, 123–132. [Google Scholar] [CrossRef]
- Zens, J.; Zeeden, C.; Römer, W.; Fuchs, M.; Klasen, N.; Lehmkuhl, F. The Eltville Tephra (Western Europe) age revised: Integrating stratigraphic and dating information from different Last Glacial loess localities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 466, 240–251. [Google Scholar] [CrossRef]
- Eichhorn, L.; Pirrung, M.; Zolitschka, B.; Büchel, G. Pleniglacial sedimentation process reconstruction on laminated lacustrine sediments from lava-dammed Paleolake Alf, West Eifel Volcanic Field (Germany). Quat. Sci. Rev. 2017, 172, 83–95. [Google Scholar] [CrossRef]
- Schenk, F.; Hambach, U.; Britzius, S.; Veres, D.; Sirocko, F. A Cryptotephra Layer in Sediments of an Infilled Maar Lake from the Eifel (Germany): First Evidence of Campanian Ignimbrite Ash Airfall in Central Europe. Quaternary 2024, 7, 17. [Google Scholar] [CrossRef]
- Zöller, L.; Blanchard, H. The partial heat—Longest plateau technique: Testing TL dating of Middle and Upper Quaternary volcanic eruptions in the Eifel Area, Germany. EG Quat. Sci. J. 2009, 58, 86–106. [Google Scholar] [CrossRef]
HM1 | AU3 | AU4 | DE3 | DE4 | HL2 | HL4 | JW2 | JW3 | ||
---|---|---|---|---|---|---|---|---|---|---|
Tephra | Age [yr b2k] | Depth [m] | Depth [m] | Depth [m] | Depth [m] | Depth [m] | Depth [m] | Depth [m] | Depth [m] | Depth [m] |
UMT * top | 10,650 | 8.480 | ||||||||
UMT * base | 8.485 | |||||||||
LST top | 13,056 | 9.540 | 13.590 | 14.400 | 3.400 | 5.270 | ||||
LST base | 9.580 | 13.690 | 14.500 | 3.475 | 5.330 | |||||
EVT top | 24,720 | 24.360 | 24.150 | 30.480 | ||||||
EVT base | 24.440 | 24.160 | 30.570 | |||||||
WBT top | 28,100 | 36.800 | 36.830 | 37.799 | 39.820 | |||||
WBT base | 37.020 | 36.890 | 37.920 | 39.910 | ||||||
UT1 top | 30,300 | 46.550 | 42.760 | 43.520 | ||||||
UT1 base | 46.680 | 42.910 | 43.650 | |||||||
DWT top | 40,370 | 71.110 | 70.910 | 54.540 | 51.360 | 49.160 | ||||
DWT base | 71.160 | 70.930 | 54.565 | 51.530 | 49.250 | |||||
MMT top | 47,340 | 81.740 | 81.150 | 57.580 | 59.540 | 17.510 | 11.610 | 62.480 | ||
MMT base | 81.780 | 81.170 | 57.630 | 59.560 | 17.520 | 11.620 | 62.500 | |||
AUT top | 59,130 | 102.380 | 76.240 | 73.940 | ||||||
AUT base | 76.370 | 73.950 | ||||||||
SMT top | 72,090 | 83.400 | 27.100 | 20.210 | 79.690 | 80.800 | ||||
SMT base | 83.560 | 28.990 | 21.200 | 79.970 | 80.940 | |||||
DET top | 76,100 | 87.000 | 29.410 | 22.190 | 86.270 | |||||
DET base | 88.000 | 29.420 | 22.210 | 86.280 | ||||||
MOT top | 87,590 | 34.260 | 27.260 | 120.500 | 124.660 | |||||
MOT base | 34.310 | 27.300 | 120.830 | 124.680 | ||||||
CHT top | 104,050 | 46.000 | 38.410 | 130.270 | 135.740 | |||||
CHT base | 46.130 | 38.520 | 130.620 | 135.850 | ||||||
DMT top | 109,000 | 48.830 | 41.180 | 133.170 | 139.030 | |||||
DMT base | 48.990 | 41.230 | 133.410 | 139.210 | ||||||
JWT top | 132,000 | 82.000 | 154.850 | |||||||
JWT base | 83.000 | 155.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirocko, F.; Krebsbach, F.; Albert, J.; Britzius, S.; Schenk, F.; Förster, M.W. Relation between Central European Climate Change and Eifel Volcanism during the Last 130,000 Years: The ELSA-23-Tephra-Stack. Quaternary 2024, 7, 21. https://doi.org/10.3390/quat7020021
Sirocko F, Krebsbach F, Albert J, Britzius S, Schenk F, Förster MW. Relation between Central European Climate Change and Eifel Volcanism during the Last 130,000 Years: The ELSA-23-Tephra-Stack. Quaternary. 2024; 7(2):21. https://doi.org/10.3390/quat7020021
Chicago/Turabian StyleSirocko, Frank, Frederik Krebsbach, Johannes Albert, Sarah Britzius, Fiona Schenk, and Michael W. Förster. 2024. "Relation between Central European Climate Change and Eifel Volcanism during the Last 130,000 Years: The ELSA-23-Tephra-Stack" Quaternary 7, no. 2: 21. https://doi.org/10.3390/quat7020021
APA StyleSirocko, F., Krebsbach, F., Albert, J., Britzius, S., Schenk, F., & Förster, M. W. (2024). Relation between Central European Climate Change and Eifel Volcanism during the Last 130,000 Years: The ELSA-23-Tephra-Stack. Quaternary, 7(2), 21. https://doi.org/10.3390/quat7020021