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Abstract: The Etesian winds characterize the summertime circulation in the Eastern Mediterranean.
Etesians are modulated by the Indian summer monsoon (ISM), but their response to other external
forcings is not understood. Here, we investigate the response of Etesians to the Novarupta/Katmai
1912 volcanic eruption with the aid of 20th Century reanalysis and station-based wind observations.
We demonstrate a robust reduction in the total number of days with Etesian winds in July and
August 1913. We also detect a strong cooling and weakened surface pressure gradients in the Eastern
Mediterranean, which explains the decline in Etesian winds in the post-eruption summer.
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1. Introduction

Etesian winds characterize the summertime circulation in the Eastern Mediterranean
(EMed) [1]. Etesians exhibit a strong seasonal variation, with the strongest wind speeds in
July and August. This has been attributed to the synchronization with the development of
the Indian summer monsoon (ISM) [2,3]. A stronger ISM favors adiabatic heating in the
EMed, which is balanced via cooling caused by stronger Etesian wind speeds.

Misios et al. [4] investigated the role of major volcanic eruptions over the last millen-
nium (850–2005) on the Etesians in the CESM Last Millennium simulations. They identified
anomalously colder summers in the Mediterranean one to two years after strong eruptions,
a cooling that maximizes in the EMed. Volcanic eruptions are found to impact sea level
pressure (SLP), particularly over the Anatolian low. This reduces SLP gradients over the
Aegean Sea, which in turn reduces wind speeds and the number of days with Etesians in
the first summer after the eruption. Misios et al. [4] identified some aspects of the simulated
responses in the case of the Pinatubo 1991 eruption, although of low statistical signifi-
cance. Motivated by the stronger sensitivity to high-latitude eruptions in the Northern
Hemisphere, here, we investigate possible changes in the Etesian winds in the summers
following the Novarupta (Katmai) eruption in Alaska (58◦ N) in June 1912 [5], which is the
strongest high-latitude eruption of the 20th century. It is estimated that Katmai injected
about 5 megatons (Mt) of SO2 into the stratosphere, which was confined to the Northern
Hemisphere [6]. This compares to a stratospheric loading for the Mount Pinatubo eruption.

2. Data and Methods
2.1. 20th Century Reanalysis and L Days

We analyzed circulation changes using the NOAA–CIRES–DOE 20th Century Re-
analysis project (20CR hereafter) [7]. Etesian winds in 20CR were compared with station
wind observations. This was confirmed by comparing 20CR with the L days dataset of
Carapiperis [8]. The correlation between the number of Etesian days (see Section 2.2) from
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the 20CR dataset and the L days index over the common 1900–2006 period is significant
(r = 0.59, p < 0.01 based on a two-tailed t-test; see Figure 1).
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capturing the years of the weakened number of Etesian days. One such example is the 
summer of 2014, which has been analyzed by Tyrlis et al. [9], but the most notable reduc-
tion is identified in the summer of 1913. This summer experienced a collapse of Etesian 
winds as the number of days with Etesian winds hardly exceeded 2 or 8 days in the L days 
and 20CR, respectively. This is a very pronounced decline indicative of a summer essen-
tially without Etesians. 

It is interesting to note that this collapse happened the summer following the Kat-
mai/Novarupta eruption in Alaska, which prompts for an examination of the surface con-
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2.2. Definition of Days with Etesian Winds

We calculated daily wind speed (WSP) and wind direction (WDIR) during the late
summer (July and August, JA hereafter) at a fixed grid point (37.5◦ N, 25.0◦ E) in the central
Aegean Sea. Following the methodology of Misios et al. [4], a day with Etesians occurs
when the following criteria are satisfied: (a) WDIR is between NW (315◦) and NE (45◦),
(b) daily WSP exceeds its long-term median, and (c) criteria (a) and (b) are fulfilled for at
least 2 consecutive days. Finally, we count the number of Etesian days (NED) for every JA
season.

3. Results
3.1. Number of Etesian Days over the 20th Century

We first analyze the time series of NED from 1900 onwards using the 20CR reanalysis
and the L days (Figure 1). The 20CR agrees well with the empirical L-day index, both
capturing the years of the weakened number of Etesian days. One such example is the
summer of 2014, which has been analyzed by Tyrlis et al. [9], but the most notable reduction
is identified in the summer of 1913. This summer experienced a collapse of Etesian winds
as the number of days with Etesian winds hardly exceeded 2 or 8 days in the L days and
20CR, respectively. This is a very pronounced decline indicative of a summer essentially
without Etesians.

It is interesting to note that this collapse happened the summer following the Kat-
mai/Novarupta eruption in Alaska, which prompts for an examination of the surface
conditions in the summer of 1913.

3.2. The EMed Summer after the Katmai Eruption

The Northern Hemisphere surface temperature cooled by about 0.5 K in the summer of
1912 because of the elevated concentration of stratospheric aerosols, which efficiently block
the incoming short-wave radiation. The cooling also persisted in the following summer
but with notable spatial differences. Figure 2 shows the surface temperature anomalies
in JA 1912 and 1913 in relation to the mean 1918–1940 climatology. There is a widespread
cooling over Europe and Asia that weakens in the following year. Yet, the surface cooling
over the Balkans, Greece, and Southern Eastern Mediterranean is amplified in the summer
of 1913, exceeding −3 K anomalies. In contrast to the overall cooling, an area of significant
warming stands out over Central Africa.
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pected. Similar patterns of a forced response to volcanic eruptions have also been simulated 
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and 1913.  

4. Summary 
Previous model simulations for the Katmai eruption found a large radiative cooling 

over the landmasses during the post-eruption summer in EMed [6]. Here, using the 20CR, 
we demonstrate a strong surface cooling and changes in the SLP pattern, which affect Ete-
sian winds in the summer of 1913. These findings have been supported by analyzing 
strong eruptions in the Last Millennium model simulations. Misios et al. [4] provided a 

Figure 2. Surface temperature anomalies in the summers (July–August mean) of 1912 and 1913.

The surface cooling in the two summers after the eruption is associated with an
increased SLP in the EMed and Anatolian low, particularly in the summer of 1913 (Figure 3)
that exceeds 3 hPa. This SLP pattern suggests a reduced SLP gradient over the Aegean Sea,
which should cause weaker wind speeds as evidenced by the southerly anomalies of about
2 ms−1 (arrows in Figure 3). Hence, as discussed in the previous section, fewer days with
Etesians are expected. Similar patterns of a forced response to volcanic eruptions have also
been simulated with climate models [4,10].
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4. Summary

Previous model simulations for the Katmai eruption found a large radiative cooling
over the landmasses during the post-eruption summer in EMed [6]. Here, using the 20CR,
we demonstrate a strong surface cooling and changes in the SLP pattern, which affect
Etesian winds in the summer of 1913. These findings have been supported by analyzing
strong eruptions in the Last Millennium model simulations. Misios et al. [4] provided a
mechanism through which a high altitude eruption weakens ISM, reduces upwelling in
the ISM branch, and subsequently weakens the descending branch in the EMed region.
This weakens SLP gradients between Central Europe/Balkans and the Anatolian region
and thus reduces Etesian winds. The 20CR reanalysis provides similar evidence for the
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high-latitude Katmai eruption, which prompts for further investigation on the ISM–Etesian
winds connection using ensemble simulations with a global climate model.
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