Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (411)

Search Parameters:
Keywords = volatile oil quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5449 KiB  
Article
Comparisons of the Effects of Polymer and Alcohol Varnishes on Norway Spruce Wood Surface Modifications
by Mariana Domnica Stanciu, Maria Cristina Timar, Mircea Mihalcica, Mihaela Cosnita and Florin Dinulică
Polymers 2025, 17(15), 2131; https://doi.org/10.3390/polym17152131 - 1 Aug 2025
Viewed by 233
Abstract
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, [...] Read more.
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, but also to protect the wood from dirt. The varnishes used both to protect the wood from resonance and to ensure a special aesthetic appearance are either polymeric varnishes (nitrocellulose, oil-based) or volatile solvents (spirit). In this study, the color changes, the surface morphology and the chemical spectrum produced by three types of varnishes, applied in 5, 10 and 15 layers, on resonance spruce plates were analyzed. The results revealed significant changes in the color parameters: the lightness decreased by approximately 17% after the first layer, by 50% after 5 layers, by 65% after 10 layers and by 70% after 15 layers. The color parameters are most influenced by the anatomical quality of spruce wood (annual ring width and earlywood/latewood ratio) in the case of oil-based varnishes and least influenced in the case of nitrocellulose varnishes. The chemical fingerprint was determined by FTIR spectrum analysis, which revealed that the most pronounced absorptions were the double band 2926–2858 cm−1, corresponding to aliphatic methylene and methyl groups (asymmetric and symmetrical C-H stretch), and the bands at 1724 cm−1 (oil-based varnish), 1722 cm−1 (nitrocellulose varnish) and 1708 cm−1 (spirit varnish), all assigned to non-conjugated carbonyl groups in either carboxylic acids, esters aldehydes or ketones. The novelty of the study lies in the comparative analysis of three types of varnishes used in the musical instrument industry, applied to samples of spruce resonance wood with different macroscopic characteristics in three different layer thicknesses. Full article
(This article belongs to the Special Issue Advances in Wood Based Composites, 2nd Edition)
Show Figures

Figure 1

38 pages, 1138 KiB  
Review
Emerging Trends in Active Packaging for Food: A Six-Year Review
by Mariana A. Andrade, Cássia H. Barbosa, Regiane Ribeiro-Santos, Sidney Tomé, Ana Luísa Fernando, Ana Sanches Silva and Fernanda Vilarinho
Foods 2025, 14(15), 2713; https://doi.org/10.3390/foods14152713 - 1 Aug 2025
Viewed by 77
Abstract
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, [...] Read more.
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, and phenolic compounds as active agents. Primarily plant-derived, these compounds exhibit significant antioxidant and antimicrobial activities, extending shelf life and enhancing food quality. Technological strategies such as encapsulation and polymer blending have been increasingly adopted to overcome challenges related to volatility, solubility, and sensory impact. Integrating bio-based polymers, including chitosan, starch, and polylactic acid, further supports the development of environmentally friendly packaging systems. This review also highlights trends in compound-specific research, release mechanisms, and commercial applications, including a detailed analysis of patents and case studies across various food matrices. These developments have already been translated into practical applications, such as antimicrobial sachets for meat and essential oil-based pads for fresh produce. Moreover, by promoting the valorization of agro-industrial by-products and the use of biodegradable materials, emission-type active packaging contributes to the principles of the circular economy. This comprehensive overview underscores the potential of natural bioactive compounds in advancing sustainable and functional food packaging technologies. Full article
Show Figures

Figure 1

21 pages, 6310 KiB  
Article
Geological Evaluation of In-Situ Pyrolysis Development of Oil-Rich Coal in Tiaohu Mining Area, Santanghu Basin, Xinjiang, China
by Guangxiu Jing, Xiangquan Gao, Shuo Feng, Xin Li, Wenfeng Wang, Tianyin Zhang and Chenchen Li
Energies 2025, 18(15), 4034; https://doi.org/10.3390/en18154034 - 29 Jul 2025
Viewed by 170
Abstract
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index [...] Read more.
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index classification and quantification was employed in combination with the geological features of the Tiaohu mining area to establish a feasibility evaluation index system suitable for in-situ development in the study region. Among these factors, coal quality parameters (e.g., coal type, moisture content, volatile matter, ash yield), coal seam occurrence characteristics (e.g., seam thickness, burial depth, interburden frequency), and hydrogeological conditions (e.g., relative water inflow) primarily govern pyrolysis process stability. Surrounding rock properties (e.g., roof/floor lithology) and structural features (e.g., fault proximity) directly impact pyrolysis furnace sealing integrity, while environmental geological factors (e.g., hazardous element content in coal) determine environmental risk control effectiveness. Based on actual geological data from the Tiaohu mining area, the comprehensive weight of each index was determined. After calculation, the southwestern, central, and southeastern subregions of the mining area were identified as favorable zones for pyrolysis development. A constraint condition analysis was then conducted, accompanied by a one-vote veto index system, in which the thresholds were defined for coal seam thickness (≥1.5 m), burial depth (≥500 m), thickness variation coefficient (≤15%), fault proximity (≥200 m), tar yield (≥7%), high-pressure permeability (≥10 mD), and high-pressure porosity (≥15%). Following the exclusion of unqualified boreholes, three target zones for pyrolysis furnace deployment were ultimately selected. Full article
Show Figures

Figure 1

31 pages, 1981 KiB  
Review
Volatile Organic Compounds in Teas: Identification, Extraction, Analysis, and Application of Tea Aroma
by Qin Zeng, Huifeng Wang, Jiaojiao Tuo, Yumeng Ding, Hongli Cao and Chuan Yue
Foods 2025, 14(15), 2574; https://doi.org/10.3390/foods14152574 - 23 Jul 2025
Viewed by 414
Abstract
Volatile organic compounds (VOCs) are important for teas’ quality and act as a critical evaluative criterion in teas. The distinctive aromatic profile of tea not only facilitates tea classification but also has potential applications in aroma-driven product innovation. In this review, we summarized [...] Read more.
Volatile organic compounds (VOCs) are important for teas’ quality and act as a critical evaluative criterion in teas. The distinctive aromatic profile of tea not only facilitates tea classification but also has potential applications in aroma-driven product innovation. In this review, we summarized the tea aroma from tea classification, VOCs extraction methodologies, and VOCs detection techniques. Moreover, the potential utilization of tea aroma in the future, such as applications in essential oil refinement, food flavor enhancement, and functional fragrance for personal health care, was proposed. Our review will provide a solid foundation for further investigations in tea aroma and offer significant insights into the development and application of tea fragrance. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

26 pages, 612 KiB  
Article
Improvement of Oxidative Stability and Antioxidative Capacity of Virgin Olive Oil by Flash Thermal Pretreatment—Optimization Process
by Dubravka Škevin, Sandra Balbino, Mirella Žanetić, Maja Jukić Špika, Olivera Koprivnjak, Katarina Filipan, Marko Obranović, Karla Žanetić, Edina Smajić, Mateo Radić, Magdalena Bunić, Monika Dilber and Klara Kraljić
Foods 2025, 14(15), 2564; https://doi.org/10.3390/foods14152564 - 22 Jul 2025
Viewed by 460
Abstract
Flash thermal pretreatment (FTT) is a promising technique for enhancing virgin olive oil (VOO) quality. This study investigated the effects of FTT, both cooling (15–25 °C) and heating (30–40 °C), on phenolics, tocopherols, fatty acid composition, oxidative stability (OSI), antioxidant capacity (AC), and [...] Read more.
Flash thermal pretreatment (FTT) is a promising technique for enhancing virgin olive oil (VOO) quality. This study investigated the effects of FTT, both cooling (15–25 °C) and heating (30–40 °C), on phenolics, tocopherols, fatty acid composition, oxidative stability (OSI), antioxidant capacity (AC), and volatile composition in VOOs from three Croatian varieties: Istarska Bjelica, Levantinka, and Oblica. A full factorial experimental design was used with two independent variables: treatment temperature and olive variety. Olive pastes were treated after crushing and before malaxation. Data were evaluated using ANOVA, partial least squares (PLS) regression, and response surface methodology (RSM). Istarska Bjelica showed the highest OSI improvement (+16%) mostly linked to elevated phenolic compounds. Levantinka exhibited moderate responses, with slight OSI and AC declines. Oblica was most sensitive to heating, showing OSI and AC reductions (up to 28%), despite increased oleocanthal and olacein. RSM identified optimal FTT temperatures for each variety: 18.9 °C (Istarska Bjelica), 15.4 °C (Levantinka), and 15.5 °C (Oblica). These findings support variety-specific FTT as an effective strategy to improve VOO functional and sensory quality. Full article
Show Figures

Figure 1

18 pages, 2803 KiB  
Article
Single-Gelator Structuring of Hemp Oil Using Agarose: Comparative Assembly, Electronic Nose Profiling, and Functional Performance of Hydroleogels Versus Oleogels in Shortbread Cookies
by Oliwia Paroń and Joanna Harasym
Polymers 2025, 17(14), 1988; https://doi.org/10.3390/polym17141988 - 20 Jul 2025
Viewed by 318
Abstract
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited [...] Read more.
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited superior crispiness (45.67 ± 3.86 N for 2% agarose hydroleogel—HOG 2%) but problematic water activity (0.39–0.61), approaching microbial growth thresholds. Conversely, oleogels showed lower crispiness (2.27–3.43 N) but optimal moisture control (aw = 0.12–0.16) and superior color stability during 10-day storage. Electronic nose analysis using 10 metal oxide sensors revealed that oleogel systems preserved characteristic aroma profiles significantly better than hydroleogels, with 2% agarose oleogel (OG 2%) showing 34% less aroma decay than pure hemp oil. The 2% agarose oleogel demonstrated optimal performance with minimal baking loss (5.87 ± 0.20%), excellent structural integrity, and stable volatile compound retention over storage. Morphological analysis showed that hemp oil cookies achieved the highest specific volume (2.22 ± 0.07 cm3/g), while structured systems ranged from 1.12 to 1.31 cm3/g. This work establishes agarose as a versatile single gelator for hemp oil structuring and validates electronic nose technology for the objective quality assessment of fat-replaced bakery products, advancing healthier food design through molecular approaches. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

18 pages, 3442 KiB  
Article
Study on the Variation Patterns of Main Components and Chromaticity During the Developmental Process of Magnoliae Flos (Magnolia biondii)
by Chenxi Bu, Qinqin Zhang, Xiaoya Sun and Suiqing Chen
Horticulturae 2025, 11(7), 806; https://doi.org/10.3390/horticulturae11070806 - 7 Jul 2025
Viewed by 298
Abstract
Analyze the quality differences of Magnoliae Flos (MF) at different developmental stages and determine its optimal harvest period. In this study, a detection method for the main chemical components of MF was established based on GC-MS and UPLC, and the volatile oil and [...] Read more.
Analyze the quality differences of Magnoliae Flos (MF) at different developmental stages and determine its optimal harvest period. In this study, a detection method for the main chemical components of MF was established based on GC-MS and UPLC, and the volatile oil and lignan components were determined. The quality differences between MF at different developmental stages were compared based on chemical composition. Chromaticity values of MF samples were measured using electronic eye technology, followed by correlation analysis to reveal the relationship between internal compositional changes and external color differences. The results indicated that the harvesting period significantly affected the chemical composition of MF. Specifically, the contents of volatile oils and lignans initially increased and then decreased as the flower buds developed. There are obvious correlations between six different volatile components and some lignans of MF and their chromaticity values (p < 0.05). This study clarified the dynamic changes in relevant indicators during the development of MF, which can provide a reference for the rational utilization and scientific harvesting of MF resources. Full article
Show Figures

Figure 1

18 pages, 1568 KiB  
Article
Coupling of Temporal-Check-All-That-Apply and Nose-Space Analysis to Investigate the In Vivo Flavor Perception of Extra Virgin Olive Oil and Carriers’ Impact
by Danny Cliceri, Iuliia Khomenko, Franco Biasioli, Flavia Gasperi and Eugenio Aprea
Foods 2025, 14(13), 2343; https://doi.org/10.3390/foods14132343 - 1 Jul 2025
Viewed by 321
Abstract
The perceived quality of extra virgin olive oil (EVOO) arises from the multisensory integration of multimodal stimuli, primarily driven by non-volatile and volatile organic compounds (VOCs). Given that EVOO is frequently consumed in combination with other foods, cross-modal interactions, encompassing both internal and [...] Read more.
The perceived quality of extra virgin olive oil (EVOO) arises from the multisensory integration of multimodal stimuli, primarily driven by non-volatile and volatile organic compounds (VOCs). Given that EVOO is frequently consumed in combination with other foods, cross-modal interactions, encompassing both internal and external elements, play a crucial role in shaping its sensory perception. A more realistic representation of EVOO perception can be achieved by considering these cross-modal effects and their temporal dynamics. This study employed dynamic sensory and instrumental techniques to investigate the product-related mechanisms that influence EVOO flavor perception. Ten trained panelists (mean age = 41.5 years; 50% female) evaluated two EVOO samples under two consumption conditions: alone and accompanied by a solid carrier (bread or chickpeas). Temporal Check-All-That-Apply (TCATA) and nose-space analysis using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were conducted simultaneously. Sensory descriptors and mass spectral peaks were analyzed through temporal curve indices (Area Under the Curve, Maximum Citation/Concentration, Time to Maximum), which were then used to construct multi-dimensional sensory and VOC release maps. Findings revealed that the composition and texture of the food carriers had a greater influence on temporal flavor perception than the variability in VOCs released by the different EVOO samples. These results underscore the importance of considering cross-modal sensory interactions when predicting EVOO flavor perception. The carriers modulated both the perception and VOC release, with effects dependent on their specific composition and texture. This methodological approach enabled a deeper understanding of the dynamic relationship between VOC release and EVOO sensory experience. Full article
Show Figures

Graphical abstract

25 pages, 2431 KiB  
Article
Chemical, Sensory, and Nutraceutical Profiling, and Shelf-Life Assessment of High-Quality Extra Virgin Olive Oil Produced in a Local Area near Florence (Italy)
by Carlotta Breschi, Lorenzo Cecchi, Federico Mattagli, Bruno Zanoni, Tommaso Ugolini, Francesca Ieri, Luca Calamai, Maria Bellumori, Nadia Mulinacci, Fabio Boncinelli, Valentina Canuti and Silvio Menghini
Molecules 2025, 30(13), 2811; https://doi.org/10.3390/molecules30132811 - 30 Jun 2025
Viewed by 380
Abstract
Consumers are increasingly willing to pay a premium for high-quality extra virgin olive oils (HQ-EVOOs) with specific sensory or nutraceutical properties, and originating from particular botanical or geographical origins. Regarding geographic origin, Italy is one of the main producers, with many local production [...] Read more.
Consumers are increasingly willing to pay a premium for high-quality extra virgin olive oils (HQ-EVOOs) with specific sensory or nutraceutical properties, and originating from particular botanical or geographical origins. Regarding geographic origin, Italy is one of the main producers, with many local production areas, each characterized by its own distinctive typicity. The aim of this study is the chemical, sensory, and nutraceutical profiling of HQ-EVOO produced over two production years in Montespertoli (province of Florence) by 12 producers involved in the “MontEspertOlio” project, funded by the Tuscan Region. Oils were produced based on a production process previously defined and specifically applied to this territory. The shelf-life of the oil was also evaluated over a 12-month period. Legal quality parameters were analyzed according to EU regulation. Phenolic compounds, tocopherols, fatty acid composition, and volatile compounds were analyzed using HPLC-DAD, HPLC-FLD, HS-SPME-GC-MS, and GC-FID, respectively. Finally, sensory analysis was conducted using the Panel Test method. Results showed that Montespertoli HQ-EVOO is characterized by distinctive sensory and chemical traits that fully match consumer preferences, even across two production years characterized by different growing conditions. The shelf-life performance was excellent over 12 months, also showing a protective effect of greater bottle sizes against oxidation. Full article
Show Figures

Figure 1

19 pages, 1276 KiB  
Article
Design and Production of an Instant Coffee Product Based on Greek Coffee Oil: Study of the Effect of Storage Conditions on Product Aroma and Quality
by Efimia Dermesonlouoglou, Vassiliki Palaioxari-Kampisiouli, Dimitrios Tsimogiannis and Petros Taoukis
Beverages 2025, 11(3), 88; https://doi.org/10.3390/beverages11030088 - 9 Jun 2025
Viewed by 907
Abstract
The objective of this study was to obtain and evaluate a coffee aroma extract/oil with sensorial attributes close to the original brew of Greek coffee for use in an instant Greek coffee powder. The oil was obtained directly from commercial Greek coffee by [...] Read more.
The objective of this study was to obtain and evaluate a coffee aroma extract/oil with sensorial attributes close to the original brew of Greek coffee for use in an instant Greek coffee powder. The oil was obtained directly from commercial Greek coffee by solid-liquid extraction using hexane as a solvent and treated with a series of hexane-ethanol mixtures (0:10, 1:4, 1:9) to remove the intense roasted flavor of the crude coffee oil obtained by hexane; the de-oiled coffee was used for the recovery of water-soluble compounds, and the produced water extract was freeze-dried. The aromatic volatiles of the coffee oil samples were analyzed by using a purge-and-trap device coupled to GC-MS, as well as sensory analysis. The instant Greek coffee powder was produced by mixing the freeze-dried base (74.4%) with the extract derived after treatment of the crude oil with hexane-ethanol mixture 1:4 (18.2%) and foaming agent (7.4%). Two different materials were studied as bases: instant coffee (F3Gr-D) and ground Greek coffee (reference sample, CGr). The shelf-life stability of the produced powders was examined at three storage temperatures (25, 45, 60 °C). Instrumental analysis (purge-and-trap GC-MS) of aroma and sensory analysis (aroma, taste, staling, total sensory quality on a 1–9 hedonic scale) was conducted. Aroma loss (furfuryl alcohol, furfural, dimethyl pyrazines, ethyl methyl pyrazines) and scores for sensory attributes during storage were modeled using 1st and 0-order reaction kinetics, respectively. The storage temperature effect was expressed by the Arrhenius model (activation energy Ea). According to the results, the developed instant coffee powder presented satisfactorily the aroma characteristics of regular Greek coffee. The shelf life for the instant Greek coffee powder was estimated as 80 days (air packed) (based on 20% retention of furfuryl alcohol that was the most abundant aromatic volatile of Greek coffee aroma, ground as well as extract oil). Full article
(This article belongs to the Special Issue New Insights into Artisanal and Traditional Beverages)
Show Figures

Figure 1

23 pages, 3875 KiB  
Article
Chemical Composition, Quality, and Bioactivity of Laurus nobilis L. Hydrosols from the Adriatic Regions of Croatia: Implications for Dermatological Applications
by Lea Juretić, Valerija Dunkić, Ivana Gobin, Suzana Inić, Dario Kremer, Marija Nazlić, Lea Pollak, Silvestar Mežnarić, Ana Barbarić and Renata Jurišić Grubešić
Antioxidants 2025, 14(6), 688; https://doi.org/10.3390/antiox14060688 - 5 Jun 2025
Viewed by 631
Abstract
Laurus nobilis L., Lauraceae, bay laurel, has been traditionally used for its various therapeutic properties, and in recent years has been gaining interest for its potential applications in skincare products. However, the biological effects of bay laurel, particularly its hydrosols, a water fraction [...] Read more.
Laurus nobilis L., Lauraceae, bay laurel, has been traditionally used for its various therapeutic properties, and in recent years has been gaining interest for its potential applications in skincare products. However, the biological effects of bay laurel, particularly its hydrosols, a water fraction obtained during essential oil production, remain unexplored. The objective of this study was to identify the volatile compounds in L. nobilis hydrosols (LnHYs) from different coastal regions of Croatia (north, middle, and south Adriatic) and to evaluate their potential safety and efficacy for dermatological applications. Upon isolating LnHYs using microwave-assisted extraction, LnHY volatiles were identified and quantified using gas chromatography and mass spectrometry. Oxygenated monoterpenes were the dominant compounds in all LnHYs (61.72–97.00%), with 1,8-cineole being the most abundant component (52.25–81.89%). The physical and chemical parameters of LnHYs were investigated to assess their purity and quality. Biological activity (cytotoxicity and wound-healing effect) was tested on the human keratinocyte cell line (HaCaT), selected as the experimental model due to its relevance to skin biology. Additionally, contents of polyphenolic substances, antioxidative effects using the Oxygen Radical Absorbance Capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods, and the antimicrobial activity of LnHYs toward five skin microorganisms were determined. All tested hydrosols showed similar biological activity, with only minor differences. Cytotoxicity studies indicated the safety of the dermatological application of LnHYs, and the results of the wound-healing assay showed their neutral to mildly positive effect. Considering the growing use of bay laurel preparations in pharmaceutical and cosmetic applications, extensive studies on their biological activity, quality, and safety are essential to either support or regulate their use in humans. Full article
Show Figures

Figure 1

43 pages, 1582 KiB  
Review
The Chemical Composition, Pharmacological Activity, Quality Control, Toxicity, and Pharmacokinetics of the Genus Clinopodium L.
by Wen Li, Jianping Pan, Xiaobing Chen, Senhui Guo and Xilin Ouyang
Molecules 2025, 30(11), 2425; https://doi.org/10.3390/molecules30112425 - 31 May 2025
Viewed by 791
Abstract
The genus Clinopodium L. (Lamiaceae) comprises perennial herbaceous plants known for their diverse pharmacological properties. Clinically, these plants are mainly used for the treatment of various hemorrhagic disorders. This review systematically summarizes the research progress on the chemical composition, pharmacological activity, quality control, [...] Read more.
The genus Clinopodium L. (Lamiaceae) comprises perennial herbaceous plants known for their diverse pharmacological properties. Clinically, these plants are mainly used for the treatment of various hemorrhagic disorders. This review systematically summarizes the research progress on the chemical composition, pharmacological activity, quality control, toxicity, and pharmacokinetics of the genus Clinopodium by searching Google Scholar, Scopus-Elsevier, Wiley, Springer, Taylor & Francis, Medline, Web of Science, CNKI, Weipu, Wanfang, and other academic databases over the last decade (March 2015–February 2025). To date, more than one hundred and thirty structurally diverse secondary metabolites have been isolated and identified from this genus, including flavonoids, triterpenoid saponins, diterpenoid glycosides, lignans, and phenylpropanoids. In addition, numerous volatile oil constituents have been identified in over forty species of the genus Clinopodium. Crude extracts and purified compounds exhibit a variety of pharmacological activities, including hemostatic, anti-myocardial cell injury, cardiovascular protective, anti-inflammatory, antimicrobial, antitumor, hypoglycemic, and insecticidal properties. However, current quality assessment protocols in the genus Clinopodium are limited to flavonoid- and saponin-based evaluations in C. chinense (Benth.) O. Kuntze and C. gracile (Benth.) O. Matsum. Further research is needed to elucidate the pharmacological mechanisms, toxicity, and possible interactions with other drugs. Therefore, the genus Clinopodium has a wide range of biologically active compounds with potential applications in drug development for hemostasis and cardiovascular protection. Nevertheless, there is also an urgent need to establish standardized methodologies to address uncertainties concerning the safety and efficacy of injectable extracts or compounds. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

23 pages, 1814 KiB  
Article
Repurposing Olive Oil Mill Wastewater into a Valuable Ingredient for Functional Bread Production
by Ignazio Restivo, Lino Sciurba, Serena Indelicato, Mario Allegra, Claudia Lino, Giuliana Garofalo, David Bongiorno, Salvatore Davino, Giuseppe Avellone, Luca Settanni, Luisa Tesoriere and Raimondo Gaglio
Foods 2025, 14(11), 1945; https://doi.org/10.3390/foods14111945 - 29 May 2025
Viewed by 554
Abstract
Untreated olive oil mill wastewater (OOMW) from conventionally farmed olives was used in bread production to create a new functional product. Two types of bread were developed with 50% OOMW (EXP-1) and 100% OOMW (EXP-2) replacing water. Two leavening processes were tested: sourdough [...] Read more.
Untreated olive oil mill wastewater (OOMW) from conventionally farmed olives was used in bread production to create a new functional product. Two types of bread were developed with 50% OOMW (EXP-1) and 100% OOMW (EXP-2) replacing water. Two leavening processes were tested: sourdough inoculum (S) vs. biga-like inoculum (B), with controls (CTR) without OOMW addition. The doughs were monitored throughout the acidification process by measuring pH, total titratable acidity, and the development of key fermentative microorganisms. To assess the hygienic quality during fermentation, plate count techniques were employed. After baking, the breads were evaluated for various quality parameters, including weight loss, specific volume, crumb and crust colors, image analysis, and the presence of spore-forming bacteria. Volatile compounds released from the breads were identified using solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC/MS). Polyphenolic compounds were analyzed via liquid chromatography–mass spectrometry (LC-MS). To assess the functional properties of the final products, the breads were homogenized with synthetic human saliva and subjected to in vitro digestion. OOMW did not significantly affect the growth of yeasts and lactic acid bacteria (LAB) or the acidification process. However, in terms of the specific volume and alveolation, breads from the S process and OOMW had poor quality, while those from the B process had better quality. Experimental breads (EXPB-1 and EXPB-2) contained higher levels of alcohols (especially ethanol and isobutyl alcohol), carbonyl compounds (like benzaldehyde), esters (such as ethyl caproate and ethyl caprylate), and terpenes. OOMW introduced phenolic compounds like hydroxytyrosol, coumaric acid, caffeic acid, and trans-hydroxycinnamic acid, which were absent in CTRB breads. Functionalization of EXPB-1 and EXPB-2 breads was demonstrated by a 2.4- and 3.9-fold increase in Trolox equivalents, respectively. However, OOMW did not reduce post-prandial hyper-glycemia, as starch digestibility was similar between CTRB and EXPB breads. The sensory analysis, which focused solely on the visual, structural, and olfactory characteristics of the breads, excluding taste testing to prevent potential health risks from residual pesticides, showed a high appreciation for EXPB-1 and EXPB-2 breads, scoring higher than CTRB in the overall assessment. Full article
Show Figures

Figure 1

28 pages, 1428 KiB  
Review
Toward a Comprehensive Understanding of Flavor of Sunflower Products: A Review of Confirmed and Prospective Aroma- and Taste-Active Compounds
by Lachinkhanim Huseynli, Christoph Walser, Luise Blumenthaler, Kristel Vene and Corinna Dawid
Foods 2025, 14(11), 1940; https://doi.org/10.3390/foods14111940 - 29 May 2025
Viewed by 904
Abstract
The global demand for sustainable protein sources has led to a growing interest in plant-based alternatives, with sunflower products emerging as a promising yet underutilized option. This review provides a comprehensive overview and critical evaluation of current knowledge on the flavor and off-flavor [...] Read more.
The global demand for sustainable protein sources has led to a growing interest in plant-based alternatives, with sunflower products emerging as a promising yet underutilized option. This review provides a comprehensive overview and critical evaluation of current knowledge on the flavor and off-flavor profiles and codes of sunflower seeds and their by-products, with a focus on both volatile and non-volatile low-molecular-weight compounds. It can highlight the importance of the sensomics approach and the knowledge on key food odorants and tastants. Furthermore, this review underscores the importance of advanced analytical methodologies for linking chemical composition to sensory outcomes. While volatile compounds that activate human olfactory receptors, such as aldehydes, terpenes, and pyrazines, are well described in sunflower products, using the sensomics approach the key odor-active stimuli are just verified in sunflower oil. In addition, the roles of non-volatile components including lipids, proteins, carbohydrates, and secondary metabolites such as polyphenols require further investigation and experimental validation to confirm their role as key tastants and their effect on sensory perception. By compiling existing data, this review establishes a foundational database of known and potential flavor-relevant compounds in different sunflower products, providing a valuable resource to directly or indirectly guide sensory (sensomics) studies and promote sunflower-based product innovation. Identifying the key flavor contributors in the different sunflower-based products and raw materials would facilitate precise approaches in processing and product formulation to enhance sensory quality while mitigating off-flavors. Addressing these challenges will support the development of sunflower-based food products with optimized flavor and nutritional profiles, consistent with global sustainability goals and consumer acceptance. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

18 pages, 2716 KiB  
Article
Changes in the Volatile Profile, Fruity Flavor, and Rancidity in Virgin Olive Oils During Storage by Targeted and Untargeted Analytical Approaches
by Rosalba Tucci, Chiara Cevoli, Alessandra Bendini, Sara Barbieri, Enrico Casadei, Enrico Valli and Tullia Gallina Toschi
Foods 2025, 14(11), 1884; https://doi.org/10.3390/foods14111884 - 26 May 2025
Viewed by 494
Abstract
The changes in monovarietal extra virgin olive oils (EVOOs), produced with olives grown under different agronomic conditions, were investigated by targeted and untargeted analytical approaches. Specifically, volatile molecules were monitored in oils just produced and stored for 6 and 12 months with two [...] Read more.
The changes in monovarietal extra virgin olive oils (EVOOs), produced with olives grown under different agronomic conditions, were investigated by targeted and untargeted analytical approaches. Specifically, volatile molecules were monitored in oils just produced and stored for 6 and 12 months with two different packaging solutions. The targeted SPME-GC–MS method showed an increase in volatile markers of lipid oxidation. Moreover, more rapid analytical approaches, namely targeted HS-GC–IMS and untargeted FGC, were used to investigate volatile organic compounds (VOCs). These chromatographic methods, respectively, returned heatmaps and fingerprint profiles that were elaborated on by multivariate analysis. Exploratory principal component analysis performed on the data from VOCs allowed the clustering of samples based on the storage time. The quality of samples was also determined by a panel test. Furthermore, this study employed previously built models using partial least squares discriminant analysis to confirm the sensory classification of the stored samples. Based on these predictive models, all samples were confirmed as EVOO, except for one categorized as virgin (rancid according to the panel test). This classification was further supported by the SPME-GC–MS analysis, which revealed higher concentrations of lipid oxidation markers in this specific sample, in particular the (E)-2-heptenal reached a concentration twenty times higher than its odor threshold. In addition, five oils were inconsistently classified by the models and considered at risk of downgrading the commercial category after 12 months of storage. Full article
Show Figures

Figure 1

Back to TopTop