Coupling of Temporal-Check-All-That-Apply and Nose-Space Analysis to Investigate the In Vivo Flavor Perception of Extra Virgin Olive Oil and Carriers’ Impact
Abstract
1. Introduction
1.1. The Sensory Profile of Olive Oil
1.2. Determinants of Volatile Organic Compound Release and Perception
1.3. The Complexity of Flavor Perception
1.4. Methodological Approaches for Dynamic Sensory and Instrumental Analysis
1.5. An Integrated Approach for In Vivo Flavor Analysis
2. Materials and Methods
2.1. Subjects
2.2. Samples
2.2.1. EVOO and Carrier Foods
2.2.2. Sample Presentation
2.3. Experimental Procedure
2.3.1. Training
2.3.2. EVOO Samples Evaluations
Tasting Procedure
TCATA Evaluation
- EVOO only: Bitter, Astringent, Pungent, Grass, Artichoke, Tomato, Ripened olive;
- Bread only: Bread, Sweet;
- Chickpea only: Chickpea, Salty;
- EVOO with bread: Bitter, Astringent, Pungent, Grass, Artichoke, Tomato, Ripened olive, Bread, Sweet;
- EVOO with chickpea: Bitter, Astringent, Pungent, Grass, Artichoke, Tomato, Ripened olive, Chickpea, Salty.
Nose-Space Analysis
2.4. Data Analysis
2.4.1. Temporal Curves and Parameter Selection
2.4.2. Nose-Space Curves and Parameter Extraction and Selection
3. Results
3.1. Temporal Curves
3.2. Nose-Space Curves
3.3. Relationship Between Flavor Attributes and VOCs
4. Discussion
4.1. EVOO Perception and Carrier Impact
4.2. VOCs Release and Carrier Impact
4.3. Temporal Sensory and Instrumental Assessment of EVOO Flavor
4.4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EVOO | extra virgin olive oil |
VOCs | volatile organic compounds |
TCATA | Temporal Check-All-That-Apply |
PTR-ToF-MS | Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry |
GC | Gas Chromatography |
HPLC | High-Performance Liquid Chromatography |
NMR | Nuclear Magnetic Resonance |
SD | Standard deviation |
AUC | Area under the curve |
C_max | Maximum citation percentage |
T_max | Time to maximum citation |
PCA | Principal Component Analysis |
I_max | Maximum intensity |
ANOVA | Analysis of Variance |
References
- Wahrburg, U.; Kratz, M.; Cullen, P. Mediterranean diet, olive oil and health. Eur. J. Lipid Sci. Technol. 2002, 104, 698–705. [Google Scholar] [CrossRef]
- IOOC—International Olive Council. Olive Products Market Report Summary. Market Commentary; IOOC: Madrid, Spain, 2008.
- Tuorila, H.; Recchia, A. Sensory perception and other factors affecting consumer choice of olive oil. In Olive Oil Sensory Science; Monteleone, E., Langstaff, S., Eds.; Wiley Blackwell: Oxford, UK, 2013; pp. 55–80. [Google Scholar]
- Dekhili, S.; Sirieix, L.; Cohen, E. How consumers choose olive oil: The importance of origin cues. Food Qual. Prefer. 2011, 22, 757–762. [Google Scholar] [CrossRef]
- Mojet, J.; de Jong, S. The sensory wheel of virgin olive oil. Grasas Aceites 1994, 45, 42–47. [Google Scholar] [CrossRef]
- Olias, J.M.; Perez, A.G.; Rios, J.J.; Sanz, L.C. Aroma of virgin olive oil: Biogenesis of the “green” odor notes. J. Agric. Food Chem. 1993, 41, 2368–2373. [Google Scholar] [CrossRef]
- Aprea, E.; Gasperi, F.; Betta, E.; Sani, G.; Cantini, C. Variability in Volatile Compounds from Lipoxygenase Pathway in Extra Virgin Olive Oils from Tuscan Olive Germoplasm by Quantitative SPME/GC-MS. J. Mass Spectrom. 2018, 53, 824–832. [Google Scholar] [CrossRef]
- Angerosa, F.; Mostallino, R.; Basti, C.; Vito, R. Virgin olive oil odour notes: Their relationships with volatile compounds from the lipoxygenase pathway and secoiridoid compounds. Food Chem. 2000, 68, 283–287. [Google Scholar] [CrossRef]
- Caporaso, N. Virgin Olive Oils: Environmental Conditions, Agronomical Factors and Processing Technology Affecting the Chemistry of Flavor Profile. J. Food Chem. Nanotechnol. 2016, 2, 21–31. [Google Scholar] [CrossRef]
- Spence, C. The psychology of condiments: A review. Int. J. Gastron. Food Sci. 2018, 11, 41–48. [Google Scholar] [CrossRef]
- Guichard, E. Interactions between flavor compounds and food ingredients and their influence on flavor perception. Food Rev. Int. 2002, 18, 49–70. [Google Scholar] [CrossRef]
- Salles, C.; Chagnon, M.C.; Feron, G.; Guichard, E.; Laboure, H.; Morzel, M.; Semon, E.; Tarrega, A.; Yven, C. In-mouth mechanisms leading to flavor release and perception. Crit. Rev. Food Sci. Nutr. 2011, 51, 67–90. [Google Scholar] [CrossRef]
- Piggott, J.R.; Schaschke, C.J. Release cells, breath analysis and in-mouth analysis in flavour research. Biomol. Eng. 2001, 17, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.J.; Hollowood, T.A.; Linforth, R.S.; Taylor, A.J. Correlating instrumental measurements of texture and flavour release with human perception. Int. J. Food Sci. Technol. 2005, 40, 631–641. [Google Scholar] [CrossRef]
- Boland, A.B.; Delahunty, C.M.; Van Ruth, S.M. Influence of the texture of gelatin gels and pectin gels on strawberry flavour release and perception. Food Chem. 2006, 96, 452–460. [Google Scholar] [CrossRef]
- van Eck, A.; Pedrotti, M.; Brouwer, R.; Supapong, A.; Fogliano, V.; Scholten, E.; Biasioli, F.; Stieger, M. In Vivo Aroma Release and Dynamic Sensory Perception of Composite Foods. J. Agric. Food Chem. 2021, 69, 10260–10271. [Google Scholar] [CrossRef]
- Bult, J.H.F.; de Wijk, R.A.; Hummel, T. Investigations on multimodal sensory integration: Texture, taste, and ortho-and retronasal olfactory stimuli in concert. Neurosci. Lett. 2007, 411, 6–10. [Google Scholar] [CrossRef]
- Charles, M.; Endrizzi, I.; Aprea, E.; Zambanini, J.; Betta, E.; Gasperi, F. Dynamic and static sensory methods to study the role of aroma on taste and texture: A multisensory approach to apple perception. Food Qual. Prefer. 2017, 62, 17–30. [Google Scholar] [CrossRef]
- Prescott, J.; Stevenson, R.J. Effects of oral chemical irritation on tastes and flavors in frequent and infrequent users of chili. Physiol. Behav. 1995, 58, 1117–1127. [Google Scholar] [CrossRef]
- Lawless, H.; Rozin, P.; Shenker, J. Effects of oral capsaicin on gustatory, olfactory and irritant sensations and flavor identification in humans who regularly or rarely consume chili peppers. Chem. Senses 1985, 10, 579–589. [Google Scholar] [CrossRef]
- Esti, M.; Contini, M.; Moneta, E.; Sinesio, F. Phenolics compounds and temporal perception of bitterness and pungency in extra-virgin olive oils: Changes occurring throughout storage. Food Qual. Prefer. 2009, 113, 1095–1100. [Google Scholar] [CrossRef]
- Castura, J.C. Dynamics of consumers perception. In Methods in Consumer Research, Volume 1: New Approaches to Classic Methods; Ares, G., Varela, P., Eds.; Woodhead Publishing: Oxford, UK, 2018; pp. 211–240. [Google Scholar]
- Castura, J.C.; Antunéz, L.; Giménez, A.; Ares, G. Temporal check-all-that-apply (TCATA): A novel temporal sensory method for characterizing products. Food Qual. Prefer. 2016, 47, 79–90. [Google Scholar] [CrossRef]
- Ares, G.; Jaeger, S.R.; Antúnez, L.; Vidal, L.; Giménez, A.; Coste, B.; Picallo, A.; Castura, J.C. Comparison of TCATA and TDS for dynamic sensory characterization of food products. Food Res. Int. 2015, 78, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.E.; Pangborn, R.M. Time–Intensity: The temporal aspects of sensory perception. Food Technol. 1986, 40, 71–78. [Google Scholar]
- Pineau, N.; Schlich, P.; Cordelle, S.; Mathonnière, C.; Issanchou, S.; Imbert, A.; Rogeaux, M.; Etiévant, P.; Köster, E. Temporal Dominance of Sensations: Construction of the TDS Curves and Comparison with Time–Intensity. Food Qual. Prefer. 2009, 20, 450–455. [Google Scholar] [CrossRef]
- Nguyen, Q.; Næs, T.; Varela, P. When the choice of the temporal method does make a difference: TCATA, TDS and TDS by modality for characterizing semi-solid foods. Food Qual. Prefer. 2018, 66, 95–106. [Google Scholar] [CrossRef]
- Cliceri, D.; Aprea, E.; Menghi, L.; Endrizzi, I.; Gasperi, F. Individual variability in the temporal perception of polyphenols-related sensations in extra virgin olive oil and impact on flavor. Food Qual. Prefer. 2021, 93, 104249. [Google Scholar] [CrossRef]
- Pérez-Castaño, E.; Medina-Rodríguez, S.; Bagur-González, M.G. Discrimination and classification of extra virgin olive oil using a chemometric approach based on TMS-4, 4′-desmetylsterols GC (FID) fingerprints of edible vegetable oils. Food Chem. 2019, 274, 518–525. [Google Scholar] [CrossRef]
- del Mar Contreras, M.; Jurado-Campos, N.; Arce, L.; Arroyo-Manzanares, N. A robustness study of calibration models for olive oil classification: Targeted and non-targeted fingerprint approaches based on GC-IMS. Food Chem. 2019, 288, 315–324. [Google Scholar] [CrossRef]
- Quintanilla-Casas, B.; Bustamante, J.; Guardiola, F.; García-González, D.L.; Barbieri, S.; Bendini, A.; Gallina Toschi, T.; Vichi, S.; Tres, A. Virgin olive oil volatile fingerprint and chemometrics: Towards an instrumental screening tool to grade the sensory quality. LWT 2020, 121, 108936. [Google Scholar] [CrossRef]
- Biasioli, F.; Yeretzian, C.; Märk, T.D.; Dewulf, J.; Van Langenhove, H. Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. Trends Anal. Chem. 2011, 30, 1003–1017. [Google Scholar] [CrossRef]
- Liu, N.; Koot, A.; Hettinga, K.; De Jong, J.; van Ruth, S.M. Portraying and tracing the impact of different production systems on the volatile organic compound composition of milk by PTR-(Quad) MS and PTR-(ToF) MS. Food Chem. 2018, 239, 201–207. [Google Scholar] [CrossRef]
- Romano, A. Aroma release during in-mouth process. In Flavour: From Food to Perception; Guichard, E., Salles, C., Morzel, M., Le Bon, A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Taiti, C.; Marone, E.; Fiorino, P.; Mancuso, S. The olive oil dilemma: To be or not to be EVOO? Chemometric analysis to grade virgin olive oils using 792 fingerprints from PTR-ToF-MS. Food Control 2022, 135, 108817. [Google Scholar] [CrossRef]
- Charles, M.; Romano, A.; Yener, S.; Barnabà, M.; Navarini, L.; Märk, T.D.; Biasoli, F.; Gasperi, F. Understanding flavour perception of espresso coffee by the combination of a dynamic sensory method and in-vivo nosespace analysis. Food Res. Int. 2015, 69, 9–20. [Google Scholar] [CrossRef]
- Romano, A.; Cappellin, L.; Ting, V.; Aprea, E.; Navarini, L.; Gasperi, F.; Biasioli, F. Nosespace analysis by PTR–ToF–MS for the characterization of food and tasters: The case study of coffee. Int. J. Mass Spectrom. 2014, 365–366, 20–27. [Google Scholar] [CrossRef]
- Le Quéré, J.L.; Hélard, C.; Labouré, H.; Andriot, I.; Cordelle, S.; Schlich, P. Nosespace PTR-MS analysis withimultaneouss TDS or TCATA sensory evaluation: Release and perception of the aroma of dark chocolates differing in sensory properties. In ACS Spring Meeting, Virtual, 5–16 April 2021; The American Chemical Society: Washington, DC, USA, 2021. [Google Scholar]
- Gonzalez-Estanol, K.; Khomenko, I.; Cliceri, D.; Biasioli, F.; Stieger, M. In vivo aroma release and perception of composite foods using nose space PTR–ToF–MS analysis with Temporal-Check-All-That-Apply. Food Res. Int. 2023, 167, 112726. [Google Scholar] [CrossRef]
- Monteleone, E. Sensory methods for optimizing and adding value to extra virgin olive oil. In Olive Oil Sensory Science; Monteleone, E., Langstaff, S., Eds.; Wiley Blackwell: Oxford, UK, 2013; pp. 109–140. [Google Scholar]
- Castura, J.; tempR: Temporal Sensory Data Analysis. R package version 0.10.1.1. 2024. Available online: https://CRAN.R-project.org/package=tempR (accessed on 22 April 2025).
- Mitchell, J.; Castura, J.C.; Thibodeau, M.; Pickering, G. Application of TCATA to examine variation in beer perception due to thermal taste status. Food Qual. Prefer. 2019, 73, 135–142. [Google Scholar] [CrossRef]
- Cappellin, L.; Biasioli, F.; Fabrisa, A.; Schuhfried, E.; Soukoulis, C.; Märk, T.D.; Gasperi, F. Improved mass accuracy in PTR–TOF–MS: Another step towards better compound identification in PTR–MS. Int. J. Mass Spectrom. 2010, 290, 60–63. [Google Scholar] [CrossRef]
- Cappellin, L.; Biasioli, F.; Granitto, P.M.; Schuhfried, E.; Soukoulis, C.; Costa, F.; Märk, T.D.; Gasperi, F. On data analysis in PTR–TOF–MS: From raw spectra to data mining. Sens. Actuators B Chem. 2011, 155, 183–190. [Google Scholar] [CrossRef]
- Aprea, E.; Biasioli, F.; Sani, G.; Cantini, C.; Märk, T.D.; Gasperi, F. Proton Transfer Reaction–Mass Spectrometry (PTR-MS) Headspace Analysis for Rapid Detection of Oxidative Alteration of Olive Oil. J. Agric. Food Chem. 2006, 54, 7635–7640. [Google Scholar] [CrossRef]
- Normand, V. Modeling the kinetics of flavour release during drinking. Chem. Senses 2004, 29, 235–245. [Google Scholar] [CrossRef]
- Aprea, E.; Biasioli, F.; Sani, G.; Cantini, C.; Mark, T.; Gasperi, F. Online Monitoring of Olive Oils Headspace by Proton Transfer Reaction-Mass Spectrometry. Riv. Ital. Sostanze Grasse 2008, 85, 92–97. [Google Scholar]
- Lyu, C.; Hendriks, A.; Geary, L.N.; Forde, C.G.; Stieger, M. Getting hot: Effect of chili pepper addition on sensory perception of liquid and solid foods. J. Food Sci. 2023, 88, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Braud, A.; Boucher, Y. Intra-oral trigeminal-mediated sensations influencing taste perception: A systematic review. J. Oral Rehabil. 2020, 47, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Feron, G.; Salles, C. Food Oral Processing in Humans: Links between Physiological Parameters, Release of Flavour Stimuli and Flavour Perception of Food. Int. J. Food Stud. 2018, 7, 1. [Google Scholar] [CrossRef]
- Arancibia, C.; Jublot, L.; Costell, E.; Bayarri, S. Flavor Release and Sensory Characteristics of o/w Emulsions. Influence of Composition, Microstructure and Rheological Behavior. Food Res. Int. 2011, 44, 1632–1641. [Google Scholar] [CrossRef]
- Gonzalez-Estanol, K.; Pedrotti, M.; Fontova-Cerdà, M.; Khomenko, I.; Biasioli, F.; Stieger, M. Influence of chewing rate and food composition on in vivo aroma release and perception of composite foods. J. Agric. Food Chem. 2024, 72, 6723–6734. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Renard, C.M.G.C. Interactions between polyphenols and macromolecules: Quantification methods and mechanisms. Crit. Rev. Food Sci. Nutr. 2012, 52, 213–248. [Google Scholar] [CrossRef]
- Qin, W.; Pi, J.; Zhang, G. The interaction between tea polyphenols and wheat gluten in dough formation and bread making. Food Funct. 2022, 13, 12827–12835. [Google Scholar] [CrossRef]
- Angerosa, F. Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels. Eur. J. Lipid Sci. Technol. 2002, 104, 639–660. [Google Scholar] [CrossRef]
- Genovese, A.; Caporaso, N.; Sacchi, R. Flavor Chemistry of Virgin Olive Oil: An Overview. Appl. Sci. 2021, 11, 1639. [Google Scholar] [CrossRef]
- Genovese, A.; Yang, N.; Linforth, R.; Sacchi, R.; Fisk, I. The role of phenolic compounds on olive oil aroma release. Food Res. Int. 2018, 112, 319–327. [Google Scholar] [CrossRef]
- Monteleone, E.; Dinnella, C. General considerations. In Time-Dependent Measures of Perception in Sensory Evaluation; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 159–181. [Google Scholar]
- Pierguidi, L.; Spinelli, S.; Monteleone, E.; Dinnella, C. The Combined Use of Temporal Dominance of Sensations (TDS) and Discrete Time-Intensity (DTI) to Describe the Dynamic Sensory Profile of Alcoholic Cocktails. Food Qual. Prefer. 2021, 93, 104281. [Google Scholar] [CrossRef]
Compound | Samples | |
---|---|---|
O1 | O2 | |
Ethyl acetate | 862 | 139.3 |
1-Pentanol | 303.2 | 25.3 |
1-penten-3-ol | 564 | 103.4 |
1-penten-3-one | 948.9 | 107.3 |
3-penten-2-one | 158 | 52.4 |
(Z)-3-Hexenyl acetate | 275.4 | 187.5 |
Pentanal | 268.8 | 22.5 |
Hexanal | 83.3 | 58.2 |
Hexyl acetate | 1583.9 | 125.1 |
(E)-2-Hexenal | 477.8 | 193.2 |
(E)-2-Hexen-1-ol | 2385 | 6.3 |
(Z)-3-Hexen-1-ol | 841.5 | 83.8 |
(E,E)-2,4-Hexadienal | 1968.6 | 54 |
Limonene | 2492.1 | 706.8 |
Linalool | 64.4 | 110.6 |
α-Farnesene | 294 | 1.3 |
Heptanal | 491.5 | 7 |
(E,E)-2,4-Heptadienal | - | 15 |
1-Octen-3-ol | 56.5 | 8.4 |
(E)-2-Octenal | 3.4 | 13 |
(E)-2-Nonenal | 453.6 | 33 |
Nonanal | 85.4 | 1 |
Decanal | 62.4 | 0.3 |
(E,E)-2,4-Decadienal | 4.1 | 31.7 |
Dodecanal | 90 | 7.9 |
Attribute | Description | Standard |
---|---|---|
Bitter | Taste associated with bitter foods such as coffee, quinine | caffeine 1.5 g/L in water |
Pungent | Tingling sensation on the tongue and throat, associated with a feeling of warmth | capsaicin 0.36 mg/L in water |
Astringent | Sensation of dryness and roughness perceived on the tongue and in the oral cavity | potassium aluminum sulfate 0.8 g/L in dezionized water |
Grass | Flavor associated with freshly cut grass | cis-3-hesene-1-ol 0.07 g/kg in seed oil |
Artichoke | Flavor associated with fresh artichoke | 40 g of artichoke stem in 250 g of seed oil prepared 24 h before evaluation |
Tomato | Flavor associated with tomato and tomato leaf | 33 g of cherry tomato in 250 g of seed oil prepared 24 h before evaluation |
Ripened olive | Flavor associated with mashed olives | 1 g of dried olive skin and pulp |
Parameter | Mass | Compound (Tentatively Identified) |
---|---|---|
AUC | ms117.0897 | Hexanoic acid |
ms100.0825 | C13-isotope of (E)-2-Hexenal | |
ms99.0799 | (E)-2-Hexenal | |
ms85.0642 | 1-Penten-3-one | |
ms83.0813 | Hexenal + (E)-2-Hexen-1-ol + (Z)-3-hexen-1-ol | |
ms81.0690 | (E)-2-Hexenal -H20 | |
ms75.0444 | Methyl acetate | |
I max | ms119.0923 | 3-Phenylpropanol |
ms117.0897 | Hexanoic acid | |
ms100.0825 | C13-isotope of (E)-2-Hexenal | |
ms99.0799 | (E)-2-Hexenal | |
ms87.0798 | Pentanal | |
ms83.0813 | Hexanal + (E)-2-Hexen-1-ol + (Z)-3-hexen-1-ol | |
ms57.0407 | Acrolein | |
T max | ms205.1983 | Sesquiterpenes |
ms197.1395 | Unknown | |
ms143.1013 | (Z)-3-Hexenyl acetate | |
ms100.0825 | C13-isotope of (E)-2-Hexenal) | |
ms99.0799 | (E)-2-Hexenal | |
ms87.0798 | Pentanal | |
ms85.0642 | 1-Penten-3-one |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cliceri, D.; Khomenko, I.; Biasioli, F.; Gasperi, F.; Aprea, E. Coupling of Temporal-Check-All-That-Apply and Nose-Space Analysis to Investigate the In Vivo Flavor Perception of Extra Virgin Olive Oil and Carriers’ Impact. Foods 2025, 14, 2343. https://doi.org/10.3390/foods14132343
Cliceri D, Khomenko I, Biasioli F, Gasperi F, Aprea E. Coupling of Temporal-Check-All-That-Apply and Nose-Space Analysis to Investigate the In Vivo Flavor Perception of Extra Virgin Olive Oil and Carriers’ Impact. Foods. 2025; 14(13):2343. https://doi.org/10.3390/foods14132343
Chicago/Turabian StyleCliceri, Danny, Iuliia Khomenko, Franco Biasioli, Flavia Gasperi, and Eugenio Aprea. 2025. "Coupling of Temporal-Check-All-That-Apply and Nose-Space Analysis to Investigate the In Vivo Flavor Perception of Extra Virgin Olive Oil and Carriers’ Impact" Foods 14, no. 13: 2343. https://doi.org/10.3390/foods14132343
APA StyleCliceri, D., Khomenko, I., Biasioli, F., Gasperi, F., & Aprea, E. (2025). Coupling of Temporal-Check-All-That-Apply and Nose-Space Analysis to Investigate the In Vivo Flavor Perception of Extra Virgin Olive Oil and Carriers’ Impact. Foods, 14(13), 2343. https://doi.org/10.3390/foods14132343