Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = viscoplastic material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4674 KB  
Article
Numerical Modeling of Thermomechanics of Antifriction Polymers in Viscoelastic and Elastic-Viscoplastic Formulations
by Anastasia P. Bogdanova, Anna A. Kamenskikh, Andrey R. Muhametshin and Yuriy O. Nosov
Appl. Mech. 2026, 7(1), 2; https://doi.org/10.3390/applmech7010002 - 24 Dec 2025
Viewed by 160
Abstract
The present article relates to the description of phenomenological relations of amorphous material behavior within the framework of viscoelasticity and elastic-viscoplasticity theory, as well as to the creation of its digital analog. Ultra-high-molecular-weight polyethylene (UHMWPE) is considered in the study. The model is [...] Read more.
The present article relates to the description of phenomenological relations of amorphous material behavior within the framework of viscoelasticity and elastic-viscoplasticity theory, as well as to the creation of its digital analog. Ultra-high-molecular-weight polyethylene (UHMWPE) is considered in the study. The model is based on the results of a series of experimental studies. Free compression of cylindrical specimens in a wide range of temperatures [−40; +80] °C and strain rates [0.1; 4] mm/min was performed. Cylindrical specimens were also used to determine the thermal expansion coefficient of the material. Dynamic mechanical analysis (DMA) was performed on rectangular specimens using a three-point bending configuration. Maxwell and Anand models were used to describe the material behavior. In the framework of the study, the temperature dependence of a number of parameters was established. This influenced the mathematical formulation of the Anand model, which was adapted by introducing the temperature dependence of the activation energy, the initial deformation resistance, and the strain rate sensitivity coefficient. Testing of the material models was carried out in the process of analyzing the deformation of a spherical bridge bearing with a multi-cycle periodic load. The load corresponded to the movement of a train on a bridge structure, without taking into account vibrations. It is shown that the viscoelastic model does not describe the behavior of the material accurately enough for a quantitative analysis of the stress–strain state of the structure. It is necessary to move on to more complex models of material behavior to minimize the discrepancy between the digital analog and the real structure; it has been established that taking into account plastic deformation while describing UHMWPE would allow this to be performed. Full article
(This article belongs to the Special Issue Cutting-Edge Developments in Computational and Experimental Mechanics)
Show Figures

Figure 1

8 pages, 2422 KB  
Proceeding Paper
On the Developing Network of Adiabatic Shear Bands During High Strain-Rate Forging Process: A Parametric Study on the Effect of Specimen Aspect Ratio
by Konstantina D. Karantza and Dimitrios E. Manolakos
Eng. Proc. 2025, 119(1), 36; https://doi.org/10.3390/engproc2025119036 - 23 Dec 2025
Viewed by 192
Abstract
The present work studies the developing network of adiabatic shear bands (ASBs) during dynamic plane strain compression of orthogonal AISI 1045 steel billets, aiming to investigate the ASB trajectories and their evolution mechanism. This paper conducts a finite element (FE) numerical analysis in [...] Read more.
The present work studies the developing network of adiabatic shear bands (ASBs) during dynamic plane strain compression of orthogonal AISI 1045 steel billets, aiming to investigate the ASB trajectories and their evolution mechanism. This paper conducts a finite element (FE) numerical analysis in LS-DYNA software, developing a doubly coupled analysis by combining both structural–thermal and structural–damage couplings. The Modified Johnson–Cook (MJC) formulas are considered for modeling both the material plasticity and damage law, implementing thermo-viscoplastic numerical approaches, while a critical temperature for material failure is further adjusted. Finally, the case study relates to a parametric analysis of specimen aspect ratio, aiming to reveal its effect on the developing ASB network and its propagating characteristics. Full article
Show Figures

Figure 1

18 pages, 3855 KB  
Article
Effect of Bonding Characteristics on Rutting Resistance and Moisture Susceptibility of Rubberized Reclaimed Asphalt Pavement
by Ling Xu, Zifeng Zhao, Yuanwen Lai, Yan Yuan, Shuyi Wang, Junjie Lin, Laura Moretti and Giuseppe Loprencipe
Infrastructures 2025, 10(12), 336; https://doi.org/10.3390/infrastructures10120336 - 7 Dec 2025
Viewed by 311
Abstract
Asphalt pavements incorporating recycled and sustainable materials have become a widely adopted strategy in road construction, particularly with the use of reclaimed asphalt pavement (RAP) and crumb rubber (CR) derived from waste tires. However, the adhesion and cohesion characteristics of rubberized RAP mixtures [...] Read more.
Asphalt pavements incorporating recycled and sustainable materials have become a widely adopted strategy in road construction, particularly with the use of reclaimed asphalt pavement (RAP) and crumb rubber (CR) derived from waste tires. However, the adhesion and cohesion characteristics of rubberized RAP mixtures remain insufficiently understood. This study investigates how interfacial bonding affects the rutting resistance and moisture susceptibility of rubberized RAP asphalt mixtures. Two RAP sources with different aging levels and two CR particle sizes (250 μm and 380 μm) were evaluated. Binder bond strength (BBS) tests showed that pull-off strength increased with the use of smaller CR particles and more highly aged RAP, while rotational viscosity and penetration tests confirmed the corresponding increase in binder stiffness. Hamburg wheel track (HWT) tests with high-temperature viscoplastic deformation analysis demonstrated improved rutting resistance in the tested mixtures. Furthermore, boiling tests supported by image analysis revealed reductions in stripping ratios, indicating enhanced moisture resistance. ANOVA results (p < 0.05) confirmed that CR content had a significant effect on bonding characteristics, whereas RAP aging and CR particle size jointly influenced rutting performance. Overall, mixtures incorporating 10% CR and 25% RAP achieved the best balance between adhesion, cohesion, and durability. These findings provide a quantitative understanding of how interfacial bonding governs the mechanical performance and moisture resistance of rubberized RAP mixtures. Full article
Show Figures

Figure 1

41 pages, 1678 KB  
Article
Analysis of Adiabatic Strain Localization Coupled to Ductile Fracture and Melting, with Application and Verification for Simple Shear
by John D. Clayton
AppliedMath 2025, 5(4), 169; https://doi.org/10.3390/appliedmath5040169 - 3 Dec 2025
Viewed by 320
Abstract
Material failure by adiabatic shear is analyzed in viscoplastic metals that can demonstrate up to three distinct softening mechanisms: thermal softening, ductile fracture, and melting. An analytical framework is constructed for studying simple shear deformation with superposed static pressure. A continuum power-law viscoplastic [...] Read more.
Material failure by adiabatic shear is analyzed in viscoplastic metals that can demonstrate up to three distinct softening mechanisms: thermal softening, ductile fracture, and melting. An analytical framework is constructed for studying simple shear deformation with superposed static pressure. A continuum power-law viscoplastic formulation is coupled to a ductile damage model and a solid–liquid phase transition model in a thermodynamically consistent manner. Criteria for localization to a band of infinite shear strain are discussed. An analytical–numerical method for determining the critical average shear strain for localization and commensurate stress decay is devised. Averaged results for a high-strength steel agree reasonably well with experimental dynamic torsion data. Calculations probe possible effects of ductile fracture and melting on shear banding, and vice versa, including influences of cohesive energy, equilibrium melting temperature, and initial defects. A threshold energy density for localization onset is positively correlated to critical strain and inversely correlated to initial defect severity. Tensile pressure accelerates damage softening and increases defect sensitivity, promoting shear failure. In the present steel, melting is precluded by ductile fracture for loading conditions and material properties within realistic protocols. For this steel, if conduction, fracture, and damage softening are artificially suppressed, melting is confined to a narrow region in the core of the band. However, for other metals with vastly different physical properties, or for more diverse loading conditions, melting has not been unequivocally ruled out, even if fracture and conduction are permitted. Full article
Show Figures

Figure 1

22 pages, 4497 KB  
Article
Experimental and Analytical Framework for Predicting Nonlinear Viscoelastic–Viscoplastic Behavior of Polymers
by Alen Oseli, Matic Šobak and Lidija Slemenik Perše
Polymers 2025, 17(23), 3095; https://doi.org/10.3390/polym17233095 - 21 Nov 2025
Viewed by 614
Abstract
The present research addresses the modeling of viscoelastic–viscoplastic behavior of polymers with a theoretical expansion of Schapery’s nonlinear viscoelastic model by incorporating two components of irrecoverable processes, displaying material flow and viscoplastic behavior (structure- and load-related irrecoverable process). The theory is accompanied by [...] Read more.
The present research addresses the modeling of viscoelastic–viscoplastic behavior of polymers with a theoretical expansion of Schapery’s nonlinear viscoelastic model by incorporating two components of irrecoverable processes, displaying material flow and viscoplastic behavior (structure- and load-related irrecoverable process). The theory is accompanied by an experimental and analytical framework for identifying model parameters. Introduced multi-scale analysis allows evaluation of pure linear and nonlinear viscoelastic, as well as viscoplastic behavior, enabling the study of their contribution to overall material response. Model performance was examined with creep recovery tests on two versatile and well-established thermoplastic polymers with different morphological structures: amorphous ABS exhibiting notable flow and semi-crystalline POM, where flow may be neglected. Results show extremely accurate predictions and exceptional agreement with experimental data, as the error was found to be less than 5% ranging from infinitesimally small to relatively high loading magnitudes (from 0.1 to 15 MPa of shear stress) at 70 °C (maximum operating temperature). Notably, viscoplastic strains were detected even within linear viscoelastic domain, suggesting that these effects are not related to yield phenomena (associated with progressive/damaging mechanisms), but rather provide an explanation for the material’s inability to fully recover. With its predictive capability and adaptability, the model demonstrates to be a powerful tool for capturing realistic material responses not only for the considered but also applicable to other molecular systems. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

27 pages, 36375 KB  
Article
Calibration Framework for Modeling Nonlinear Viscoelastic–Plastic Behavior of Bioresorbable Polymers in Finite Element Analysis for Stent Applications
by Nicklas Fiedler, Thomas Kleine, Stefan Oschatz, Selina Schultz, Niels Grabow and Kerstin Lebahn
Polymers 2025, 17(21), 2863; https://doi.org/10.3390/polym17212863 - 27 Oct 2025
Viewed by 649
Abstract
Finite element analysis (FEA) is common in biomedical engineering for combining design and material development, with model validation crucial for accurate prediction of material behavior. Simplified geometries are commonly needed in stent development due to high effort in prototype manufacturing. This study outlines [...] Read more.
Finite element analysis (FEA) is common in biomedical engineering for combining design and material development, with model validation crucial for accurate prediction of material behavior. Simplified geometries are commonly needed in stent development due to high effort in prototype manufacturing. This study outlines a methodology for FEA validation related to stent development-related FEA validation using injection-molded planar 2D substructures from a stent design with two types of polymers: poly(l-lactide) (PLLA) and poly(glycolide-co-trimethylene carbonate) (PGA-co-TMC). Specimens underwent quasi-static and cyclic testing, including loading, stress relaxation, unloading, and strain recovery. The material model coefficients for FEA were calibrated for three different constitutive models: linear elastic–plastic (LEP), Parallel Rheological Framework (PRF), and Three-Network (TN) model. The validation of planar stent segment expansion (PSSE) showed strong agreement with the experiments in deformation patterns, with varying force–displacement responses. The PRF and TN models provided better fits for behavioral predictions, with the PRF model being especially favorable for PLLA, while all models exhibited limitations for PGA-co-TMC. This study proposes a robust approach for the material modeling in stent development, enabling efficient material screening and stent design optimization through a simplified 2D validation setup. Material model accuracy depends strongly on calibration–load case congruence, while phenomenological approaches (PRF) show enhanced model robustness against load case variations compared to physically coupled models (TN). Full article
Show Figures

Graphical abstract

19 pages, 4701 KB  
Article
Finite Element Analysis and Experimental Investigation on the Machinability of PMMA/CNT Composites via Nanosectioning
by Guoyu Fu, Jia Ge, Hao Li, Fengzhen Sun and Weizhou Wu
Polymers 2025, 17(18), 2441; https://doi.org/10.3390/polym17182441 - 9 Sep 2025
Viewed by 826
Abstract
In this study, an innovative modeling approach has been proposed to demonstrate the removal mechanisms of Polymethyl Methacrylate (PMMA) reinforced with randomly distributed carbon nanotubes (CNTs) during nanosectioning. The viscoplastic behavior of the matrix polymer was described using the Mulliken–Boyce model and the [...] Read more.
In this study, an innovative modeling approach has been proposed to demonstrate the removal mechanisms of Polymethyl Methacrylate (PMMA) reinforced with randomly distributed carbon nanotubes (CNTs) during nanosectioning. The viscoplastic behavior of the matrix polymer was described using the Mulliken–Boyce model and the distribution of the CNTs in the matrix was modeled using the random sequential adsorption (RSA) method. The effects of cutting thickness and CNT loading on the machinability of the nanocomposites are explored. Subsequent experiments were conducted to validate the modeling. It reveals that the addition of CNT increases the resistance to cutting, compared to the malleable matrix. Although the primary strain distribution for both plain PMMA and PMMA/CNT composites aligns closely, discernible disparities between the two materials emerge. A force augmentation is anticipated whenever a nanotube interacts with the cutting tool, which causes surface protrusions and sub-surface damage. The addition of CNT with a loading lower than 1.0 wt% does not change the mechanisms of chip formation, but the addition of 1.0 wt% CNTs increases cutting force by approximately 32%. This work provides a feasible approach and framework to numerically model the nanosectioning of CNT-reinforced thermoplastics. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

25 pages, 3458 KB  
Article
Comparative Analysis and Performance Evaluation of SSC, n-SAC, and Creep-SCLAY1S Soil Creep Models in Predicting Soil Settlement
by Tulasi Ram Bhattarai, Netra Prakash Bhandary and Gustav Grimstad
Geotechnics 2025, 5(3), 47; https://doi.org/10.3390/geotechnics5030047 - 9 Jul 2025
Viewed by 1311
Abstract
The precise prediction of soil settlement under applied loads is of paramount importance in the field of geotechnical engineering. Conventional analytical approaches often lack the capacity to accurately represent the rate-dependent deformations exhibited by soft soils. Creep affects the integrity of geotechnical structures [...] Read more.
The precise prediction of soil settlement under applied loads is of paramount importance in the field of geotechnical engineering. Conventional analytical approaches often lack the capacity to accurately represent the rate-dependent deformations exhibited by soft soils. Creep affects the integrity of geotechnical structures and can lead to loss of serviceability or even system failure. Over time, they deform, the soil structure can be weakened, and consequently, the risk of collapse increases. Despite extensive research, regarding the creep characteristics of soft soils, the prediction of creep deformation remains a substantial challenge. This study explores soil consolidation settlement by employing three different material models: the Soft Soil Creep (SSC) model implemented in PLAXIS 2D, alongside two user-defined elasto-viscoplastic models, specifically Creep-SCLAY1S and the non-associated creep model for Structured Anisotropic Clay (n-SAC). Through the simulation of laboratory experiments and the Lilla Mellösa test embankment situated in Sweden, the investigation evaluates the strengths and weaknesses of these models. The results demonstrate that the predictions produced by the SSC, n-SAC, and Creep-SCLAY1S models are in close correspondence with the field observations, in contrast to the more simplistic elastoplastic model. The n-SAC and Creep-SCLAY1S models adeptly represent the stress–strain response in CRS test simulations; however, they tend to over-predict horizontal deformations in field assessments. Further investigation is advisable to enhance the ease of use and relevance of these sophisticated models. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (2nd Edition))
Show Figures

Figure 1

25 pages, 3788 KB  
Article
Nonlinear Viscoplastic Modeling of the Feijão Dam 1 Failure
by Tyler J. Oathes and Ross W. Boulanger
Geotechnics 2025, 5(2), 41; https://doi.org/10.3390/geotechnics5020041 - 15 Jun 2025
Viewed by 897
Abstract
Two-dimensional viscoplastic nonlinear analyses of the 2019 Feijão Dam 1 failure are performed using the finite difference program FLAC 8.1 with the user-defined constitutive models PM4SiltR and PM4Sand to assess how a series of commonly used engineering approaches can approximate the observed failure. [...] Read more.
Two-dimensional viscoplastic nonlinear analyses of the 2019 Feijão Dam 1 failure are performed using the finite difference program FLAC 8.1 with the user-defined constitutive models PM4SiltR and PM4Sand to assess how a series of commonly used engineering approaches can approximate the observed failure. A brief history of Feijão Dam 1, its failure, and the findings from two previous independent failure investigations are summarized. The present study uses the site characterization from those prior studies to develop the dam cross section, obtain material index properties, and establish groundwater conditions but uses alternative techniques for characterizing undrained shear strengths. The simulations show that the dam was marginally stable against long-term consolidated, undrained conditions and that modest loading changes were sufficient to trigger failure with deformation patterns consistent with the observed failure. The simulations further show that the collapse could have been triggered by a modest wetting event, ongoing drilling activities, or a combination of both mechanisms. Result sensitivity to choices in the calibration process and the numerical solution scheme are evaluated. The implications of these results on the use of commonly used engineering approaches for system-level time-dependent analyses and on long-term slope stability assessment procedures in practice are discussed. The results of this study provide support for the use of these analysis methods and engineering procedures in practice despite their simplifications and associated limitations. Full article
Show Figures

Figure 1

40 pages, 4107 KB  
Review
A Review of Soil Constitutive Models for Simulating Dynamic Soil–Structure Interaction Processes Under Impact Loading
by Tewodros Y. Yosef, Chen Fang, Ronald K. Faller, Seunghee Kim, Qusai A. Alomari, Mojtaba Atash Bahar and Gnyarienn Selva Kumar
Geotechnics 2025, 5(2), 40; https://doi.org/10.3390/geotechnics5020040 - 12 Jun 2025
Cited by 3 | Viewed by 3721
Abstract
The accurate modeling of dynamic soil–structure interaction processes under impact loading is critical for advancing the design of soil-embedded barrier systems. Full-scale crash testing remains the benchmark for evaluating barrier performance; however, such tests are costly, logistically demanding, and subject to variability that [...] Read more.
The accurate modeling of dynamic soil–structure interaction processes under impact loading is critical for advancing the design of soil-embedded barrier systems. Full-scale crash testing remains the benchmark for evaluating barrier performance; however, such tests are costly, logistically demanding, and subject to variability that limits repeatability. Recent advancements in computational methods, particularly the development of large-deformation numerical schemes, such as the multi-material arbitrary Lagrangian–Eulerian (MM-ALE) and smoothed particle hydrodynamics (SPH) approaches, offer viable alternatives for simulating soil behavior under impact loading. These methods have enabled a more realistic representation of granular soil dynamics, particularly that of the Manual for Assessing Safety Hardware (MASH) strong soil, a well-graded gravelly soil commonly used in crash testing of soil-embedded barriers and safety features. This soil exhibits complex mechanical responses governed by inter-particle friction, dilatancy, confining pressure, and moisture content. Nonetheless, the predictive fidelity of these simulations is governed by the selection and implementation of soil constitutive models, which must capture the nonlinear, dilatant, and pressure-sensitive behavior of granular materials under high strain rate loading. This review critically examines the theoretical foundations and practical applications of a range of soil constitutive models embedded in the LS-DYNA hydrocode, including elastic, elastoplastic, elasto-viscoplastic, and multi-yield surface formulations. Emphasis is placed on the unique behaviors of MASH strong soil, such as confining-pressure dependence, limited elastic range, and strong dilatancy, which must be accurately represented to model the soil’s transition between solid-like and fluid-like states during impact loading. This paper addresses existing gaps in the literature by offering a structured basis for selecting and evaluating constitutive models in simulations of high-energy vehicular impact events involving soil–structure systems. This framework supports researchers working to improve the numerical analysis of impact-induced responses in soil-embedded structural systems. Full article
(This article belongs to the Special Issue Recent Advances in Soil–Structure Interaction)
Show Figures

Figure 1

26 pages, 16116 KB  
Article
Cyclic Thermomechanical Elasto-Viscoplasticity Implementation Using User Material Interface
by Marko Nagode, Simon Oman, Jernej Klemenc and Domen Šeruga
Materials 2025, 18(11), 2512; https://doi.org/10.3390/ma18112512 - 27 May 2025
Cited by 1 | Viewed by 734
Abstract
The paper introduces a user material for Abaqus, detailing the modeling of elasto-viscoplasticity under diverse thermomechanical conditions. Converting constitutive equations into a robust code requires extensive efforts to solve numerous crucial numerical challenges. In addition to deriving the equations, detailing the code is [...] Read more.
The paper introduces a user material for Abaqus, detailing the modeling of elasto-viscoplasticity under diverse thermomechanical conditions. Converting constitutive equations into a robust code requires extensive efforts to solve numerous crucial numerical challenges. In addition to deriving the equations, detailing the code is also crucial for an efficient implementation of a rheological model. The algorithm for multiaxial Prandtl operator approach presented here provides both. The subroutines of the numerical code are explained in detail and solutions to ensure numerical stability are demonstrated. The multiaxial Prandtl operator approach allows a simple and effective calculation of fatigue damage, creep damage, e.g., or dissipated energy using available uniaxial methods. To demonstrate practical application, the paper illustrates the usefulness of the code by analyzing perforated plates under tension–compression and shear loading. This contribution enriches the computational modeling of elasto-viscoplasticity for the finite element method. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

23 pages, 774 KB  
Article
Damage Behaviour of Quasi-Brittle Composites: Mathematical and Computational Aspects
by Jiří Vala and Jiří Tomáš
Appl. Sci. 2025, 15(8), 4214; https://doi.org/10.3390/app15084214 - 11 Apr 2025
Cited by 4 | Viewed by 826
Abstract
In the present paper, an evaluation of the damage behaviour of quasi-brittle composites exposed to mechanical, thermal, and other loads is studied by means of viscoelastic and/or viscoplastic material models, applying some non-local regularisation techniques to the initiation and development of damages. The [...] Read more.
In the present paper, an evaluation of the damage behaviour of quasi-brittle composites exposed to mechanical, thermal, and other loads is studied by means of viscoelastic and/or viscoplastic material models, applying some non-local regularisation techniques to the initiation and development of damages. The methods above are presented as a strong tool for a deeper understanding of material structures in miscellaneous engineering disciplines like civil, mechanical, and many others. Nevertheless, all of the software packages reflect certain compromises between the need for effective computational tools, with parameters obtained from inexpensive experiments, within the possibilities and the complexity of both physical and geometrical descriptions of structure deformation within processes. The article is devoted to the mathematical aspects regarding a considerably wide class of computational modelling problems, emphasising the following ones: (i) the existence and the uniqueness of solutions of engineering problems formulated in terms of the deterministic initial and boundary value problems of partial differential equations theory; (ii) the problems of convergence of computational algorithms applied to (i). Both aspects have numerous references to possible generalisations and investigations connected with open problems. Full article
Show Figures

Figure 1

15 pages, 2009 KB  
Article
Numerical Model for Simulation of the Laser Thermal Forming Process
by Yaroslav Zhuk, Mykola Melnichenko, Arash Soleiman Fallah and Vitalii Husak
Axioms 2025, 14(4), 255; https://doi.org/10.3390/axioms14040255 - 28 Mar 2025
Viewed by 767
Abstract
A numerical model to simulate the laser thermoforming process (LTF) is proposed. It is developed on the basis of the thermodynamically consistent theory of coupled thermo-viscoplasticity and is suitable for modeling the LTF for thin-walled metal structural elements. In the frame of this [...] Read more.
A numerical model to simulate the laser thermoforming process (LTF) is proposed. It is developed on the basis of the thermodynamically consistent theory of coupled thermo-viscoplasticity and is suitable for modeling the LTF for thin-walled metal structural elements. In the frame of this model, the problem statement consists of the Cauchy relation, equations of motion, and the energy balance equation, which is reduced to the heat conduction equation, along with mechanical and thermal boundary conditions, as well as initial conditions. To describe the behavior of the material, a generalized model of physically nonlinear temperature-dependent thermo-viscoplasticity is used. Spatial discretization of the axisymmetric problem of laser pulse loading of the disk is performed by the FEM. The unsteady LTF process of the deformed disk configuration is simulated. The final profile of the disk is obtained as a result of a thermally induced residual stress–strain state caused by the rapid heating and subsequent gradual cooling of the material under the laser-irradiated area. Full article
Show Figures

Figure 1

15 pages, 11290 KB  
Article
Prediction of Residual Stresses During the Hot Forging Process of Spherical Shells Based on Microstructural Evolution
by Yupeng Wu, Jiasheng Li, Zhaocheng Wei, Yuxin Fang, Hongxia Li and Ming Huang
J. Manuf. Mater. Process. 2025, 9(3), 86; https://doi.org/10.3390/jmmp9030086 - 10 Mar 2025
Viewed by 1326
Abstract
A unified viscoplastic constitutive model based on internal physical variables was proposed to predict the viscoplastic mechanical behavior and microstructure evolution of metals during hot forging. Based on the phase transformation theory of materials under the effect of temperature, the evolution mechanism of [...] Read more.
A unified viscoplastic constitutive model based on internal physical variables was proposed to predict the viscoplastic mechanical behavior and microstructure evolution of metals during hot forging. Based on the phase transformation theory of materials under the effect of temperature, the evolution mechanism of residual stress during the cooling process after hot forging and stamping was explored. The determined unified viscoplastic constitutive equation was written in the VUMAT subroutine and employed for the explicit FE analysis of the hot forging and stamping process of thin-walled spherical shells. In the data transfer process, the stress field, temperature field, and deformation characteristics calculated during the high-temperature transient of the hot forging and stamping process were inherited. Meanwhile, the thermoplastic constitutive equation considering the influence of phase transformation was written in the UMAT subroutine and utilized for the implicit FE analysis of the cooling process of thin-walled spherical shells. Through comparison with the measured stress results of the spherical shells after actual forging, it was shown that the proposed constitutive model can effectively predict the microstructural evolution and the final residual stress distribution pattern of medium-carbon steel during the hot forging process. Full article
Show Figures

Figure 1

20 pages, 11957 KB  
Article
Improving Simulation Model Accuracy for Friction Stir Welding of AA 2219
by Kennen Brooks, Bryan Ramos, David J. Prymak, Tracy W. Nelson and Michael P. Miles
Materials 2025, 18(5), 1046; https://doi.org/10.3390/ma18051046 - 27 Feb 2025
Viewed by 1231
Abstract
Modeling of friction stir welding (FSW) is challenging, as there are large gradients in both strain rate and temperature (typically between 450 and 500 °C in aluminum alloys) that must be accounted for in the constitutive law of the material being joined. Constitutive [...] Read more.
Modeling of friction stir welding (FSW) is challenging, as there are large gradients in both strain rate and temperature (typically between 450 and 500 °C in aluminum alloys) that must be accounted for in the constitutive law of the material being joined. Constitutive laws are most often calibrated using flow stresses from hot compression or hot torsion testing, where strain rates are much lower than those seen in the stir zone of the FSW process. As such, the current work employed a recently developed method to measure flow stresses at high strain rates and temperatures in AA 2219-T67, and these data were used in the development of a finite element (FE) simulation of FSW. Because heat generation during FSW is primarily a function of friction between the rapidly spinning tool and the plate, the choice of friction law and associated parameters were also studied with respect to FE model predictions. It was found that the Norton viscoplastic friction law provided the most accurate modeling results, for both the transient and steady-state phases of an FSW plunge experiment. It is likely that the superior performance of the Norton law was its ability to account for temperature and rate sensitivity of the plate material sheared by the tool, while the Tresca-limited Coulomb law favored contact pressure, with essentially no temperature or rate dependence of the local material properties. With optimized friction parameters and more accurate flow stresses for the weld zone, as measured by a high-pressure shear test, a 65% overall reduction in model error was achieved, compared to a model that employed a material law calibrated with hot compression or hot torsion test results. Model error was calculated as an equally weighted comparison of temperatures, torques, and forces with experimentally measured values. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop