Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,650)

Search Parameters:
Keywords = virus titer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 1252 KiB  
Article
Antibody Titer Testing in Dogs: Evaluation of Three Point-of-Care Tests for Canine Core Vaccine Antigens Compared to Virus Neutralization
by Lena Janowitz, Ahmed Abd El Wahed, Uwe Truyen, Regina Hofmann-Lehmann and Andrea Monika Spiri
Vet. Sci. 2025, 12(8), 737; https://doi.org/10.3390/vetsci12080737 (registering DOI) - 6 Aug 2025
Abstract
Antibody titer testing can be useful in controlling successful puppy immunization and can reduce unnecessary vaccinations in adult dogs. We evaluated three commercially available point-of-care tests (POCTs) for detecting antibodies against canine parvovirus (CPV-2), canine distemper virus (CDV) and canine adenovirus (CAV-1 and/or [...] Read more.
Antibody titer testing can be useful in controlling successful puppy immunization and can reduce unnecessary vaccinations in adult dogs. We evaluated three commercially available point-of-care tests (POCTs) for detecting antibodies against canine parvovirus (CPV-2), canine distemper virus (CDV) and canine adenovirus (CAV-1 and/or -2), comparing them to the reference virus neutralization (VN) assay. Sera from 200 client-owned dogs (13 healthy, 63 chronically diseased, 124 acute) and 60 specific pathogen-free (SPF) dogs, including 20 sera with maternally derived antibodies (MDA), were tested. All three POCTs demonstrated high sensitivity (79.0–100%) and specificity (97.8–100%) for CPV-2. In contrast, specificity for CDV and CAV was lower with POCT-1 (43.5% and 55.3%) and POCT-2 (42.4% and 79.2%), despite high sensitivity (CDV in both POCTs 98.7%; CAV POCT-1: 99.4%, POCT-2: 90.8%). POCT-3, by comparison, showed high specificity (CDV: 94.1%; CAV: 84.4%) but very low sensitivity (CDV: 17.4%; CAV: 33.1%). Only POCT-1 for CPV-2 detected MDA reliably, whereas the other two POCTs, and POCT-1 for CDV and CAV, did not. When compared to VN, the agreement in vaccination recommendations was 82% for POCT-1 and POCT-2, and 62% for POCT-3. In conclusion, all three POCTs reliably detected antibodies against CPV-2, including MDA with POCT-1. However, the lower specificity for CDV and CAV antibody detection in POCT-1 and POCT-2 raises concerns about misclassifying unprotected dogs as immune, while false-negatives with POCT-3 could lead to unnecessary vaccinations. Further optimization of all three POCTs for CDV and CAV is recommended. Full article
(This article belongs to the Special Issue Advances in Veterinary Clinical Microbiology)
Show Figures

Figure 1

24 pages, 6246 KiB  
Article
Anti-Herpes Simplex Virus Type 1 Activity of Rosa damascena Mill Essential Oil and Floral Water in Retinal Infection In Vitro and In Silico
by Neli Vilhelmova-Ilieva, Rayna Nenova, Kalin Kalinov, Ana Dobreva, Dimitar Peshev and Ivan Iliev
Int. J. Mol. Sci. 2025, 26(15), 7521; https://doi.org/10.3390/ijms26157521 - 4 Aug 2025
Abstract
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena [...] Read more.
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena Mill against herpes simplex virus type 1 (HSV-1) infection in rabbit retinal cells (RRCs). The composition of the main chemical components in the rose essential oil was determined by means of gas chromatographic analysis. The effect on the viral replication cycle was determined using the cytopathic effect (CPE) inhibition assay. The virucidal activity, the effect on the adsorption stage of the virus to the host cell, and the protective effect on healthy cells were evaluated using the endpoint dilution method. The effects were determined as deviation in the viral titer, Δlg, for the treated cells from the one for the untreated viral control. The identified main active components of rose oil are geraniol (28.73%), citronellol (21.50%), nonadecane (13.13%), nerol (5.51%), heneicosane (4.87%), nonadecene (3.93), heptadecane (2.29), farnesol (2.11%), tricosane (1.29%), eicosane (1.01%), and eugenol (0.85%). The results demonstrated that both rose products do not have a significant effect on the virus replication but directly affect the viral particles and reduce the viral titer by Δlg = 3.25 for floral water and by Δlg = 3.0 for essential oil. Significant inhibition of the viral adsorption stage was also observed, leading to a decrease in the viral titers by Δlg = 2.25 for floral water and by Δlg = 2.0 for essential oil. When pretreating healthy cells with rose products, both samples significantly protected them from subsequent infection with HSV-1. This protective effect was more pronounced for the oil (Δlg = 2.5) compared to the one for the floral water (Δlg = 2.0). We used the in silico molecular docking method to gain insight into the mechanism of hindrance of viral adsorption by the main rose oil compounds (geraniol, citronellol, nerol). These components targeted the HSV-1 gD interaction surface with nectin-1 and HVEM (Herpesvirus Entry Mediator) host cell receptors, at N-, C-ends, and N-end, respectively. These findings could provide a structural framework for further development of anti-HSV-1 therapeutics. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

12 pages, 3410 KiB  
Article
Nasal and Ocular Immunization with Bacteriophage Virus-Like Particle Vaccines Elicits Distinct Systemic and Mucosal Antibody Profiles
by Andzoa N. Jamus, Zoe E. R. Wilton, Samantha D. Armijo, Julian Flanagan, Isabella G. Romano, Susan B. Core and Kathryn M. Frietze
Vaccines 2025, 13(8), 829; https://doi.org/10.3390/vaccines13080829 (registering DOI) - 3 Aug 2025
Viewed by 244
Abstract
Background/Objectives: Intramuscular immunization elicits systemic IgG and is the primary route of vaccine administration in humans. However, there is growing interest in utilizing other routes of administration to tailor antibody profiles, increase immunity at primary sites of infection, simplify administration, and eliminate [...] Read more.
Background/Objectives: Intramuscular immunization elicits systemic IgG and is the primary route of vaccine administration in humans. However, there is growing interest in utilizing other routes of administration to tailor antibody profiles, increase immunity at primary sites of infection, simplify administration, and eliminate needle waste. Here, we investigated the antibody profiles elicited by immunization with bacteriophage virus-like particle vaccine platforms at various routes of administration. Methods: We chose two model bacteriophage vaccines for investigation: bacteriophage MS2 virus-like particles (VLPs) recombinantly displaying a short, conserved peptide from Chlamydia trachomatis major outer membrane protein (MS2) and bacteriophage Qβ VLPs displaying oxycodone through chemical conjugation (Qβ). We comprehensively characterized the antibodies elicited systemically and at various mucosal sites when the vaccines were administered intramuscularly, intranasally or periocularly with or without an intramuscular prime using various prime/boost schemes. Results: Intranasal and periocular immunization elicited robust mucosal and systemic IgA responses for both MS2 and Qβ. The intramuscular prime followed by intranasal or periocular boosts elicited broad antibody responses, and increased antibodies titers at certain anatomical sites. Conclusions: These findings demonstrate the tractability of bacteriophage VLP-based vaccines in generating specific antibody profiles based on the prime–boost regimen and route of administration. Full article
Show Figures

Figure 1

17 pages, 2547 KiB  
Article
A Host Cell Vector Model for Analyzing Viral Protective Antigens and Host Immunity
by Sun-Min Ahn, Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Gun Kim, Seung-Min Hong, Kang-Seuk Choi and Hyuk-Joon Kwon
Int. J. Mol. Sci. 2025, 26(15), 7492; https://doi.org/10.3390/ijms26157492 - 2 Aug 2025
Viewed by 247
Abstract
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to [...] Read more.
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to establish a genetically matched host–cell system to evaluate antigen-specific immune responses and identify conserved CD8+ T cell epitopes in avian influenza viruses. To this end, we developed an MHC class I genotype (B21)-matched host (Lohmann VALO SPF chicken) and cell vector (DF-1 cell line) model. DF-1 cells were engineered to express the hemagglutinin (HA) gene of clade 2.3.4.4b H5N1 either transiently or stably, and to stably express the matrix 1 (M1) and nucleoprotein (NP) genes of A/chicken/South Korea/SL20/2020 (H9N2, Y280-lineage). Following prime-boost immunization with HA-expressing DF-1 cells, only live cells induced strong hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody titers in haplotype-matched chickens. Importantly, immunization with DF-1 cells transiently expressing NP induced stronger IFN-γ production than those expressing M1, demonstrating the platform’s potential for differentiating antigen-specific cellular responses. CD8+ T cell epitope mapping by mass spectrometry identified one distinct MHC class I-bound peptide from each of the HA-, M1-, and NP-expressing DF-1 cell lines. Notably, the identified HA epitope was conserved in 97.6% of H5-subtype IAVs, and the NP epitope in 98.5% of pan-subtype IAVs. These findings highlight the platform’s utility for antigen dissection and rational vaccine design. While limited by MHC compatibility, this approach enables identification of naturally presented epitopes and provides insight into conserved, functionally constrained viral targets. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Graphical abstract

17 pages, 2225 KiB  
Article
The Persistence of Cross-Reactive Immunity to Influenza B/Yamagata Neuraminidase Despite the Disappearance of the Lineage: Structural and Serological Evidence
by Yulia Desheva, Polina Kudar, Maria Sergeeva, Pei-Fong Wong, Tamara Shvedova, Ekaterina Bazhenova, Evelyna Krylova, Maria Kurpiaeva, Ekaterina Romanovskaya-Romanko, Vera Krivitskaya, Kira Kudria, Irina Isakova-Sivak and Marina Stukova
Int. J. Mol. Sci. 2025, 26(15), 7476; https://doi.org/10.3390/ijms26157476 - 2 Aug 2025
Viewed by 204
Abstract
Influenza B viruses, divided into B/Victoria and B/Yamagata lineages, have not had B/Yamagata isolates after 2020. A study evaluated immunity to influenza B surface antigens hemagglutinin (HA) and neuraminidase (NA) in 138 patient sera from 2023 and 23 pairs of sera from 2018 [...] Read more.
Influenza B viruses, divided into B/Victoria and B/Yamagata lineages, have not had B/Yamagata isolates after 2020. A study evaluated immunity to influenza B surface antigens hemagglutinin (HA) and neuraminidase (NA) in 138 patient sera from 2023 and 23 pairs of sera from 2018 to 2019 vaccine recipients. The phylogenetic tree of the influenza B virus, based on HA and NA genes, shows that the Yamagata lineage evolves gradually, while the Victoria lineage exhibits rapid mutations with short branches. In 2023, mean levels of antibodies to HA and NA of B/Yamagata virus were higher than to B/Victoria, despite no cases of B/Yamagata lineage isolation after 2020. The titers of antibodies to NA of B/Yamagata statistically significantly differed among individuals born before and after 1988. Among patients examined in 2018–2019, neuraminidase-inhibiting (NI) antibody titers before vaccination were higher to B/Yamagata than to B/Victoria, and NI antibodies to B/Victoria and B/Yamagata positively correlated with neutralizing antibodies to B/Victoria virus before and after vaccination. Immunity to B/Yamagata virus was stronger in 2023, despite no isolation since 2020, probably due to the presence of cross-reactive antibodies from B/Victoria infections or vaccinations. Antibodies to NA of B/Victoria and B/Yamagata in 2023 correlated significantly in patients born before 1988, potentially supporting the concept of ‘antigenic sin’ phenomenon for influenza B viruses. The fact that NI antibody titers to B/Victoria and B/Yamagata correlated with neutralizing antibody titers to B/Victoria may suggest broad cross-protection. Studying influenza B virus NA antigenic properties helps understand the evolution and antigenic competition of HA and NA. Full article
(This article belongs to the Special Issue Respiratory Virus Infection)
Show Figures

Figure 1

19 pages, 8583 KiB  
Article
Development and Immunogenic Evaluation of a Recombinant Vesicular Stomatitis Virus Expressing Nipah Virus F and G Glycoproteins
by Huijuan Guo, Renqiang Liu, Dan Pan, Yijing Dang, Shuhuai Meng, Dan Shan, Xijun Wang, Jinying Ge, Zhigao Bu and Zhiyuan Wen
Viruses 2025, 17(8), 1070; https://doi.org/10.3390/v17081070 - 31 Jul 2025
Viewed by 271
Abstract
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics [...] Read more.
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics available. Various virological tools—such as reverse genetics systems, replicon particles, VSV-based pseudoviruses, and recombinant Cedar virus chimeras—have been widely used to study the molecular mechanisms of NiV and to support vaccine development. Building upon these platforms, we developed a replication-competent recombinant vesicular stomatitis virus (rVSVΔG-eGFP-NiVBD F/G) expressing NiV attachment (G) and fusion (F) glycoproteins. This recombinant virus serves as a valuable tool for investigating NiV entry mechanisms, cellular tropism, and immunogenicity. The virus was generated by replacing the VSV G protein with NiV F/G through reverse genetics, and protein incorporation was confirmed via immunofluorescence and electron microscopy. In vitro, the virus exhibited robust replication, characteristic cell tropism, and high viral titers in multiple cell lines. Neutralization assays showed that monoclonal antibodies HENV-26 and HENV-32 effectively neutralized the recombinant virus. Furthermore, immunization of golden hamsters with inactivated rVSVΔG-eGFP-NiVBD F/G induced potent neutralizing antibody responses, demonstrating its robust immunogenicity. These findings highlight rVSVΔG-eGFP-NiVBD F/G as an effective platform for NiV research and vaccine development. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 14428 KiB  
Article
Bivalent Oral Vaccine Using Attenuated Salmonella Gallinarum Delivering HA and NA-M2e Confers Dual Protection Against H9N2 Avian Influenza and Fowl Typhoid in Chickens
by Muhammad Bakhsh, Amal Senevirathne, Jamal Riaz, Jun Kwon, Ram Prasad Aganja, Jaime C. Cabarles, Sang-Ik Oh and John Hwa Lee
Vaccines 2025, 13(8), 790; https://doi.org/10.3390/vaccines13080790 - 25 Jul 2025
Viewed by 400
Abstract
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lon [...] Read more.
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lonpagLasd) as a delivery system for H9N2 antigens to induce an immunoprotective response against both H9N2 and FT. To enhance immune protection against H9N2, a prokaryotic and eukaryotic dual expression plasmid, pJHL270, was employed. The hemagglutinin (HA) consensus sequence from South Korean avian influenza A virus (AIV) was cloned under the Ptrc promoter for prokaryotic expression, and the B cell epitope of neuraminidase (NA) linked with matrix protein 2 (M2e) was placed for eukaryotic expression. In vitro and in vivo expressions of the H9N2 antigens were validated by qRT-PCR and Western blot, respectively. Results: Oral immunization with JOL3121 induced a significant increase in SG and H9N2-specific serum IgY and cloacal swab IgA antibodies, confirming humoral and mucosal immune responses. Furthermore, FACS analysis showed increased CD4+ and CD8+ T cell populations. On day 28 post-immunization, there was a substantial rise in the hemagglutination inhibition titer in the immunized birds, demonstrating neutralization capabilities of immunization. Both IFN-γ and IL-4 demonstrated a significant increase, indicating a balance of Th1 and Th2 responses. Intranasal challenge with the H9N2 Y280 strain resulted in minimal to no clinical signs with significantly lower lung viral titer in the JOL3121 group. Upon SG wildtype challenge, the immunized birds in the JOL3121 group yielded 20% mortality, while 80% mortality was recorded in the PBS control group. Additionally, bacterial load in the spleen and liver was significantly lower in the immunized birds. Conclusions: The current vaccine model, designed with a host-specific pathogen, SG, delivers a robust immune boost that could enhance dual protection against FT and H9N2 infection, both being significant diseases in poultry, as well as ensure public health. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Graphical abstract

17 pages, 2789 KiB  
Article
Interferon-Induced Transmembrane Protein 3 (IFITM3) Restricts PRRSV Replication via Post-Entry Mechanisms
by Pratik Katwal, Shamiq Aftab, Eric Nelson, Michael Hildreth, Shitao Li and Xiuqing Wang
Microorganisms 2025, 13(8), 1737; https://doi.org/10.3390/microorganisms13081737 - 25 Jul 2025
Viewed by 331
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a member of the family of interferon-stimulated genes (ISGs) that inhibits a diverse array of enveloped viruses which enter host cells by endocytosis. Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped RNA virus causing significant [...] Read more.
Interferon-induced transmembrane protein 3 (IFITM3) is a member of the family of interferon-stimulated genes (ISGs) that inhibits a diverse array of enveloped viruses which enter host cells by endocytosis. Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped RNA virus causing significant economic losses to the swine industry. Very little is known regarding how IFITM3 restricts PRRSV. In this study, the role of IFITM3 in PRRSV infection was studied in vitro using MARC-145 cells. IFITM3 over-expression reduced PRRSV replication, while the siRNA-induced knockdown of endogenous IFITM3 increased PRRSV RNA copies and virus titers. The colocalization of the virus with IFITM3 was observed at both 3 and 24 h post infection (hpi). Quantitative analysis of confocal microscopic images showed that an average of 73% of IFITM3-expressing cells were stained positive for PRRSV at 3 hpi, while only an average of 27% of IFITM3-expressing cells were stained positive for PRRSV at 24 hpi. These findings suggest that IFITM3 may restrict PRRSV at the post-entry steps. Future studies are needed to better understand the mechanisms by which this restriction factor inhibits PRRSV. Full article
(This article belongs to the Special Issue Advances in Porcine Virus: From Pathogenesis to Control Strategies)
Show Figures

Figure 1

26 pages, 542 KiB  
Review
Challenges to the Effectiveness and Immunogenicity of COVID-19 Vaccines: A Narrative Review with a Systematic Approach
by Alexander A. Soldatov, Nickolay A. Kryuchkov, Dmitry V. Gorenkov, Zhanna I. Avdeeva, Oxana A. Svitich and Sergey Soshnikov
Vaccines 2025, 13(8), 789; https://doi.org/10.3390/vaccines13080789 - 24 Jul 2025
Viewed by 1017
Abstract
The COVID-19 pandemic accelerated the rapid development and distribution of various vaccine platforms, resulting in a significant reduction in disease severity, hospitalizations, and mortality. However, persistent challenges remain concerning the durability and breadth of vaccine-induced protection, especially in the face of emerging SARS-CoV-2 [...] Read more.
The COVID-19 pandemic accelerated the rapid development and distribution of various vaccine platforms, resulting in a significant reduction in disease severity, hospitalizations, and mortality. However, persistent challenges remain concerning the durability and breadth of vaccine-induced protection, especially in the face of emerging SARS-CoV-2 variants. This review aimed to evaluate the factors influencing the immunogenicity and effectiveness of COVID-19 vaccines to inform future vaccine advancement strategies. A narrative review with systematic approach was conducted following PRISMA guidelines for narrative review. Literature was sourced from databases including PubMed, Embase, and Web of Science for studies published between December 2019 and May 2025. Encompassed studies assessed vaccine efficacy, immunogenicity, and safety across various populations and vaccine platforms. Data were collected qualitatively, with quantitative data from reviews highlighted where available. We have uncovered a decline in vaccine efficacy over time and weakened protection against novel variants such as Delta and Omicron. Booster doses, specifically heterologous regimens, improved immunogenicity and increased protection. Vaccine-induced neutralizing antibody titers have been found to correlate with clinical protection, although the long-term correlates of immunity remain poorly defined. The induction of IgG4 antibodies after repeated mRNA vaccinations raised concerns about potential modulation of the immune response. COVID-19 vaccines have contributed significantly to pandemic control; however, their efficacy is limited by the evolution of the virus and declining immunity. Forthcoming vaccine strategies should focus on broad-spectrum, variant-adapted formulations and defining robust comparisons of protection. Recognizing the immunological basis of vaccine response, including the role of specific antibody subclasses, is fundamental for optimizing long-term protection. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

15 pages, 2688 KiB  
Article
Recombinant Tetrameric Neuraminidase Subunit Vaccine Provides Protection Against Swine Influenza A Virus Infection in Pigs
by Ao Zhang, Bin Tan, Jiahui Wang and Shuqin Zhang
Vaccines 2025, 13(8), 783; https://doi.org/10.3390/vaccines13080783 - 23 Jul 2025
Viewed by 355
Abstract
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza [...] Read more.
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza vaccine development. NA has potential advantages as a vaccine antigen in providing cross-protection, with specific antibodies that have a broad binding capacity for heterologous viruses. In this study, we evaluated the immunogenicity and protective efficacy of a tetrameric recombinant NA subunit vaccine in a swine model. Methods: We constructed and expressed structurally stable soluble tetrameric recombinant NA (rNA) and prepared subunit vaccines by mixing with ISA 201 VG adjuvant. The protective efficacy of rNA-ISA 201 VG was compared to that of a commercial whole inactivated virus vaccine. Pigs received a prime-boost immunization (14-day interval) followed by homologous viral challenge 14 days post-boost. Results: Both rNA-ISA 201 VG and commercial vaccine stimulated robust humoral responses. Notably, the commercial vaccine group exhibited high viral-binding antibody titers but very weak NA-specific antibodies, whereas rNA-ISA 201 VG immunization elicited high NA-specific antibody titers alongside substantial viral-binding antibodies. Post-challenge, both immunization with rNA-ISA 201 VG and the commercial vaccine were effective in inhibiting viral replication, reducing viral load in porcine respiratory tissues, and effectively mitigating virus-induced histopathological damage, as compared to the PBS negative control. Conclusions: These findings found that the anti-NA immune response generated by rNA-ISA 201 VG vaccination provided protection comparable to that of a commercial inactivated vaccine that primarily induces an anti-HA response. Given that the data are derived from one pig per group, there is a requisite to increase the sample size for more in-depth validation. This work establishes a novel strategy for developing next-generation SIV subunit vaccines leveraging NA as a key immunogen. Full article
(This article belongs to the Special Issue Vaccine Development for Swine Viral Pathogens)
Show Figures

Figure 1

15 pages, 1304 KiB  
Article
Correlates of SARS-CoV-2 Breakthrough Infections in Kidney Transplant Recipients Following a Third SARS-CoV-2 mRNA Vaccine Dose
by Miriam Viktov Thygesen, Charlotte Strandhave, Jeanette Mølgaard Kiib, Randi Berg, Malene Söth Andersen, Emma Berggren Dall, Bodil Gade Hornstrup, Hans Christian Østergaard, Frank Holden Mose, Jon Waarst Gregersen, Søren Jensen-Fangel, Jesper Nørgaard Bech, Henrik Birn, Marianne Kragh Thomsen and Rasmus Offersen
Vaccines 2025, 13(8), 777; https://doi.org/10.3390/vaccines13080777 - 22 Jul 2025
Viewed by 268
Abstract
Background: Kidney transplant recipients (KTRs) exhibit a significantly diminished immune response to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccines compared with the general population, primarily due to ongoing immunosuppressive therapy. This study evaluated the immunogenicity of a third SARS-CoV-2 mRNA vaccine dose in [...] Read more.
Background: Kidney transplant recipients (KTRs) exhibit a significantly diminished immune response to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccines compared with the general population, primarily due to ongoing immunosuppressive therapy. This study evaluated the immunogenicity of a third SARS-CoV-2 mRNA vaccine dose in KTRs and assessed the association between antibody response and protection against SARS-CoV-2 breakthrough infection. Additionally, the clinical and immunological correlates of post-vaccination SARS-CoV-2 infection were examined. Methods: A prospective cohort of 135 KTRs received a third vaccine dose approximately six months following the second dose. Plasma samples were collected at baseline (pre-vaccination), six months after the second dose, and six weeks following the third dose. Humoral responses were assessed using SARS-CoV-2-specific Immunoglobulin G (IgG) titers and virus neutralization assays against wild-type (WT) and viral strains, including multiple Omicron sub-lineages. Results: After the third vaccine dose, 74% of the KTRs had detectable SARS-CoV-2-specific IgG antibodies, compared with 48% following the second dose. The mean IgG titers increased approximately ten-fold post-booster. Despite this increase, neutralizing activity against the Omicron variants remained significantly lower than that against the WT strain. KTRs who subsequently experienced a SARS-CoV-2 breakthrough infection demonstrated reduced neutralizing antibody activity across all variants tested. Additionally, individuals receiving triple immunosuppressive therapy had a significantly higher risk of SARS-CoV-2 breakthrough infection compared with those on dual or monotherapy. A multivariate machine learning analysis identified age and neutralizing activity against WT, Delta, and Omicron BA.2 as the most robust correlates of SARS-CoV-2 breakthrough infection. Conclusions: A third SARS-CoV-2 mRNA vaccine dose significantly improves SARS-CoV-2-specific IgG levels in KTRs; however, the neutralizing response against Omicron variants remains suboptimal. Diminished neutralizing capacity and intensified immunosuppression are key determinants of SARS-CoV-2 breakthrough infection in this immunocompromised population. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

15 pages, 288 KiB  
Article
Effect of Dietary Supplementation of Biochars on Growth Performance, Bone Mineralization, Footpad Health, Lymphoid Organs Weight, Antibody Titers of Newcastle Disease and Infectious Bronchitis Disease in Broiler Chicks
by Raheel Pervaiz, Riaz Mustafa, Umar Farooq, Waseem Abbas, Muhammad Farooq Khalid, Abdur Rehman, Munawar Hussain, Muhammad Muzammil Riaz, Asfa Fatima and Muhammad Aziz ur Rahman
Vet. Sci. 2025, 12(7), 680; https://doi.org/10.3390/vetsci12070680 - 18 Jul 2025
Viewed by 304
Abstract
This study evaluated the effect of biochars on growth performance, nutrient digestibility, carcass yield, bone mineralization, litter quality and footpad lesions in broilers. Eight hundred day-old chicks were randomly divided into four treatments, 10 replicates per treatment (20 birds/replicate) for 35 days. Treatments [...] Read more.
This study evaluated the effect of biochars on growth performance, nutrient digestibility, carcass yield, bone mineralization, litter quality and footpad lesions in broilers. Eight hundred day-old chicks were randomly divided into four treatments, 10 replicates per treatment (20 birds/replicate) for 35 days. Treatments were basal diet (control), a control diet with corncob (CC) biochar (1%), a control diet with wheat straw (WS) biochar (1%) and a control diet with sugarcane bagasse (SCB) biochar (1%). Body weight gain (BWG), feed intake (FI) and feed conversion ratio (FCR) were recorded weekly. Nutrient digestibility, bone mineralization and carcass parameters were determined on the 21st and 35th days, while footpad lesions and litter quality were also assessed. The results revealed significant improvement (p < 0.05) in FI, BWG and FCR with supplementation. Nutrient digestibility was higher (p < 0.05) in the SCB biochar group. Tibia calcium and phosphorus levels were enhanced (p < 0.05) in the WS and SCB biochar groups, respectively. Footpad lesions were significantly lower (p < 0.05) in the CC biochar group, while litter quality was improved (p < 0.05) in the WS biochar group. Lymphoid organ relative weight results revealed that spleen weight was not affected by biochar supplementation in diet (p > 0.05), while dietary supplementation of CS and WS biochar in the diet resulted in the highest relative weights of thymus and bursa (p < 0.05). However, dietary supplementation of WS, SC and SCB biochar supplementation had affected positively the log value of the ND virus and IBV titers in birds. Overall, dietary supplementation of 1% biochars enhances growth performance, bone mineralization, footpad health immunity and litter quality in broilers. Full article
(This article belongs to the Topic Feeding Livestock for Health Improvement)
16 pages, 2780 KiB  
Article
Impact of Wheat Resistance Genes on Wheat Curl Mite Fitness and Wheat Streak Mosaic Dynamics Under Single and Mixed Infections
by Saurabh Gautam and Kiran R. Gadhave
Viruses 2025, 17(7), 1010; https://doi.org/10.3390/v17071010 - 18 Jul 2025
Viewed by 378
Abstract
The wheat curl mite (WCM, Aceria tosichella Keifer), a complex of eriophyid mite species, transmits wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), which in single or mixed infections cause wheat streak mosaic (WSM) disease—a major threat to wheat production across [...] Read more.
The wheat curl mite (WCM, Aceria tosichella Keifer), a complex of eriophyid mite species, transmits wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), which in single or mixed infections cause wheat streak mosaic (WSM) disease—a major threat to wheat production across the U.S. Great Plains. Resistant wheat cultivars bearing Cmc3 and Cmc4 (targeting WCM), Wsm1 and Wsm2 (targeting WSMV), and Wsm1 (targeting TriMV) are widely used to manage this pest–pathogen complex. However, comprehensive studies investigating how these resistance mechanisms influence both vector biology and virus transmission remain scarce. To address this gap, we evaluated disease development and WCM fitness across nine wheat cultivars with differential resistance profiles under single and mixed infections of WSMV and TriMV. We found strong viral synergy in co-infected plants, with TriMV accumulation markedly enhanced during mixed infections, irrespective of host genotype. Symptom severity and virus titers (both WSMV and TriMV) were highest in the cultivars carrying Wsm2, suggesting a potential trade-off in resistance effectiveness under mixed infection pressure. While mite development time (egg to adult) was unaffected by host genotype or infection status, mite fecundity was significantly reduced on infected plants carrying Wsm1 or Wsm2, but not on those with Cmc3 and Cmc4. Notably, virus accumulation in mites was reduced on the cultivars with Cmc3 and Cmc4, correlating with virus titers in the host tissues. Our findings highlight the complex interplay between host resistance, virus dynamics, and vector performance. Cultivars harboring Cmc3 and Cmc4 may offer robust field-level protection by simultaneously suppressing mite reproduction and limiting virus accumulation in both plant and vector. Full article
(This article belongs to the Special Issue Molecular and Biological Virus-Plant-Insect Vector Interactions)
Show Figures

Figure 1

13 pages, 851 KiB  
Article
Performance Evaluation of a Fully Automated Molecular Diagnostic System for Multiplex Detection of SARS-CoV-2, Influenza A/B Viruses, and Respiratory Syncytial Virus
by James G. Komu, Dulamjav Jamsransuren, Sachiko Matsuda, Haruko Ogawa and Yohei Takeda
Diagnostics 2025, 15(14), 1791; https://doi.org/10.3390/diagnostics15141791 - 16 Jul 2025
Viewed by 355
Abstract
Background/Objectives: Concurrent outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A and B viruses (IAV/IBV), and respiratory syncytial virus (RSV) necessitate rapid and precise differential laboratory diagnostic methods. This study aimed to evaluate the multiplex molecular diagnostic performance of the [...] Read more.
Background/Objectives: Concurrent outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A and B viruses (IAV/IBV), and respiratory syncytial virus (RSV) necessitate rapid and precise differential laboratory diagnostic methods. This study aimed to evaluate the multiplex molecular diagnostic performance of the geneLEAD VIII system (Precision System Science Co., Ltd., Matsudo, Japan), a fully automated sample-to-result precision instrument, in conjunction with the VIASURE SARS-CoV-2, Flu & RSV Real Time PCR Detection Kit (CerTest Biotec, S.L., Zaragoza, Spain). Methods: The specific detection capabilities of SARS-CoV-2, IAV/IBV, and RSV genes were evaluated using virus-spiked saliva and nasal swab samples. Using saliva samples, the viral titer detection limits of geneLEAD/VIASURE and manual referent singleplex RT-qPCR assays were compared. The performance of geneLEAD/VIASURE in analyzing single- and multiple-infection models was scrutinized. The concordance between the geneLEAD/VIASURE and the manual assays was assessed. Results: The geneLEAD/VIASURE successfully detected all the virus genes in the saliva and nasal swab samples despite some differences in the Ct values. The viral titer detection limits in the saliva samples for SARS-CoV-2, IAV, IBV, and RSV using geneLEAD/VIASURE were 100, ≤10−2, 100, and 102 TCID50/mL, respectively, compared to ≤10−1, ≤100, ≤100, and ≤104 TCID50/mL, respectively, in the manual assays. geneLEAD/VIASURE yielded similar Ct values in the single- and multiple-infection models, with some exceptions noted in the triple-infection models when low titers of RSV were spiked with high titers of the other viruses. The concordance between geneLEAD/VIASURE and the manual assays was high, with Pearson’s R2 values of 0.90, 0.85, 0.92, and 0.95 for SARS-CoV-2, IAV, IBV, and RSV, respectively. Conclusions: geneLEAD/VIASURE is a reliable diagnostic tool for detecting SARS-CoV-2, IAV/IBV, and RSV in single- and multiple-infection scenarios. Full article
Show Figures

Figure 1

13 pages, 3597 KiB  
Article
Effects of Canine IL-12 on the Immune Response Against the Canine Parvovirus VP2 Protein
by Shiyan Wang, Wenjie Jiao, Dannan Zhao, Yuzhu Gong, Jingying Ni, Huawei Wu, Jige Du, Tuanjie Wang and Chunsheng Yin
Vaccines 2025, 13(7), 758; https://doi.org/10.3390/vaccines13070758 - 16 Jul 2025
Viewed by 363
Abstract
Background: Canine parvovirus (CPV) is a highly pathogenic virus that predominantly affects puppies, with mortality rates exceeding 70%. Although commercial multivalent live attenuated vaccines (MLV) are widely employed, their efficacy is often compromised by maternal antibody interference. Consequently, the development of novel vaccines [...] Read more.
Background: Canine parvovirus (CPV) is a highly pathogenic virus that predominantly affects puppies, with mortality rates exceeding 70%. Although commercial multivalent live attenuated vaccines (MLV) are widely employed, their efficacy is often compromised by maternal antibody interference. Consequently, the development of novel vaccines remains imperative for effective CPV control. Methods: Recombinant CPV VP2 protein (rVP2) and canine interlukine 12 protein (rcIL-12) were expressed using the Bac-to-Bac baculovirus expression system and the biological activity of these proteins was assessed through hemagglutination, Cell Counting Kit-8 (CCK8) and IFN-γ induction assays. The combined immunoenhancement effect of rVP2 and rcIL-12 protein was evaluated in puppies. Results: Both rVP2 and rcIL-12 were successfully expressed and purified, exhibiting confirmed antigenicity, immunogenicity, and bioactivity. Co-administration of rVP2 with rcIL-12 elicited higher neutralizing antibody titer (6–7 times higher), complete challenge protection efficiency (no clinical symptoms and tissue and organ lesions), fewer viral shedding (decreasing significantly 8-day post challenge) and superior viral blockade (lower viral load in the organism) compared to rVP2 alone. Conclusions: Our findings demonstrate that rVP2 co-administered with rcIL-12 induces robust protective immunity in puppies and significantly mitigated the inhibitory effects of maternal antibodies. This represents a promising strategy for enabling earlier vaccination in puppies and rational design of CPV subunit vaccines. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

Back to TopTop