Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (513)

Search Parameters:
Keywords = virus entry as a target

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1353 KiB  
Article
Inhibition of Human Coronavirus 229E by Lactoferrin-Derived Peptidomimetics
by Maria Carmina Scala, Magda Marchetti, Martina Landi, Marialuigia Fantacuzzi, Fabiana Superti, Mariangela Agamennone, Pietro Campiglia and Marina Sala
Pharmaceutics 2025, 17(8), 1006; https://doi.org/10.3390/pharmaceutics17081006 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Viral respiratory infections have a significant impact on global health and the economy. While vaccines are effective in preventing infection, they might not be available or sufficient when used alone and must be complemented by specific therapeutic strategies. The development of new [...] Read more.
Background/Objectives: Viral respiratory infections have a significant impact on global health and the economy. While vaccines are effective in preventing infection, they might not be available or sufficient when used alone and must be complemented by specific therapeutic strategies. The development of new antiviral agents is increasingly important due to the continual emergence of novel respiratory pathogens. Previously we identified bovine lactoferrin (bLf)-derived tetrapeptides and peptidomimetics that showed potent in vitro activity against the influenza A virus in the picomolar range. Methods: Inspired by these results, in this study, we evaluated the antiviral potential of these compounds against HCoV-229E, a human coronavirus that can cause severe disease in immunocompromised individuals, using a compound repositioning approach. Results: Functional studies revealed that SK(N-Me)HS (3) interferes with viral entry and replication, while compound SNKHS (5) primarily blocks infection in the early stages. Biophysical analyses confirmed the occurrence of high-affinity binding to the viral spike protein, and computational studies suggested that the compounds target a region involved in conformational changes necessary for membrane fusion. Conclusions: These findings highlight these compounds as promising candidates for coronavirus entry inhibition and underscore the value of compound repurposing in antiviral development. Full article
(This article belongs to the Special Issue Peptides-Based Antiviral Agents)
Show Figures

Figure 1

20 pages, 1573 KiB  
Article
Polyvalent Mannuronic Acid-Coated Gold Nanoparticles for Probing Multivalent Lectin–Glycan Interaction and Blocking Virus Infection
by Rahman Basaran, Darshita Budhadev, Eleni Dimitriou, Hannah S. Wootton, Gavin J. Miller, Amy Kempf, Inga Nehlmeier, Stefan Pöhlmann, Yuan Guo and Dejian Zhou
Viruses 2025, 17(8), 1066; https://doi.org/10.3390/v17081066 - 30 Jul 2025
Abstract
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. [...] Read more.
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information remains to be limited for some important MLGIs, significantly restricting the research progress. We have recently demonstrated that functional nanoparticles, including ∼4 nm quantum dots and varying sized gold nanoparticles (GNPs), densely glycosylated with various natural mono- and oligo- saccharides, are powerful biophysical probes for MLGIs. Using two important viral receptors, DC-SIGN and DC-SIGNR (together denoted as DC-SIGN/R hereafter), as model multimeric lectins, we have shown that α-mannose and α-manno-α-1,2-biose (abbreviated as Man and DiMan, respectively) coated GNPs not only can provide sensitive measurement of MLGI affinities but also reveal critical structural information (e.g., binding site orientation and mode) which are important for MLGI targeting. In this study, we produced mannuronic acid (ManA) coated GNPs (GNP-ManA) of two different sizes to probe the effect of glycan modification on their MLGI affinity and antiviral property. Using our recently developed GNP fluorescence quenching assay, we find that GNP-ManA binds effectively to both DC-SIGN/R and increasing the size of GNP significantly enhances their MLGI affinity. Consistent with this, increasing the GNP size also significantly enhances their ability to block DC-SIGN/R-augmented virus entry into host cells. Particularly, ManA coated 13 nm GNP potently block Ebola virus glycoprotein-driven entry into DC-SIGN/R-expressing cells with sub-nM levels of EC50. Our findings suggest that GNP-ManA probes can act as a useful tool to quantify the characteristics of MLGIs, where increasing the GNP scaffold size substantially enhances their MLGI affinity and antiviral potency. Full article
(This article belongs to the Special Issue Role of Lectins in Viral Infections and Antiviral Intervention)
Show Figures

Figure 1

18 pages, 2125 KiB  
Article
A Replication-Defective Myxoma Virus Inducing Pro-Inflammatory Responses as Monotherapy and an Adjuvant to Chemo- and DC Immuno-Therapy for Ovarian Cancer
by Martin J. Cannon and Jia Liu
Viruses 2025, 17(8), 1058; https://doi.org/10.3390/v17081058 - 29 Jul 2025
Viewed by 192
Abstract
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic [...] Read more.
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic benefit by chemotherapy and dendritic cell (DC) vaccine. Because MYXV favors binding/entry of macrophages/monocytes, we examined the therapeutic potential of MYXV against TAMs. We found previously that a replication-defective MYXV with targeted deletion of an essential gene, M062R, designated ΔM062R MYXV, activated both the host DNA sensing pathway and the SAMD9 pathway. Treatment with ΔM062R confers therapeutic benefit comparable to that of wild-type replicating MYXV in preclinical models. Here we found that ΔM062R MYXV, when integrated with cisplatin and DC immunotherapy, further improved treatment benefit, likely through promoting tumor antigen-specific T cell function. Moreover, we also tested ΔM062R MYXV in targeting human immunosuppressive TAMs from OC patient ascites in a co-culture system. We found that ΔM062R treatment subverted the immunosuppressive properties of TAMs and elevated the avidity of cytokine production in tumor antigen-specific CD4+ T cells. Overall, ΔM062R presents a promising immunotherapeutic platform as a beneficial adjuvant to chemotherapy and DC vaccine. Full article
(This article belongs to the Special Issue Women in Virology 2025)
Show Figures

Figure 1

27 pages, 5867 KiB  
Article
Distinct Virologic Properties of African and Epidemic Zika Virus Strains: The Role of the Envelope Protein in Viral Entry, Immune Activation, and Neuropathogenesis
by Ashkan Roozitalab, Chenyu Zhang, Jiantao Zhang, Ge Li, Chengyu Yang, Wangheng Hou, Qiyi Tang and Richard Y. Zhao
Pathogens 2025, 14(7), 716; https://doi.org/10.3390/pathogens14070716 - 19 Jul 2025
Viewed by 286
Abstract
The 2016 Zika virus (ZIKV) epidemic has largely subsided, but a key question remains. How did ZIKV evolve to become a virulent human pathogen compared to the virus of its original discovery? What specific virologic and pathologic changes contributed to increased pathogenicity in [...] Read more.
The 2016 Zika virus (ZIKV) epidemic has largely subsided, but a key question remains. How did ZIKV evolve to become a virulent human pathogen compared to the virus of its original discovery? What specific virologic and pathologic changes contributed to increased pathogenicity in humans? Phylogenetic studies have identified two genetically distinct ZIKV, the African and Asian lineages, which differ in their pathogenicity. Previous studies including ours suggest that the envelope (E) protein plays a key role in viral entry, immune activation, and neuropathogenesis. This study aimed to further elucidate virologic and pathogenic differences between these lineages by assessing their ability to bind and replicate in host cells, induce apoptotic cell death, trigger inflammatory responses, and influence human neural progenitor cell (hNPC)-derived neurosphere formation. We compared a historic African ZIKV strain (MR766) with an epidemic Brazilian strain (BR15) and evaluated the effects of the E protein inhibitor quercetin-3-β-O-D-glucoside (Q3G) and an E protein-neutralizing antibody (AbII). Our results revealed distinct virologic properties and that MR766 exhibited stronger inhibition of neurosphere formation due to enhanced viral binding to neuronal SH-SY5Y cells, while BR15 infection triggered a heightened pro-inflammatory cytokine response with reduced viral binding. Chimeric virus studies suggested that the E protein likely influences viral binding, replication efficiency, immune activation, and neuropathogenesis. Notably, Q3G exhibited antiviral activities against both MR766 and BR15, whereas AbII preferentially inhibited MR766. These findings highlight the virological differences between ancestral and epidemic viral strains, as well as the critical role of E protein in viral permissiveness, immune response, and neuropathogenesis, providing insights for developing targeted antiviral strategies. Full article
Show Figures

Figure 1

53 pages, 2310 KiB  
Review
Metabolic Reprogramming in Respiratory Viral Infections: A Focus on SARS-CoV-2, Influenza, and Respiratory Syncytial Virus
by Jordi Camps, Simona Iftimie, Andrea Jiménez-Franco, Antoni Castro and Jorge Joven
Biomolecules 2025, 15(7), 1027; https://doi.org/10.3390/biom15071027 - 16 Jul 2025
Viewed by 413
Abstract
Respiratory infections caused by severe acute respiratory syndrome coronavirus 2, influenza virus, and respiratory syncytial virus pose significant global health challenges, leading to high morbidity and mortality, particularly in vulnerable populations. Despite their distinct virological characteristics, these viruses exploit host cellular metabolism to [...] Read more.
Respiratory infections caused by severe acute respiratory syndrome coronavirus 2, influenza virus, and respiratory syncytial virus pose significant global health challenges, leading to high morbidity and mortality, particularly in vulnerable populations. Despite their distinct virological characteristics, these viruses exploit host cellular metabolism to support replication, modulate immune responses, and promote disease progression. Emerging evidence shows that they induce metabolic reprogramming, shifting cellular energy production toward glycolysis to meet the bioenergetic demands of viral replication. Additionally, alterations in lipid metabolism, including enhanced fatty acid synthesis and disrupted cholesterol homeostasis, facilitate viral entry, replication, and immune evasion. The dysregulation of mitochondrial function and oxidative stress pathways also contributes to disease severity and long-term complications, such as persistent inflammation and immune exhaustion. Understanding these metabolic shifts is crucial for identifying new therapeutic targets and novel biomarkers for early disease detection, prognosis, and patient stratification. This review provides an overview of the metabolic alterations induced by severe acute respiratory syndrome coronavirus 2, influenza virus, and respiratory syncytial virus, highlighting shared and virus-specific mechanisms and potential therapeutic interventions. Full article
Show Figures

Figure 1

16 pages, 2021 KiB  
Article
The Cytoplasmic Tail of Ovine Herpesvirus 2 Glycoprotein B Affects Cell Surface Expression and Is Required for Membrane Fusion
by Colleen M. Lynch, Maria K. Herndon, McKenna A. Hull, Daniela D. Moré, Katherine N. Baker, Cristina W. Cunha and Anthony V. Nicola
Viruses 2025, 17(7), 994; https://doi.org/10.3390/v17070994 - 16 Jul 2025
Viewed by 345
Abstract
Ovine herpesvirus 2 (OvHV-2) causes the fatal veterinary disease malignant catarrhal fever (MCF). Fusion is an essential step in the host cell entry of enveloped viruses and is an important target for vaccine development. OvHV-2 cannot be propagated in vitro, so a robust [...] Read more.
Ovine herpesvirus 2 (OvHV-2) causes the fatal veterinary disease malignant catarrhal fever (MCF). Fusion is an essential step in the host cell entry of enveloped viruses and is an important target for vaccine development. OvHV-2 cannot be propagated in vitro, so a robust virus-free cell–cell membrane fusion assay is necessary to elucidate its entry mechanism. OvHV-2 cell–cell fusion requires three conserved herpesviral envelope glycoproteins: gB, gH, and gL. OvHV-2 fusion activity is detectable but low. We hypothesize that enhancing the cell surface expression of gB, which is the core herpesviral fusogen, will increase cell–cell fusion. We generated C-terminal truncation mutants of gB and determined their cell surface expression, subcellular distribution, and fusion activity. Two mutants, including one that lacked the entire cytoplasmic tail domain, failed to function in the cell–cell fusion assay, despite wild-type levels of surface expression. This suggests that the OvHV-2 gB cytoplasmic tail is critical for fusion. A gB mutant truncated at amino acid 847 showed increased surface expression and fusion relative to the wild type. This suggests that the robust fusion activity of gB847 is the result of increased surface expression. gB847 may be used in place of wild-type gB in an improved, more robust OvHV-2 fusion assay. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 1596 KiB  
Article
SNX11 Deletion Inhibits Dabie bandavirus Infection by Interfering with the Assembly of V-ATPase
by Tiezhu Liu, Xueqi Wang, Yang Fang, Ping Zhang, Qiang Sun, Jiandong Li and Shiwen Wang
Pathogens 2025, 14(7), 677; https://doi.org/10.3390/pathogens14070677 - 9 Jul 2025
Viewed by 302
Abstract
SNX11, a sorting nexin protein localized on the endosomal membrane, is an important protein closely related to protein sorting and endosomal trafficking. Previously, through a genome-wide CRISPR screening, we identified SNX11 as a critical protein for the entry of Dabie bandavirus. SNX11 deletion [...] Read more.
SNX11, a sorting nexin protein localized on the endosomal membrane, is an important protein closely related to protein sorting and endosomal trafficking. Previously, through a genome-wide CRISPR screening, we identified SNX11 as a critical protein for the entry of Dabie bandavirus. SNX11 deletion significantly inhibits the replication of Dabie bandavirus. We further discovered that the loss of SNX11 alters endosomal pH, potentially affecting the release process of Dabie bandavirus from endosomes to the cytoplasm. However, the mechanism by which SNX11 modulates endosomal pH and whether SNX11 deletion similarly inhibits other viruses remain to be elucidated. This study reveals that SNX11 can interact with the V1 subunit of the endosomal proton pump V-ATPase, affecting the expression level of this subunit on the endosomal membrane and thereby disrupting the assembly of V-ATPase. Additionally, we found that SNX11 deletion significantly inhibits the replication of dengue virus, hantavirus, and influenza virus. These findings suggest that SNX11 may be a key protein in the process of viral infection and could serve as a broad-spectrum antiviral target. Full article
Show Figures

Figure 1

20 pages, 6105 KiB  
Article
Potent Inhibition of Chikungunya Virus Entry by a Pyrazole–Benzene Derivative: A Computational Study Targeting the E1–E2 Glycoprotein Complex
by Md. Mohibur Rahman, Md. Belayet Hasan Limon, Tanvir Ahmed Saikat, Poulomi Saha, Abdul Hadi Nahid, Mohammad Mamun Alam and Mohammed Ziaur Rahman
Int. J. Mol. Sci. 2025, 26(13), 6480; https://doi.org/10.3390/ijms26136480 - 5 Jul 2025
Viewed by 538
Abstract
The Chikungunya virus (CHIKV) continues to pose a significant global health challenge due to the absence of effective antiviral treatments and limited vaccine availability. This study employed a comprehensive in silico workflow, incorporating high-throughput virtual screening, binding free-energy calculations, ADMET (absorption, distribution, metabolism, [...] Read more.
The Chikungunya virus (CHIKV) continues to pose a significant global health challenge due to the absence of effective antiviral treatments and limited vaccine availability. This study employed a comprehensive in silico workflow, incorporating high-throughput virtual screening, binding free-energy calculations, ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis, and 200 ns molecular dynamics (MD) simulations, to identify new inhibitors targeting the E1–E2 glycoprotein complex, crucial for CHIKV entry and membrane fusion. Four promising candidates were identified from a library of 20,000 compounds, with CID 136801451 showing the most potent binding (docking score: −10.227; ΔG_bind: −51.53 kcal/mol). The top four compounds exhibited favorable ADMET profiles, meeting nearly all criteria. MD simulations confirmed stable binding and strong interactions between CID 136801451 and the E1–E2 complex, evidenced by consistently low RMSD values. These findings highlight CID 136801451 as a promising CHIKV entry inhibitor, warranting further in vitro and in vivo evaluation to advance the development of effective anti-CHIKV therapeutics. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

21 pages, 2246 KiB  
Review
Potential Resistance Mechanisms Exhibited by Cystic Fibrosis Patients Against SARS-CoV-2
by Yasmin K. Elsharabassi, Nuha T. Swaidan and Mohamed M. Emara
Viruses 2025, 17(7), 919; https://doi.org/10.3390/v17070919 - 27 Jun 2025
Viewed by 334
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the 2019 coronavirus disease pandemic. The virus primarily spreads through person-to-person contact via aerosols and droplets, contributing to high case numbers and related morbidities. SARS-CoV-2 targets the respiratory tract, causing acute [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the 2019 coronavirus disease pandemic. The virus primarily spreads through person-to-person contact via aerosols and droplets, contributing to high case numbers and related morbidities. SARS-CoV-2 targets the respiratory tract, causing acute respiratory distress syndrome, particularly in immunocompromised individuals such as those with cystic fibrosis (CF). CF is a life-threatening genetic disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, leading to impaired respiratory function and recurrent severe respiratory symptoms. Despite their potential vulnerability, CF patients have shown a lower incidence of severe COVID-19, suggesting protective factors against SARS-CoV-2. Differential expression of the ACE2 receptor, crucial for viral entry, and other host factors, such as TMPRSS2, may play a role in this resistance to SARS-CoV-2. Analyzing the genomics and transcriptomics profiles of CF patients could provide insights into potential resistance mechanisms. The potential resistance mechanisms include blood and extracellular ATP levels, a deleted/dysfunctional CFTR gene, ACE and ACE2 regulation and expression, ACE and ACE2 polymorphism effects, host proteins and SARS-CoV-2 interactions, and SMN1 and ACE/ACE2 interactions. This review discusses the underlying factors and potential resistance mechanisms contributing to CF patients’ responses to SARS-CoV-2 infection. The review provides an opportunity to further investigate future therapy and research through understanding the underlying potential resistance mechanisms exhibited by CF patients against SARS-CoV-2, including ACE and ACE2 polymorphisms. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

14 pages, 1964 KiB  
Article
Preparation of Monoclonal Antibodies Against the gD Protein of Feline Herpesvirus Type-1 by mRNA Immunization
by Chengqi Zhang, Yawen Liu, Guangrong Zhao, Bo Hu, Liwen Xu, Jiajia Liu, Yajie Sun, Xiaolan Guo, Xiaoyu Deng, Shizhen Lian, Tiyun Han, Mengwei Xu, Shi Xu and Xue Bai
Vet. Sci. 2025, 12(7), 601; https://doi.org/10.3390/vetsci12070601 - 20 Jun 2025
Viewed by 574
Abstract
This study aimed to develop monoclonal antibodies (mAbs) against the gD protein of FHV-1 for rapid and specific virus detection. The gD protein, a highly conserved part of the FHV-1 envelope, is crucial for viral entry into host cells, making it an ideal [...] Read more.
This study aimed to develop monoclonal antibodies (mAbs) against the gD protein of FHV-1 for rapid and specific virus detection. The gD protein, a highly conserved part of the FHV-1 envelope, is crucial for viral entry into host cells, making it an ideal detection target. We immunized BALB/c mice with an mRNA vaccine encoding the gD gene, achieving a serum antibody titer of 1:140,000 after three immunizations. The mice were then boosted with recombinant gD protein. Through cell fusion and multiple subcloning rounds, we obtained five hybridoma cell lines (D7, E4, E9, E10, and E19) that stably secrete anti-gD protein mAbs. Characterization by indirect immunofluorescence and Western blot showed that mAbs D7 and E4 have high specificity and strong binding activity against FHV-1, detectable at 2 μg/mL. These mAbs provide specific tools for FHV-1 detection and a basis for developing rapid diagnostic methods using ELISA, colloidal gold, and other technologies. Full article
(This article belongs to the Special Issue Gastrointestinal Disease and Health in Pets)
Show Figures

Figure 1

11 pages, 822 KiB  
Article
Bat Influenza M2 Shows Functions Similar to Those of Classical Influenza A Viruses
by Wenyu Yang, Liping Wang, Lei Shi, Jialin Zhang, Heidi Liu, Jun Wang and Wenjun Ma
Pathogens 2025, 14(6), 599; https://doi.org/10.3390/pathogens14060599 - 18 Jun 2025
Viewed by 744
Abstract
Novel bat influenza viruses show different features in contrast to classical influenza A viruses (IAVs). The M2 of IAVs functions as an ion channel that plays an important role in virus entry, viral assembly, and release and also serves as the antiviral target. [...] Read more.
Novel bat influenza viruses show different features in contrast to classical influenza A viruses (IAVs). The M2 of IAVs functions as an ion channel that plays an important role in virus entry, viral assembly, and release and also serves as the antiviral target. To date, whether bat influenza M2 functions as the ion channel like classical IAV M2 remains unknown. Here, we show that the bat influenza M2 amino acid at position 31 (N/S) is critical for sensitivity to antivirals targeting the ion channel such as amantadine and other tested antivirals and that the amino acids at position 37 (H/G) and 41 (W/A) are crucial for virus replication and survival. The results indicate that bat influenza M2 functions similarly to conventional IAVs despite the low identity between the two. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

16 pages, 355 KiB  
Article
Baculovirus Variant Detection from Transient CRISPR-Cas9-Mediated Disruption of gp64 at Different Gene Locations
by Madhuja Chakraborty, Lisa Nielsen, Delaney Nash, Mark R. Bruder, Jozef I. Nissimov, Trevor C. Charles and Marc G. Aucoin
Int. J. Mol. Sci. 2025, 26(12), 5805; https://doi.org/10.3390/ijms26125805 - 17 Jun 2025
Viewed by 477
Abstract
The Baculovirus Expression Vector System (BEVS) is an important protein and complex biologics production platform. The baculovirus GP64 protein is the major envelope glycoprotein that aids in virus entry and is required for cell-to-cell transmission in cell culture. Several studies have developed strategies [...] Read more.
The Baculovirus Expression Vector System (BEVS) is an important protein and complex biologics production platform. The baculovirus GP64 protein is the major envelope glycoprotein that aids in virus entry and is required for cell-to-cell transmission in cell culture. Several studies have developed strategies around gp64 gene disruption in an attempt to minimize baculovirus co-production. Here, we investigate the result of transiently targeting the baculovirus gp64 gene with CRISPR-Cas9 during infection. Because not all genomes are effectively disrupted, we describe a variant calling methodology that allows the detection of the targeted mutations in gp64 even though these mutations are not the dominant sequences. Using a transfection-infection assay (T-I assay), the AcMNPV gp64 gene was targeted at six different locations to evaluate the effects of single and multiple targeting sites, and we demonstrated a reduction in the levels of baculovirus vectors while maintaining or enhancing foreign protein production when protein was driven by a p6.9 promoter. Viral genomes were subsequently isolated from the supernatant and cell pellet fractions, and our sequencing pipeline successfully detected indel mutations within gp64 for most of the single-guide RNA (sgRNA) targets. We also observed that 68.8% of variants found in the virus stock were conserved upon virus propagation in cell culture, thus indicating that they are not detrimental to viral fitness. This work provides a comprehensive assessment of CRISPR-Cas9 genome editing of baculovirus vectors, with potential applications in enhancing the efficiency of the BEVS. Full article
(This article belongs to the Special Issue Viral Infection and Virology Methods)
Show Figures

Figure 1

33 pages, 1491 KiB  
Review
The Evolving Role of Zika Virus Envelope Protein in Viral Entry and Pathogenesis
by Ashkan Roozitalab, Jiantao Zhang, Chenyu Zhang, Qiyi Tang and Richard Y. Zhao
Viruses 2025, 17(6), 817; https://doi.org/10.3390/v17060817 - 6 Jun 2025
Cited by 1 | Viewed by 1360
Abstract
Zika virus (ZIKV) was first discovered in Uganda’s Zika Forest in 1947. The early African viruses posed little or no health risk to humans. Since then, ZIKV has undergone extensive genetic evolution and adapted to humans, and it now causes a range of [...] Read more.
Zika virus (ZIKV) was first discovered in Uganda’s Zika Forest in 1947. The early African viruses posed little or no health risk to humans. Since then, ZIKV has undergone extensive genetic evolution and adapted to humans, and it now causes a range of human diseases, including neurologically related diseases in adults and congenital malformations such as microcephaly in newborns. This raises a critical question as to why ZIKV has become pathogenic to humans, and what virological changes have taken place and enabled it to cause these diseases? This review aims to address these questions. Specifically, we focus on the ZIKV envelope (E) protein, which is essential for initiating infection and plays a crucial role in viral entry. We compare various virologic attributes of E protein between the ancestral African strains, which presumably did not cause human diseases, with epidemic strains responsible for current human pathogenesis. First, we review the role of the ZIKV E protein in viral entry and endocytosis during the viral life cycle. We will then examine how the E protein interacts with host immune responses and evades host antiviral responses. Additionally, we will analyze key differences in the sequence, structure, and post-translational modifications between African and Asian lineages, and discuss their potential impacts on viral infection and pathogenesis. Finally, we will evaluate neutralizing antibodies, small molecule inhibitors, and natural compounds that target the E protein. This will provide insights into the development of potential vaccines and antiviral therapies to prevent or treat ZIKV infections and associated diseases. Full article
Show Figures

Figure 1

24 pages, 5995 KiB  
Article
Aptamer Development for SARS-CoV-2 and Omicron Variants Using the Spike Protein Receptor Binding Domain as a Potential Diagnostic Tool and Therapeutic Agent
by Prasanna V. Shekar, Anuj Kumar, Nirmitee Mulgaonkar, Samneet Kashyap, Gourav Choudhir, Sandun Fernando and Sachin Rustgi
Biomolecules 2025, 15(6), 805; https://doi.org/10.3390/biom15060805 - 1 Jun 2025
Viewed by 1644
Abstract
Despite various methods for detecting and treating SARS-CoV-2, affordable and easily applicable solutions are still needed. Aptamers can potentially fill this gap. Here, we establish a workflow to identify aptamers that bind to the spike proteins of SARS-CoV-2, a process applicable to other [...] Read more.
Despite various methods for detecting and treating SARS-CoV-2, affordable and easily applicable solutions are still needed. Aptamers can potentially fill this gap. Here, we establish a workflow to identify aptamers that bind to the spike proteins of SARS-CoV-2, a process applicable to other targets as well. The spike protein is crucial for the virus’s entry into host cells. The aptamer development process for the spike protein’s receptor binding domain (RBD) begins with splitting the SARS-CoV-2’s genome into 40 nucleotide-long sequences, predicting their two-dimensional structure, and sorting based on the free energy. Selected oligomers undergo three-dimensional structure prediction and docking onto the viral spike protein’s RBD. Six RNA oligomers were identified as top candidates based on the RNA docking with the SARS-CoV-2 wild-type (WT) (Wuhan-Hu-1 strain) and Omicron variant BA.1 RBD and molecular dynamics simulations. Three oligomers also demonstrated strong predicted binding affinity with other SARS-CoV-2 variants, including BA.2, XBB.1.5, and EG.5, based on the protein–aptamer docking followed by stability evaluation using the MD simulations. The aptamer with the best fit for the spike protein RBD was later validated using biolayer interferometry. The process has resulted in identifying a single aptamer from a library of 29,000 RNA oligomers, which exhibited affinity in the submicromolar range and the potential to develop into a viral screen or therapeutic. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

17 pages, 1965 KiB  
Article
The Role of Long-Range Non-Specific Electrostatic Interactions in Inhibiting the Pre-Fusion Proteolytic Processing of the SARS-CoV-2 S Glycoprotein by Heparin
by Yi Du, Yang Yang, Son N. Nguyen and Igor A. Kaltashov
Biomolecules 2025, 15(6), 778; https://doi.org/10.3390/biom15060778 - 28 May 2025
Viewed by 475
Abstract
The proteolytic processing of the SARS-CoV-2 spike glycoprotein by host cell membrane-associated proteases is a key step in both the entry of the invading virus into the cell and the release of the newly generated viral particles from the infected cell. Because of [...] Read more.
The proteolytic processing of the SARS-CoV-2 spike glycoprotein by host cell membrane-associated proteases is a key step in both the entry of the invading virus into the cell and the release of the newly generated viral particles from the infected cell. Because of the critical importance of this step for the viral infectivity cycle, it has been a target of extensive efforts aimed at identifying highly specific protease inhibitors as potential antiviral agents. An alternative strategy to disrupt the pre-fusioviden processing of the SARS-CoV-2 S glycoprotein aims to protect the substrate rather than directly inhibit the proteases. In this work, we focused on furin, a serine protease located primarily in the Golgi apparatus, but also present on the cell membrane. Its cleavage site within the S glycoprotein is located within the stalk region of the latter and comprises an arginine-rich segment (SPRRARS), which fits the definition of the Cardin–Weintraub glycosaminoglycan recognition motif. Native mass spectrometry (MS) measurements confirmed the binding of a hexadecameric peptide representing the loop region at the S1/S2 interface and incorporating the furin cleavage site (FCS) to heparin fragments of various lengths, as well as unfractionated heparin (UFH), although at the physiological ionic strength, only UFH remains tightly bound to the FCS. The direct LC/MS monitoring of FCS digestion with furin revealed a significant impact of both heparin fragments and UFH on the proteolysis kinetics, although only the latter had IC50 values that could be considered physiologically relevant (0.6 ± 0.1 mg/mL). The results of this work highlight the importance of the long-range and relatively non-specific electrostatic interactions in modulating physiological and pathological processes and emphasize the multi-faceted role played by heparin in managing coronavirus infections. Full article
(This article belongs to the Special Issue Molecular Mechanism and Detection of SARS-CoV-2)
Show Figures

Figure 1

Back to TopTop