Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,603)

Search Parameters:
Keywords = virulence determinant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1331 KiB  
Article
Characterization and Antimicrobial Resistance of Non-Typhoidal Salmonella from Poultry Carcass Rinsates in Selected Abattoirs of KwaZulu Natal, South Africa
by Bongi Beatrice Mankonkwana, Evelyn Madoroba, Kudakwashe Magwedere and Patrick Butaye
Microorganisms 2025, 13(8), 1786; https://doi.org/10.3390/microorganisms13081786 - 31 Jul 2025
Abstract
Contaminated poultry is one of the major sources of food-borne non-typhoidal Salmonella (NTS). The aim of this study was to evaluate the presence of Salmonella along the slaughter process in low- and high-throughput poultry abattoirs in South Africa and to determine their characteristics. [...] Read more.
Contaminated poultry is one of the major sources of food-borne non-typhoidal Salmonella (NTS). The aim of this study was to evaluate the presence of Salmonella along the slaughter process in low- and high-throughput poultry abattoirs in South Africa and to determine their characteristics. Samples were collected from 500 chicken carcass rinsates at various processing stages in three abattoirs. Salmonella detection and identification was conducted in accordance with the ISO 6579 methodology. NTS serotyping was performed with serotype-specific PCRs. The Kirby–Bauer disk diffusion method was used to determine antimicrobial resistance in Salmonella. PCR was used to analyze thirteen antimicrobial genes and four virulence genes. Salmonella spp. was detected in 11.8% (59/500; CI: 9.5–15) of the samples tested. The predominant serovars were Salmonella Enteritidis (n = 21/59; 35.59%) and Salmonella Typhimurium (n = 35; 59.32%). Almost all Salmonella isolates were susceptible to all tested antimicrobials except three. Despite the low resistance to tetracyclines at the phenotypic level, approximately half of the strains carried tetA genes, which may be due to “silent” antimicrobial resistance genes. Diverse virulence genes were detected among the confirmed NTS serotypes. We found a predominance of S. Enteritidis and S. Typhimurium from chicken carcasses with diverse virulence and resistance genes. As we detected differences between the slaughterhouses, an in-depth study should be performed on the risk of Salmonella in low- and high-throughput abattoirs. The integrated monitoring and surveillance of NTS in poultry is warranted in South Africa to aid in the design of mitigation strategies. Full article
(This article belongs to the Special Issue Salmonella and Food Safety)
Show Figures

Figure 1

19 pages, 2130 KiB  
Article
Isolation of ESBL-Producing Enterobacteriaceae in Food of Animal and Plant Origin: Genomic Analysis and Implications for Food Safety
by Rosa Fraccalvieri, Stefano Castellana, Angelica Bianco, Laura Maria Difato, Loredana Capozzi, Laura Del Sambro, Adelia Donatiello, Domenico Pugliese, Maria Tempesta, Antonio Parisi and Marta Caruso
Microorganisms 2025, 13(8), 1770; https://doi.org/10.3390/microorganisms13081770 - 29 Jul 2025
Viewed by 210
Abstract
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food [...] Read more.
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food samples, including both raw and ready-to-eat products, was analyzed for the presence of ESBL-producing Enterobacteriaceae using chromogenic selective agar. Antibiotic resistance in the isolated strains was assessed using conventional methods, while whole-genome sequencing was employed to predict antimicrobial resistance and virulence genes. Results: The overall occurrence of ESBL-PE strains was 2.8%, with the highest contamination in raw meat samples (10%). A total of 31 multidrug-resistant (MDR) strains was isolated, mainly Escherichia coli, followed by Klebsiella pneumoniae, Salmonella enterica, and Enterobacter hormaechei. All strains exhibited high levels of resistance to at least four different β-lactam antibiotics, as well as to other antimicrobial classes including sulfonamides, tetracyclines, aminoglycosides, and quinolones. Whole-genome sequencing identified 63 antimicrobial resistance genes, with blaCTX-M being the most prevalent ESBL gene. Twenty-eight (90%) isolates carried Inc plasmids, known vectors of multiple antimicrobial resistance genes, including those associated with ESBLs. Furthermore, several virulence genes were identified. Conclusions: The contamination of food with ESBL-PE represents a potential public health risk, underscoring the importance of the implementation of genomic surveillance to monitor and control the spread of antimicrobial resistance. Full article
(This article belongs to the Special Issue Food Microorganisms and Genomics, 2nd Edition)
Show Figures

Figure 1

19 pages, 5927 KiB  
Article
Modeling the Anti-Adhesive Role of Punicalagin Against Listeria Monocytogenes from the Analysis of the Interaction Between Internalin A and E-Cadherin
by Lorenzo Pedroni, Sergio Ghidini, Javier Vázquez, Francisco Javier Luque and Luca Dellafiora
Int. J. Mol. Sci. 2025, 26(15), 7327; https://doi.org/10.3390/ijms26157327 - 29 Jul 2025
Viewed by 206
Abstract
Listeria monocytogenes poses health threats due to its resilience and potential to cause severe infections, especially in vulnerable populations. Plant extracts and/or phytocomplexes have demonstrated the capability of natural compounds in mitigating L. monocytogenes virulence. Here we explored the suitability of a computational [...] Read more.
Listeria monocytogenes poses health threats due to its resilience and potential to cause severe infections, especially in vulnerable populations. Plant extracts and/or phytocomplexes have demonstrated the capability of natural compounds in mitigating L. monocytogenes virulence. Here we explored the suitability of a computational pipeline envisioned to identify the molecular determinants for the recognition between the bacterial protein internalin A (InlA) and the human E-cadherin (Ecad), which is the first step leading to internalization. This pipeline consists of molecular docking and extended atomistic molecular dynamics simulations to identify key interaction clusters between InlA and Ecad. It exploits this information in the screening of chemical libraries of natural compounds that might competitively interact with InIA and hence impede the formation of the InIA–Ecad complex. This strategy was effective in providing a molecular model for the anti-adhesive activity of punicalagin and disclosed two natural phenolic compounds with a similar interaction pattern. Besides elucidating key aspects of the mutual recognition between InIA and Ecad, this study provides a molecular basis about the mechanistic underpinnings of the anti-adhesive action of punicalagin that enable application against L. monocytogenes. Full article
(This article belongs to the Special Issue Computational Approaches for Protein Design)
Show Figures

Figure 1

18 pages, 2215 KiB  
Article
Exploration of Phosphoproteins in Acinetobacter baumannii
by Lisa Brémard, Sébastien Massier, Emmanuelle Dé, Nicolas Nalpas and Julie Hardouin
Pathogens 2025, 14(8), 732; https://doi.org/10.3390/pathogens14080732 - 24 Jul 2025
Viewed by 291
Abstract
Acinetobacter baumannii is a multidrug-resistant bacterium that has gained significant attention in recent years due to its involvement in a growing number of hospital-acquired infections. The World Health Organization has classified it as a critical priority pathogen, underscoring the urgent need for new [...] Read more.
Acinetobacter baumannii is a multidrug-resistant bacterium that has gained significant attention in recent years due to its involvement in a growing number of hospital-acquired infections. The World Health Organization has classified it as a critical priority pathogen, underscoring the urgent need for new therapeutic strategies. Post-translational modifications (PTMs), such as phosphorylation, play essential roles in various bacterial processes, including antibiotic resistance, virulence or biofilm formation. Although proteomics has increasingly enabled their characterization, the identification of phosphorylated peptides remains challenging, primarily due to the enrichment procedures. In this study, we focused on characterizing serine, threonine, and tyrosine phosphorylation in the A. baumannii ATCC 17978 strain. We optimized three parameters for phosphopeptide enrichment using titanium dioxide (TiO2) beads (number of enrichment fractions between the phosphopeptides and TiO2 beads, the quantity peptides and type of loading buffer) to determine the most effective conditions for maximizing phosphopeptide identification. Using this optimized protocol, we identified 384 unique phosphorylation sites across 241 proteins, including 260 novel phosphosites previously unreported in A. baumannii. Several of these phosphorylated proteins are involved in critical bacterial processes such as antimicrobial resistance, biofilm formation or pathogenicity. We discuss these proteins, focusing on the potential functional implications of their phosphorylation. Notably, we identified 34 phosphoproteins with phosphosites localized at functional sites, such as active sites, multimer interfaces, or domains important for structural integrity. Our findings significantly expand the current phosphoproteomic landscape of A. baumannii and support the hypothesis that PTMs, particularly phosphorylation, play a central regulatory role in its physiology and pathogenic potential. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

23 pages, 6061 KiB  
Article
Genomic Insights into Emerging Multidrug-Resistant Chryseobacterium indologenes Strains: First Report from Thailand
by Orathai Yinsai, Sastra Yuantrakul, Punnaporn Srisithan, Wenting Zhou, Sorawit Chittaprapan, Natthawat Intajak, Thanakorn Kruayoo, Phadungkiat Khamnoi, Siripong Tongjai and Kwanjit Daungsonk
Antibiotics 2025, 14(8), 746; https://doi.org/10.3390/antibiotics14080746 - 24 Jul 2025
Viewed by 327
Abstract
Background: Chryseobacterium indologenes, an environmental bacterium, is increasingly recognized as an emerging nosocomial pathogen, particularly in Asia, and is often characterized by multidrug resistance. Objectives: This study aimed to investigate the genomic features of clinical C. indologenes isolates from Maharaj [...] Read more.
Background: Chryseobacterium indologenes, an environmental bacterium, is increasingly recognized as an emerging nosocomial pathogen, particularly in Asia, and is often characterized by multidrug resistance. Objectives: This study aimed to investigate the genomic features of clinical C. indologenes isolates from Maharaj Nakorn Chiang Mai Hospital, Thailand, to understand their mechanisms of multidrug resistance, virulence factors, and mobile genetic elements (MGEs). Methods: Twelve C. indologenes isolates were identified, and their antibiotic susceptibility profiles were determined. Whole genome sequencing (WGS) was performed using a hybrid approach combining Illumina short-reads and Oxford Nanopore long-reads to generate complete bacterial genomes. The hybrid assembled genomes were subsequently analyzed to detect antimicrobial resistance (AMR) genes, virulence factors, and MGEs. Results: C. indologenes isolates were primarily recovered from urine samples of hospitalized elderly male patients with underlying conditions. These isolates generally exhibited extensive drug resistance, which was subsequently explored and correlated with genomic determinants. With one exception, CMCI13 showed a lower resistance profile (Multidrug resistance, MDR). Genomic analysis revealed isolates with genome sizes of 4.83–5.00 Mb and GC content of 37.15–37.35%. Genomic characterization identified conserved resistance genes (blaIND-2, blaCIA-4, adeF, vanT, and qacG) and various virulence factors. Phylogenetic and pangenome analysis showed 11 isolates clustering closely with Chinese strain 3125, while one isolate (CMCI13) formed a distinct branch. Importantly, each isolate, except CMCI13, harbored a large genomic island (approximately 94–100 kb) carrying significant resistance genes (blaOXA-347, tetX, aadS, and ermF). The absence of this genomic island in CMCI13 correlated with its less resistant phenotype. No plasmids, integrons, or CRISPR-Cas systems were detected in any isolate. Conclusions: This study highlights the alarming emergence of multidrug-resistant C. indologenes in a hospital setting in Thailand. The genomic insights into specific resistance mechanisms, virulence factors, and potential horizontal gene transfer (HGT) events, particularly the association of a large genomic island with the XDR phenotype, underscore the critical need for continuous genomic surveillance to monitor transmission patterns and develop effective treatment strategies for this emerging pathogen. Full article
Show Figures

Figure 1

21 pages, 2325 KiB  
Article
Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk
by Anagnostou Glykeria-Myrto, Skarlatoudi Theodora, Theodorakis Vasileios, Bosnea Loulouda and Mataragas Marios
Vet. Sci. 2025, 12(8), 685; https://doi.org/10.3390/vetsci12080685 - 23 Jul 2025
Viewed by 265
Abstract
The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing [...] Read more.
The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing bacteria. However, the heavy usage and/or misuse of antibiotics has led to the emergence of antibiotic resistance. This study aimed to genetically and phenotypically characterize Enterococcus strains isolated from raw sheep milk. Samples were collected over one year from the bulk tank of a dairy sheep farm and cultured on selective media. Isolates were purified and analyzed by whole-genome sequencing and antimicrobial susceptibility testing. The isolates were divided into clusters and the corresponding species were identified along with their genes related to virulence and antibiotic resistance. The pan-, core- and accessory-genomes of the strains were determined. Finally, the antibiotic-resistant profile of selected strains was examined and associated with their genomic characterization. These findings contribute to a better understanding of Enterococci epidemiology, providing comprehensive profiles of their virulence and resistance genes. The presence of antibiotic-resistant bacteria in raw sheep milk destined for the production of cheese should raise awareness. Full article
Show Figures

Figure 1

11 pages, 775 KiB  
Article
Whole Genome Sequencing of Klebsiella variicola Strains Isolated from Patients with Cancer
by Alicja Sękowska, Andrés Carrazco-Montalvo and Yulian Konechnyi
Antibiotics 2025, 14(8), 735; https://doi.org/10.3390/antibiotics14080735 - 22 Jul 2025
Viewed by 377
Abstract
Background: Klebsiella variicola is a Gram-negative, capsulated, nonmotile, facultative anaerobic rod. It is one of the species belonging to the K. pneumoniae complex. The objective of this study was to gain insights into the antimicrobial resistance and virulence of K. variicola [...] Read more.
Background: Klebsiella variicola is a Gram-negative, capsulated, nonmotile, facultative anaerobic rod. It is one of the species belonging to the K. pneumoniae complex. The objective of this study was to gain insights into the antimicrobial resistance and virulence of K. variicola strains isolated from clinical samples from oncologic patients. Methods: Strain identification was performed using a mass spectrometry method. Whole genome sequencing was conducted for all analyzed strains. Antimicrobial susceptibility was determined using an automated method. The presence of antimicrobial resistance mechanisms and genes encoding extended-spectrum beta-lactamases (ESBL) was assessed using the double-disc synergy test and genotypic methods. Results: All isolates were identified as K. variicola using mass spectrometry and whole genome sequencing (WGS). All isolates were ESBL-positive, and two of them harbored the blaCTX-M-15 gene. In our study, the blaLEN-17 gene was detected in all strains. Genome sequence analysis of the K. variicola isolates revealed the presence of virulence factor genes, including entAB, fepC, ompA, ykgK, and yagWXYZ. Two different plasmids, IncFIB(K) and IncFII, were identified in all of the analyzed K. variicola strains. The detected virulence factors suggest the ability of the bacteria to survive in the environment and infect host cells. All isolates demonstrated in vitro susceptibility to carbapenems. Conclusions: Further studies are needed to confirm whether multidrug-resistant K. variicola strains represent an important pathogen in infections among oncologic patients. Full article
Show Figures

Figure 1

15 pages, 2083 KiB  
Article
Identifying Key Pathogens and Effective Control Agents for Astragalus membranaceus var. mongholicus Root Rot
by Bo Zhang, Bingyan Xia, Chunyan Wang, Ouli Xiao, Tielin Wang, Haoran Zhao, Xiaofeng Dai, Jieyin Chen, Yonggang Wang and Zhiqiang Kong
J. Fungi 2025, 11(7), 544; https://doi.org/10.3390/jof11070544 - 21 Jul 2025
Viewed by 383
Abstract
Root rot is one of the most serious diseases affecting Astragalus membranaceus, significantly reducing its yield and quality. This study focused on root rot in Astragalus membranaceus var. mongholicus. Pathogenic fungi were isolated and identified. The pathogenicity of seven strains of [...] Read more.
Root rot is one of the most serious diseases affecting Astragalus membranaceus, significantly reducing its yield and quality. This study focused on root rot in Astragalus membranaceus var. mongholicus. Pathogenic fungi were isolated and identified. The pathogenicity of seven strains of pathogenic fungi was verified according to Koch’s postulates. The inhibitory effects of eight classic fungicides and nine strains of biocontrol agents on the pathogenic fungi were determined using the mycelial growth rate method. Through morphological and ITS phylogenetic analyses, strains CDF5, CDF6, and CDF7 were identified as Fusarium oxysporum, while strains CDF1, CDF2, CDF3, and CDF4 were identified as Fusarium solani. Indoor virulence tests showed that, among the eight tested fungicides, carbendazim exhibited the strongest inhibitory effect on the mycelial growth of both F. oxysporum and F. solani, with a half-maximal effective concentration (EC50) value of (0.44 ± 0.24) mg/mL, making it a highly promising chemical agent for the control of A. membranaceus var. mongholicus root rot. Among the nine biocontrol agents, KRS006 showed the best inhibitory effect against the seven pathogenic strains, with an inhibition rate ranging from 42.57% to 55.51%, and it can be considered a candidate strain for biological control. This study identified the biocontrol strain KRS006 and the chemical fungicide carbendazim as promising core agents for the biological and chemical control of A. membranaceus var. mongholicus root rot, respectively, providing a theoretical foundation for establishing a dual biocontrol–chemical control strategy. Based on the excellent performance of the biocontrol bacteria and fungicides in the pathogen control tests, future research should focus on field trials to verify the synergistic effect of this integrated control strategy and clarify the interaction mechanism between the antibacterial metabolites produced by the biocontrol bacteria KRS006 and carbendazim. Additionally, continuous monitoring of the evolution of Fusarium spp. resistance to carbendazim is critical to ensure the long-term sustainability of the integrated control system. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

17 pages, 2176 KiB  
Article
Growth-Phase-Dependent Modulation of Quorum Sensing and Virulence Factors in Pseudomonas aeruginosa ATCC 27853 by Sub-MICs of Antibiotics
by Ahmed Noby Amer, Nancy Attia, Daniel Baecker, Rasha Emad Mansour and Ingy El-Soudany
Antibiotics 2025, 14(7), 731; https://doi.org/10.3390/antibiotics14070731 - 21 Jul 2025
Viewed by 373
Abstract
Background: Antibiotics at sub-inhibitory concentrations can rewire bacterial regulatory networks, impacting virulence. Objective: The way that exposure to selected antibiotics (ciprofloxacin, amikacin, azithromycin, ceftazidime, and meropenem) below their minimum inhibitory concentration (sub-MIC) modulates the physiology of Pseudomonas aeruginosa is examined in [...] Read more.
Background: Antibiotics at sub-inhibitory concentrations can rewire bacterial regulatory networks, impacting virulence. Objective: The way that exposure to selected antibiotics (ciprofloxacin, amikacin, azithromycin, ceftazidime, and meropenem) below their minimum inhibitory concentration (sub-MIC) modulates the physiology of Pseudomonas aeruginosa is examined in this study using growth-phase-resolved analysis. Methods: Standard P. aeruginosa strain cultures were exposed to ¼ and ½ MIC to determine the growth kinetics under antibiotic stress. The study measured protease and pyocyanin production and the expression level of important quorum sensing and virulence genes (lasI/R, rhlI/R, pqsR/A, and phzA) at different growth phases. Results: Meropenem produced the most noticeable growth suppression at ½ MIC. Sub-MIC antibiotics did not completely stop growth, but caused distinct, dose-dependent changes. Azithromycin eliminated protease activity in all phases and had a biphasic effect on pyocyanin. Ciprofloxacin consistently inhibited both pyocyanin and protease in all phases. The effects of amikacin varied by phase and dose, while β-lactams markedly increased pyocyanin production during the log phase. In contrast to the plateau phase, when expression was often downregulated or unchanged, most quorum-sensing- and virulence-associated genes showed significant upregulation during the death phase under sub-MIC exposure. Conclusions: These findings indicate that sub-MIC antibiotics act as biochemical signal modulators, preserving stress-adapted sub-populations that, in late growth phases, activate quorum sensing and stress tolerance pathways. Full article
Show Figures

Graphical abstract

14 pages, 2669 KiB  
Article
Glutamic Acid at Position 343 in PB2 Contributes to the Virulence of H1N1 Swine Influenza Virus in Mice
by Yanwen Wang, Qiu Zhong, Fei Meng, Zhang Cheng, Yijie Zhang, Zuchen Song, Yali Zhang, Zijian Feng, Yujia Zhai, Yan Chen, Chuanling Qiao and Huanliang Yang
Viruses 2025, 17(7), 1018; https://doi.org/10.3390/v17071018 - 20 Jul 2025
Viewed by 334
Abstract
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to [...] Read more.
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to CQ445 (MLD50: 6.6 log10 EID50). Through reverse genetics, we found that the attenuation of CQ445 was due to a single substitution of glutamic acid (E) with lysine (K) at position 343 in the PB2 protein. Introducing the CQ445-PB2 (343K) into CQ91 significantly reduced viral replication and pathogenicity in mice, while replacing CQ445-PB2 with CQ91-PB2 (343E) restored virulence. In vitro studies showed that the K343E mutation impaired viral replication in MDCK and A549 cells and reduced polymerase activity in minigenome assays. Mechanistically, the amino acid at position 343 in the PB2 affects the transcription stage of the viral replication process. Structural modeling indicated that the charge reversal caused by E343K altered local electrostatic interactions without major conformational changes. Phylogenetic analysis revealed that PB2-343E is highly conserved (>99.9%) in human and swine H1/H3 influenza viruses, suggesting that PB2-343E confers an adaptive advantage. This study identifies PB2-343E as a critical determinant of influenza virus pathogenicity in mammals, highlighting its role in host adaptation. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

15 pages, 4418 KiB  
Article
Prevalence and Genomic Characterization of Vibrio parahaemolyticus Isolated from a Vast Amount of Aquatic Products in Huzhou, China
by Wei Yan, Liping Chen, Lei Ji, Rui Yuan, Fenfen Dong and Peng Zhang
Foods 2025, 14(14), 2481; https://doi.org/10.3390/foods14142481 - 15 Jul 2025
Viewed by 356
Abstract
Vibrio parahaemolyticus is the leading bacterial cause of gastroenteritis associated with aquatic food consumption globally. This study aimed to determine the prevalence of V. parahaemolyticus in aquatic foods from Huzhou and to identify the serotypes, antimicrobial resistance, virulence factors, and genetic relatedness of [...] Read more.
Vibrio parahaemolyticus is the leading bacterial cause of gastroenteritis associated with aquatic food consumption globally. This study aimed to determine the prevalence of V. parahaemolyticus in aquatic foods from Huzhou and to identify the serotypes, antimicrobial resistance, virulence factors, and genetic relatedness of the strains. A total of 306 isolates were detected from 1314 aquatic food samples from 2022 to 2024. The results indicated that the most prevalent serotypes were O1:KUT (17.0%), O2:K28 (13.7%), and O2:KUT (13.1%). Multilocus sequence typing analysis divided the 306 isolates into 175 sequence types (STs), and the predominant sequence type was ST864 (3.3%). Antimicrobial susceptibility tests showed that 2.6% of isolates were multidrug resistant. High resistance was observed to ampicillin (64.7%) and streptomycin (44.4%). A total of seven antimicrobial categories of resistance genes were identified, and the resistance gene blaCARB was detected in all isolates. The virulence genes tdh and trh were found in 16 (5.2%) and 12 (3.9%) isolates, respectively. In addition, we observed that all the 306 V. parahaemolyticus isolates encode type III secretion systems 1. The phylogenomic analysis based on the whole-genome sequence revealed that the 306 isolates were divided into four clusters. Our findings broaden perspectives on V. parahaemolyticus genetic diversity and enhance our ability to assess the potential risks of its spread. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 1266 KiB  
Article
Detection of the ST111 Global High-Risk Pseudomonas aeruginosa Clone in a Subway Underpass
by Balázs Libisch, Chioma Lilian Ozoaduche, Tibor Keresztény, Anniek Bus, Tommy Van Limbergen, Katalin Posta and Ferenc Olasz
Curr. Issues Mol. Biol. 2025, 47(7), 532; https://doi.org/10.3390/cimb47070532 - 9 Jul 2025
Viewed by 278
Abstract
P. aeruginosa strain NL201 was cultured from an urban water drain in a populated subway underpass as an environmental isolate for the ST111 global high-risk P. aeruginosa clone. In addition to carrying generally present intrinsic P. aeruginosa antibiotic resistance genes, this serotype O4 [...] Read more.
P. aeruginosa strain NL201 was cultured from an urban water drain in a populated subway underpass as an environmental isolate for the ST111 global high-risk P. aeruginosa clone. In addition to carrying generally present intrinsic P. aeruginosa antibiotic resistance genes, this serotype O4 isolate also carries a set of additional acquired resistance determinants, including aadA2, blaOXA-10, sul1, and an aac(6′)-Ib family gene. The NL201 isolate features the blaPDC-3 allele, which was found to confer significantly higher catalytic efficiency against cefepime and imipenem compared to blaPDC-1, as well as the potent P. aeruginosa virulence factors exoS, exoT, and algD. Serotype O4 isolates of the ST111 global high-risk P. aeruginosa clone have been reported from clinical samples in Canada and the USA, human stool samples in France, and environmental samples (such as cosmetic, hospital drains, and urban water drain) from various European countries. These observations underscore the effective dissemination of the ST111 global high-risk P. aeruginosa clone between different hosts, environments, and habitats, and they warrant targeted investigations from a One Health perspective on the possible routes of its spread and molecular evolution. Full article
Show Figures

Figure 1

15 pages, 2330 KiB  
Review
Fungal Melanin in Plant Pathogens: Complex Biosynthesis Pathways and Diverse Biological Functions
by Hui Jia, Ning Liu, Lu Zhang, Pan Li, Yanan Meng, Wei Yuan, Haixiao Li, Dezeng Tantai, Qing Qu, Zhiyan Cao and Jingao Dong
Plants 2025, 14(14), 2121; https://doi.org/10.3390/plants14142121 - 9 Jul 2025
Viewed by 446
Abstract
Fungal melanin plays a vital role in the survival, reproduction, infection, and environmental adaptation of plant pathogenic fungi. To develop innovative strategies for managing plant fungal diseases, comprehensive investigations into melanin are imperative. Such research is fundamental to elucidating the mechanistic basis of [...] Read more.
Fungal melanin plays a vital role in the survival, reproduction, infection, and environmental adaptation of plant pathogenic fungi. To develop innovative strategies for managing plant fungal diseases, comprehensive investigations into melanin are imperative. Such research is fundamental to elucidating the mechanistic basis of fungal pathogenesis and holds promise for the design of targeted interventions against melanin-mediated virulence determinants. This review systematically elaborates on the classification of fungal melanin in plant pathogens, provides a detailed analysis of the biosynthetic processes of 3,4-dihydroxyphenylalanine (DOPA) and 1,8-dihydroxynaphthalene melanin (DHN melanins), and reveals the catalytic functions and regulatory mechanisms of key enzymes within these pathways. Melanin modulates fungal virulence by influencing appressorial integrity and turgor pressure formation, thereby participating in the host infection process and the formation of overwintering sclerotia. Melanin provides stress resistance by protecting against extreme environmental factors, including UV radiation and high temperatures. It also has the capacity to absorb heavy metals, which increases pathogen survival under adverse conditions. Furthermore, the review also explores the mechanisms of action of melanin inhibitors that target plant pathogenic fungi, providing a theoretical foundation for developing efficient and environmentally friendly antifungal medications. The complex biosynthesis pathways and diverse biological functions of fungal melanin highlight its significant theoretical and practical importance for elucidating pathogenic mechanisms and formulating scientific control strategies. Full article
Show Figures

Figure 1

13 pages, 2724 KiB  
Article
Efficient Marker-Assisted Pyramiding of Xa21 and Xa23 Genes into Elite Rice Restorer Lines Confers Broad-Spectrum Resistance to Bacterial Blight
by Yao Li, Yulong Fan, Yihang You, Ping Wang, Yuxuan Ling, Han Yin, Yinhua Chen, Hua Zhou, Mingrui Luo, Bing Cao and Zhihui Xia
Plants 2025, 14(14), 2107; https://doi.org/10.3390/plants14142107 - 9 Jul 2025
Viewed by 383
Abstract
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major threat to global rice productivity. Although hybrid rice breeding has significantly enhanced yields, persistent genetic vulnerabilities within restorer lines continue to compromise BB resistance. This study addresses this [...] Read more.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major threat to global rice productivity. Although hybrid rice breeding has significantly enhanced yields, persistent genetic vulnerabilities within restorer lines continue to compromise BB resistance. This study addresses this challenge by implementing functional marker-assisted selection (FMAS) to pyramid two broad-spectrum resistance (R) genes, Xa21 and Xa23, into the elite, yet BB-susceptible, restorer line K608R. To enable precise Xa23 genotyping, we developed a novel three-primer functional marker (FM) system (IB23/CB23/IR23). This system complements the established U1/I2 markers used for Xa21. This recombination-independent FMAS platform facilitates simultaneous, high-precision tracking of both homozygous and heterozygous alleles, thereby effectively circumventing the linkage drag limitations typical of conventional markers. Through six generations of marker-assisted backcrossing followed by intercrossing, we generated K608R2123 pyramided lines harboring both R genes in homozygous states, achieving a recurrent parent genome recovery rate of 96.93%, as determined by single nucleotide polymorphism (SNP) chip analysis. The pyramided lines exhibited enhanced resistance against six virulent Xoo pathogenic races while retaining parental yield performance across key agronomic traits. Our FMAS strategy overcomes the historical trade-off between broad-spectrum resistance and the preservation of elite phenotypes, with the developed lines exhibiting resistance coverage complementary to that of both introgressed R genes. This integrated approach provides breeders with a reliable molecular tool to accelerate the development of high-yielding, disease-resistant varieties, demonstrating significant potential for practical deployment in rice improvement programs. The K608R2123 germplasm represents a dual-purpose resource suitable for both commercial hybrid seed production and marker-assisted breeding programs, and it confers synergistic resistance against diverse Xoo races, thereby providing a pivotal breeding resource for sustainable BB control in epidemic regions. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

20 pages, 1958 KiB  
Article
Comparison and Analysis of the Genomes of Three Strains of Botrytis cinerea Isolated from Pomegranate
by Alberto Patricio-Hernández, Miguel Angel Anducho-Reyes, Alejandro Téllez-Jurado, Rocío Ramírez-Vargas, Andrés Quezada-Salinas and Yuridia Mercado-Flores
Microorganisms 2025, 13(7), 1605; https://doi.org/10.3390/microorganisms13071605 - 8 Jul 2025
Viewed by 371
Abstract
Gray mold disease, caused by the fungus Botrytis cinerea, affects a wide variety of plants. In this study, we conducted several in vitro tests and genomic analyses on three strains of this fungus (BcPgIs-1, BcPgIs-3, MIC) previously isolated from diseased pomegranate fruits, [...] Read more.
Gray mold disease, caused by the fungus Botrytis cinerea, affects a wide variety of plants. In this study, we conducted several in vitro tests and genomic analyses on three strains of this fungus (BcPgIs-1, BcPgIs-3, MIC) previously isolated from diseased pomegranate fruits, collected at two geographic locations in Mexico. Our goal was to identify possible differences among these strains. The development of the three strains in distinct culture media, the production of extracellular enzymes, and their effect on the progression of infection in pomegranate fruits were evaluated. The genomes were sequenced using the Illumina platform and analyzed with various bioinformatics tools. All strains possess genetic determinants for virulence and cell wall polymer degradation, but MIC exhibited the highest pectinolytic activity in vitro. This strain also produced sclerotia in a shorter time (7 days) in PDA medium. BcPgls-3 demonstrated the highest conidia production across all the culture media used. Both BcPgls-3 and MIC damaged all the pomegranate fruits 8 days after inoculation, while the BcPgls-1 required up to 9 days. Sequencing of the three strains yielded high-quality sequences, resulting in a total of 17 scaffolds and genomes that exceed 41 million bp, with a GC content of approximately 42%. Phylogenomic analysis indicated that the MIC strain is situated in a group separate from BcPgIs-1 and BcPgIs-3. BcPgIs-3 possesses more coding sequences, but MIC has more genes for CAZymes and peptidases. The three strains share 10,174 genes, while BcPgIs-3 and MIC share 851. These findings highlight the differences among the strains studied, which may reflect their adaptive capacities to their environment. Results contribute to our understanding of the biology of gray mold in pomegranates and could assist in developing more effective control strategies. Full article
(This article belongs to the Special Issue Feature Papers in Plant–Microbe Interactions in North America)
Show Figures

Figure 1

Back to TopTop